1
|
Takahashi T, Komatsu S, Demizu Y, Arai K, Ishihara N, Fujisawa A, Gon H, Toyama H, Tokumaru S, Fukumoto T. A Case of Unresectable Hepatocellular Carcinoma Treated with Spacer Placement Surgery with Bioabsorbable Spacer and Subsequent Proton Beam Therapy. Surg Case Rep 2025; 11:25-0026. [PMID: 40292020 PMCID: PMC12022998 DOI: 10.70352/scrj.cr.25-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/27/2025] [Indexed: 04/30/2025] Open
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) often requires repeated therapy and poses challenges in treatment selection, particularly in patients with impaired liver function. Although hepatic resection, radiofrequency ablation, and liver transplantation are standard local curative therapies, the position of radiotherapy, including proton beam therapy (PBT), remains relatively underexplored. Herein, we report an illustrative case of unresectable HCC treated with spacer placement surgery using a bioabsorbable spacer, followed by PBT. CASE PRESENTATION We report the case of a 77-year-old male patient diagnosed with a 6 cm HCC in segment 8, accompanied by impaired liver function, precluding hepatic resection. PBT was planned; however, because of the proximity of the gastrointestinal tract to the tumor, spacer placement was deemed necessary, and a bioabsorbable polyglycolic acid spacer was placed, followed by PBT. Owing to the sufficient space provided by the spacer, curative doses of PBT could be delivered to the tumor, and the patient survived for 26 months after spacer placement surgery without any sign of recurrence. CONCLUSIONS Bioabsorbable spacer placement surgery and subsequent PBT are feasible and promising treatment options for unresectable HCC with impaired liver function.
Collapse
Affiliation(s)
- Toru Takahashi
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Shohei Komatsu
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yusuke Demizu
- Department of Radiation Oncology, Hyogo Ion Beam Medical Center Kobe Proton Center, Kobe, Hyogo, Japan
| | - Keisuke Arai
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Nobuaki Ishihara
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Akihiro Fujisawa
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Hidetoshi Gon
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Hirochika Toyama
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Sunao Tokumaru
- Department of Radiation Oncology, Hyogo Ion Beam Medical Center Kobe Proton Center, Kobe, Hyogo, Japan
| | - Takumi Fukumoto
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| |
Collapse
|
2
|
Varnava M, Tashiro M, Okamoto M, Ando K, Kubo N, Kawamura H, Onishi M, Shibuya K, Kumazawa T, Ohtaka T, Ohno T. Dose-Volume Constraints for Thoracic, Abdominal, and Pelvic Carbon Ion Radiotherapy: A Literature Review. Cancer Med 2025; 14:e70840. [PMID: 40156204 PMCID: PMC11953175 DOI: 10.1002/cam4.70840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Applying dose-volume constraints is extremely important in ensuring the safe use of radiotherapy. However, constraints for carbon ion radiotherapy (CIRT) have not been established yet. This review aims to summarize dose-volume constraints for thoracic, abdominal, and pelvic CIRT that have been identified through previous research based on the Japanese models for relative biological effectiveness (RBE). RESULTS Constraints are reported for the lungs, liver, stomach, gastrointestinal tract, rectum, sigmoid, bladder, nerves, rib, femoral head, sacrum, and skin. The constraints are classified into hard and soft to aid in determining whether priority should be given to the target coverage or organ-at-risk (OAR) sparing during treatment planning. CONCLUSIONS Further research is necessary to verify the applicability of the reported constraints and to identify constraints for the OARs that have not been investigated yet.
Collapse
Affiliation(s)
- Maria Varnava
- Gunma University Heavy Ion Medical CenterMaebashiGunmaJapan
| | | | - Masahiko Okamoto
- Gunma University Heavy Ion Medical CenterMaebashiGunmaJapan
- Department of Radiation OncologyGunma University Graduate School of MedicineMaebashiJapan
| | - Ken Ando
- Gunma University Heavy Ion Medical CenterMaebashiGunmaJapan
- Department of Radiation OncologyGunma University Graduate School of MedicineMaebashiJapan
| | - Nobutero Kubo
- Gunma University Heavy Ion Medical CenterMaebashiGunmaJapan
- Department of Radiation OncologyGunma University Graduate School of MedicineMaebashiJapan
| | - Hidemasa Kawamura
- Gunma University Heavy Ion Medical CenterMaebashiGunmaJapan
- Department of Radiation OncologyGunma University Graduate School of MedicineMaebashiJapan
| | - Masahiro Onishi
- Gunma University Heavy Ion Medical CenterMaebashiGunmaJapan
- Department of Radiation OncologyGunma University Graduate School of MedicineMaebashiJapan
| | - Kei Shibuya
- Gunma University Heavy Ion Medical CenterMaebashiGunmaJapan
- Department of Radiation OncologyGunma University Graduate School of MedicineMaebashiJapan
| | - Takuya Kumazawa
- Gunma University Heavy Ion Medical CenterMaebashiGunmaJapan
- Department of Radiation OncologyGunma University Graduate School of MedicineMaebashiJapan
| | - Takeru Ohtaka
- Gunma University Heavy Ion Medical CenterMaebashiGunmaJapan
- Department of Radiation OncologyGunma University Graduate School of MedicineMaebashiJapan
| | - Tatsuya Ohno
- Gunma University Heavy Ion Medical CenterMaebashiGunmaJapan
- Department of Radiation OncologyGunma University Graduate School of MedicineMaebashiJapan
| |
Collapse
|
3
|
Ishizawa M, Miyasaka Y, Souda H, Ono T, Chai H, Sato H, Iwai T. Rectal Gas-Induced Dose Changes in Carbon Ion Radiation Therapy for Prostate Cancer: An In Silico Study. Int J Part Ther 2025; 15:100637. [PMID: 39760119 PMCID: PMC11697597 DOI: 10.1016/j.ijpt.2024.100637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/07/2024] [Accepted: 11/18/2024] [Indexed: 01/07/2025] Open
Abstract
PURPOSE This study aims to determine dosimetric influence of rectal gas in carbon ion radiation therapy (CIRT) for prostate cancer and to establish a procedure for removal rectal gas in clinical scenarios. MATERIALS AND METHODS We analyzed 18 prostate cancer cases with bulky rectal gas. The dose distribution was recalculated on computed tomography (CT) with bulky rectal gas (gasCT) after creating the initial plan on a CT without bulky rectal gas, and the doses were transformed using a displacement vector field. This created a dose distribution simulation irradiated with the residual rectal gas. Among 12 fractions (fx) for prostate cancer CIRT, different residual rectal gas fx were used to develop 12 dose distributions, each of which was compared with that in the initial plan. Clinical target volume (Dmin, D99.5%), rectum, and rectal wall (V95%, V80%) parameters were assessed. We investigated the indicators associated with these dose changes using digital reconstruction radiograph (DRR) images. RESULTS The dosimetric changes in the clinical target volume were not significantly different from that in the initial treatment plan for both Dmin and D99.5%. Compared to the initial plan, the dose-volume histogram parameters showed changes exceeding 1 cm3 when residual rectal gas was present in the following number of fractions: 8 fx for V95% rectum, 5 fx for V80% rectum, 10 fx for V95% rectal wall, and 11 fx for V80% rectal wall. Changes in rectal and rectal wall parameters were highly correlated with the extent of rectal gas assessed on DRR images. CONCLUSION Rectal gas removal may not be necessary up to 4 fx. Moreover, indicators related to dose changes based on DRR images were highly correlated with dose changes, revealing the possibilities of estimating dose changes due to rectal gas from kV-x-ray images and using gas effect evaluation during CIRT irradiation.
Collapse
Affiliation(s)
- Miyu Ishizawa
- Department of Heavy Particle Medical Science, Yamagata University Graduate School of Medical Science, Yamagata, Japan
| | - Yuya Miyasaka
- Department of Heavy Particle Medical Science, Yamagata University Graduate School of Medical Science, Yamagata, Japan
| | - Hikaru Souda
- Department of Heavy Particle Medical Science, Yamagata University Graduate School of Medical Science, Yamagata, Japan
| | - Takashi Ono
- Department of Radiation Oncology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Hongbo Chai
- Department of Heavy Particle Medical Science, Yamagata University Graduate School of Medical Science, Yamagata, Japan
| | - Hiraku Sato
- Department of Radiation Oncology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Takeo Iwai
- Department of Heavy Particle Medical Science, Yamagata University Graduate School of Medical Science, Yamagata, Japan
| |
Collapse
|
4
|
Besuglow J, Tessonnier T, Mein S, Eichkorn T, Haberer T, Herfarth K, Abdollahi A, Debus J, Mairani A. Understanding Relative Biological Effectiveness and Clinical Outcome of Prostate Cancer Therapy Using Particle Irradiation: Analysis of Tumor Control Probability With the Modified Microdosimetric Kinetic Model. Int J Radiat Oncol Biol Phys 2024; 119:1545-1556. [PMID: 38423224 DOI: 10.1016/j.ijrobp.2024.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/22/2023] [Accepted: 02/10/2024] [Indexed: 03/02/2024]
Abstract
PURPOSE Recent experimental studies and clinical trial results might indicate that-at least for some indications-continued use of the mechanistic model for relative biological effectiveness (RBE) applied at carbon ion therapy facilities in Europe for several decades (LEM-I) may be unwarranted. We present a novel clinical framework for prostate cancer treatment planning and tumor control probability (TCP) prediction based on the modified microdosimetric kinetic model (mMKM) for particle therapy. METHODS AND MATERIALS Treatment plans of 91 patients with prostate tumors (proton: 46, carbon ions: 45) applying 66 GyRBE [RBE = 1.1 for protons and LEM-I, (α/β)x = 2.0 Gy, for carbon ions] in 20 fractions were recalculated using mMKM [(α/β)x = 3.1 Gy]). Based solely on the response data of photon-irradiated patient groups stratified according to risk and usage of androgen deprivation therapy, we derived parameters for an mMKM-based Poisson-TCP model. Subsequently, new carbon and helium ion plans, adhering to prescribed biological dose criteria, were generated. These were systematically compared with the clinical experience of Japanese centers employing an analogous fractionation scheme and existing proton plans. RESULTS mMKM predictions suggested significant biological dose deviation between the proton and carbon ion arms. Patients irradiated with protons received (3.25 ± 0.08) GyRBEmMKM/Fx, whereas patients treated with carbon ions received(2.51 ± 0.05) GyRBEmMKM/Fx. TCP predictions were (86 ± 3)% for protons and (52 ± 4)% for carbon ions, matching the clinical outcome of 85% and 50%. Newly optimized carbon ion plans, guided by the mMKM/TCP model, effectively replicated clinical data from Japanese centers. Using mMKM, helium ions exhibited similar target coverage as proton and carbon ions and improved rectum and bladder sparing compared with proton. CONCLUSIONS Our mMKM-based model for prostate cancer treatment planning and TCP prediction was validated against clinical data for proton and carbon ion therapy, and its application was extended to helium ion therapy. Based on the data presented in this work, mMKM seems to be a good candidate for clinical biological calculations in carbon ion therapy for prostate cancer.
Collapse
Affiliation(s)
- Judith Besuglow
- Clinical Cooperation Unit Translational Radiation Oncology (E210), National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Thomas Tessonnier
- Clinical Cooperation Unit Translational Radiation Oncology (E210), National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
| | - Stewart Mein
- Clinical Cooperation Unit Translational Radiation Oncology (E210), National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tanja Eichkorn
- National Center for Radiation Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Thomas Haberer
- National Center for Radiation Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
| | - Klaus Herfarth
- National Center for Radiation Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Amir Abdollahi
- Clinical Cooperation Unit Translational Radiation Oncology (E210), National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen Debus
- German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology (E050), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrea Mairani
- Clinical Cooperation Unit Translational Radiation Oncology (E210), National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; Medical Physics, National Centre of Oncological Hadrontherapy (CNAO), Pavia, Italy.
| |
Collapse
|
5
|
Ono T, Sato H, Miyasaka Y, Hagiwara Y, Yano N, Akamatsu H, Harada M, Ichikawa M. Correlation between dose-volume parameters and rectal bleeding after 12 fractions of carbon ion radiotherapy for prostate cancer. World J Radiol 2024; 16:256-264. [PMID: 39086610 PMCID: PMC11287435 DOI: 10.4329/wjr.v16.i7.256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND Carbon ion radiotherapy (CIRT) is currently used to treat prostate cancer. Rectal bleeding is a major cause of toxicity even with CIRT. However, to date, a correlation between the dose and volume parameters of the 12 fractions of CIRT for prostate cancer and rectal bleeding has not been shown. Similarly, the clinical risk factors for rectal bleeding were absent after 12 fractions of CIRT. AIM To identify the risk factors for rectal bleeding in 12 fractions of CIRT for prostate cancer. METHODS Among 259 patients who received 51.6 Gy [relative biological effectiveness (RBE)], in 12 fractions of CIRT, 15 had grade 1 (5.8%) and nine had grade 2 rectal bleeding (3.5%). The dose-volume parameters included the volume (cc) of the rectum irradiated with at least x Gy (RBE) (Vx) and the minimum dose in the most irradiated x cc normal rectal volume (Dx). RESULTS The mean values of D6cc, D2cc, V10 Gy (RBE), V20 Gy (RBE), V30 Gy (RBE), and V40 Gy (RBE) were significantly higher in the patients with rectal bleeding than in those without. The cutoff values were D6cc = 34.34 Gy (RBE), D2cc = 46.46 Gy (RBE), V10 Gy (RBE) = 9.85 cc, V20 Gy (RBE) = 7.00 cc, V30 Gy (RBE) = 6.91 cc, and V40 Gy (RBE) = 4.26 cc. The D2cc, V10 Gy (RBE), and V20 Gy (RBE) cutoff values were significant predictors of grade 2 rectal bleeding. CONCLUSION The above dose-volume parameters may serve as guidelines for preventing rectal bleeding after 12 fractions of CIRT for prostate cancer.
Collapse
Affiliation(s)
- Takashi Ono
- Department of Radiation Oncology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Hiraku Sato
- Department of Radiation Oncology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Yuya Miyasaka
- Department of Heavy Particle Medical Science, Yamagata University Graduate School of Medical Science, Yamagata 990-9585, Japan
| | - Yasuhito Hagiwara
- Department of Radiation Oncology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Natsuko Yano
- Department of Radiation Oncology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Hiroko Akamatsu
- Department of Radiation Oncology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Mayumi Harada
- Department of Radiation Oncology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Mayumi Ichikawa
- Department of Radiation Oncology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| |
Collapse
|
6
|
Murakami M, Ishikawa H, Sekino Y, Nishiyama H, Suzuki H, Sugahara S, Iizumi T, Mizumoto M, Okumura T, Keino N, Iizumi Y, Hashimoto K, Gosho M, Sakurai H. Moderately hypofractionated proton beam therapy for localized prostate cancer: 5-year outcomes of a phase II trial. JOURNAL OF RADIATION RESEARCH 2024; 65:402-407. [PMID: 38739903 PMCID: PMC11115470 DOI: 10.1093/jrr/rrae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/23/2024] [Indexed: 05/16/2024]
Abstract
The usefulness of moderately hypofractionated radiotherapy for localized prostate cancer has been extensively reported, but there are limited studies on proton beam therapy (PBT) using similar hypofractionation schedules. The aim of this prospective phase II study is to confirm the safety of a shortened PBT course using 70 Gy relative biological effectiveness (RBE) in 28 fractions. From May 2013 to June 2015, 102 men with localized prostate cancer were enrolled. Androgen deprivation therapy was administered according to risk classification. Toxicity was assessed using Common Terminology Criteria for Adverse Events version 4.0. Of the 100 patients ultimately evaluated, 15 were classified as low risk, 43 as intermediate risk, and 42 as high risk. The median follow-up time of the surviving patients was 96 months (range: 60-119 months). The 5-year cumulative incidences of grade 2 gastrointestinal/genitourinary adverse events were 1% (95% CI: 0.1-6.9) and 4% (95% CI: 1.5-10.3), respectively; no grade ≥ 3 gastrointestinal/genitourinary adverse events were observed. The current study revealed a low incidence of late adverse events in prostate cancer patients treated with moderately hypofractionated PBT of 70 Gy (RBE) in 28 fractions, indicating the safety of this schedule.
Collapse
Affiliation(s)
- Motohiro Murakami
- Department of Radiation Oncology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8576, Japan
| | - Hitoshi Ishikawa
- Department of Radiation Oncology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8576, Japan
- QST Hospital, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, Chiba, 263-8555, Japan
| | - Yuta Sekino
- Department of Radiation Oncology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8576, Japan
- JCOG Data Center and Operations Office, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuuo-ku, Tokyo, 104-0045, Japan
| | - Hiroyuki Nishiyama
- Department of Urology, Faculty of Medicine and Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8576, Japan
| | - Hiroyoshi Suzuki
- Department of Urology, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura, Chiba, 285-8741, Japan
| | - Shinji Sugahara
- Department of Radiology, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuuo, Ami-machi, inashiki-gun, Ibaraki, 300-0395, Japan
| | - Takashi Iizumi
- Department of Radiation Oncology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8576, Japan
| | - Masashi Mizumoto
- Department of Radiation Oncology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8576, Japan
| | - Toshiyuki Okumura
- Department of Radiation Oncology, Ibaraki Prefectural Central Hospital, 6528 Koibuchi, Kasama, Ibaraki, 309-1793, Japan
| | - Naoto Keino
- Tsukuba Clinical Research and Development Organization (T-CReDO), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8576, Japan
| | - Yuichi Iizumi
- Tsukuba Clinical Research and Development Organization (T-CReDO), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8576, Japan
| | - Koichi Hashimoto
- Tsukuba Clinical Research and Development Organization (T-CReDO), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8576, Japan
| | - Masahiko Gosho
- Department of Biostatistics, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8576, Japan
| | - Hideyuki Sakurai
- Department of Radiation Oncology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8576, Japan
| |
Collapse
|
7
|
Takakusagi Y, Koge H, Kano K, Shima S, Tsuchida K, Mizoguchi N, Yoshida D, Kamada T, Katoh H. Five-year clinical outcomes of scanning carbon-ion radiotherapy for prostate cancer. PLoS One 2024; 19:e0290617. [PMID: 38457424 PMCID: PMC10923478 DOI: 10.1371/journal.pone.0290617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/12/2023] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Carbon-ion radiotherapy (CIRT) has been associated with favorable clinical outcomes in patients with prostate cancer. At our facility, all patients are treated using scanning CIRT (sCIRT). We retrospectively analyzed five-year clinical outcomes of prostate cancer treated with sCIRT to investigate treatment efficacy and toxicity. METHODS In this study, we included 253 consecutive prostate cancer patients treated with sCIRT at the Kanagawa Cancer Center from December 2015 to December 2017. The total dose of sCIRT was set at 51.6 Gy (relative biological effect) in 12 fractions over three weeks. We employed the Phoenix definition for biochemical relapse. The overall survival (OS), biochemical relapse-free (bRF) rate, and cumulative incidence of late toxicity were estimated using the Kaplan-Meier method. Toxicity was assessed using the Common Terminology Criteria for Adverse Events version 4.0. RESULTS The median age of the patients was 70 years (range: 47-86 years). The median follow-up duration was 61.1 months (range: 4.1-80.3 months). Eight (3.2%), 88 (34.8%), and 157 (62.1%) patients were in the low-risk, intermediate-risk, and high-risk groups, respectively, according to the D'Amico classification system. The five-year OS and bRF were 97.5% and 93.3%, respectively. The five-year bRF rates for the low-risk, intermediate-risk, and high-risk groups were 87.5%, 93.7%, and 93.4%, respectively (p = 0.7215). The five-year cumulative incidence of Grade 2 or more late genitourinary and gastrointestinal toxicity was 7.4% and 1.2%, respectively. CONCLUSION The results of this study show that sCIRT has a favorable therapeutic effect and low toxicity in the treatment of prostate cancer.
Collapse
Affiliation(s)
- Yosuke Takakusagi
- Department of Radiation Oncology, Kanagawa Cancer Center, Kanagawa, Japan
- Department of Radiation Oncology, Yokohama Sakae Kyosai Hospital, Yokohama, Japan
| | - Hiroaki Koge
- Department of Radiation Oncology, Kanagawa Cancer Center, Kanagawa, Japan
| | - Kio Kano
- Department of Radiation Oncology, Kanagawa Cancer Center, Kanagawa, Japan
| | - Satoshi Shima
- Department of Radiation Oncology, Kanagawa Cancer Center, Kanagawa, Japan
| | - Keisuke Tsuchida
- Department of Radiation Oncology, Kanagawa Cancer Center, Kanagawa, Japan
| | - Nobutaka Mizoguchi
- Department of Radiation Oncology, Kanagawa Cancer Center, Kanagawa, Japan
| | - Daisaku Yoshida
- Department of Radiation Oncology, Kanagawa Cancer Center, Kanagawa, Japan
| | - Tadashi Kamada
- Department of Radiation Oncology, Kanagawa Cancer Center, Kanagawa, Japan
| | - Hiroyuki Katoh
- Department of Radiation Oncology, Kanagawa Cancer Center, Kanagawa, Japan
| |
Collapse
|
8
|
Fujinaka R, Komatsu S, Terashima K, Demizu Y, Omiya S, Kido M, Toyama H, Tokumaru S, Okimoto T, Fukumoto T. Clinical impact of spacer placement surgery with expanded polytetrafluoroethylene sheet for particle therapy. Radiat Oncol 2023; 18:173. [PMID: 37875956 PMCID: PMC10594906 DOI: 10.1186/s13014-023-02359-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 10/07/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Spacer placement surgery is useful in particle therapy (PT) for patients with abdominopelvic malignant tumors located adjacent to the gastrointestinal tract. This study aimed to assess the safety, efficacy, and long-term outcomes of spacer placement surgery using an expanded polytetrafluoroethylene (ePTFE) spacer. METHODS This study included 131 patients who underwent ePTFE spacer placement surgery and subsequent PT between September 2006 and June 2019. The overall survival (OS) and local control (LC) rates were calculated using Kaplan-Meier method. Spacer-related complications were classified according to the National Cancer Institute Common Terminology Criteria for Adverse Events (version 5.0). RESULTS The median follow-up period after spacer placement surgery was 36.8 months. The 3-year estimated OS and LC rates were 60.5% and 76.5%, respectively. A total of 130 patients (99.2%) were able to complete PT. Spacer-related complications of ≥ grade 3 were observed in four patients (3.1%) in the acute phase and 13 patients (9.9%) in the late phase. Ten patients (7.6%) required removal of the ePTFE spacer. CONCLUSIONS Spacer placement surgery using an ePTFE spacer for abdominopelvic malignant tumors is technically feasible and acceptable for subsequent PT. However, severe spacer-related late complications were observed in some patients. Since long-term placement of a non-absorbable ePTFE spacer is associated with risks for morbidity and infection, careful long-term follow-up and prompt therapeutic intervention are essential when complications associated with the ePTFE spacer occur. TRIAL REGISTRATION retrospectively registered.
Collapse
Affiliation(s)
- Ryosuke Fujinaka
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Hyogo, Japan
| | - Shohei Komatsu
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Hyogo, Japan.
| | - Kazuki Terashima
- Department of Radiology, Hyogo Ion Beam Medical Center, 1-2-1 Kouto, Shingu-cho, Tatsuno, 679-5165, Hyogo, Japan
| | - Yusuke Demizu
- Department of Radiology, Hyogo Ion Beam Medical Center, 1-2-1 Kouto, Shingu-cho, Tatsuno, 679-5165, Hyogo, Japan
- Department of Radiation Oncology, Hyogo Ion Beam Medical Center Kobe Proton Center, 1-6-8 Minatojimaminami-machi, Chuo-ku, Kobe, 650-0047, Hyogo, Japan
| | - Satoshi Omiya
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Hyogo, Japan
| | - Masahiro Kido
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Hyogo, Japan
| | - Hirochika Toyama
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Hyogo, Japan
| | - Sunao Tokumaru
- Department of Radiology, Hyogo Ion Beam Medical Center, 1-2-1 Kouto, Shingu-cho, Tatsuno, 679-5165, Hyogo, Japan
| | - Tomoaki Okimoto
- Department of Radiology, Hyogo Ion Beam Medical Center, 1-2-1 Kouto, Shingu-cho, Tatsuno, 679-5165, Hyogo, Japan
| | - Takumi Fukumoto
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Hyogo, Japan
| |
Collapse
|
9
|
Ahmad Khalil D, Wulff J, Jazmati D, Geismar D, Bäumer C, Kramer PH, Steinmeier T, Schleithoff SS, Tschirdewahn S, Hadaschik B, Timmermann B. Is an Endorectal Balloon Beneficial for Rectal Sparing after Spacer Implantation in Prostate Cancer Patients Treated with Hypofractionated Intensity-Modulated Proton Beam Therapy? A Dosimetric and Radiobiological Comparison Study. Curr Oncol 2023; 30:758-768. [PMID: 36661707 PMCID: PMC9857887 DOI: 10.3390/curroncol30010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/21/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The aim of this study is to examine the dosimetric influence of endorectal balloons (ERB) on rectal sparing in prostate cancer patients with implanted hydrogel rectum spacers treated with dose-escalated or hypofractionated intensity-modulated proton beam therapy (IMPT). METHODS Ten patients with localized prostate cancer included in the ProRegPros study and treated at our center were investigated. All patients underwent placement of hydrogel rectum spacers before planning. Two planning CTs (with and without 120 cm3 fluid-filled ERB) were applied for each patient. Dose prescription was set according to the h strategy, with 72 Gray (Gy)/2.4 Gy/5× weekly to prostate + 1 cm of the seminal vesicle, and 60 Gy/2 Gy/5× weekly to prostate + 2 cm of the seminal vesicle. Planning with two laterally opposed IMPT beams was performed in both CTs. Rectal dosimetry values including dose-volume statistics and normal tissue complication probability (NTCP) were compared for both plans (non-ERB plans vs. ERB plans). RESULTS For ERB plans compared with non-ERB, the reductions were 8.51 ± 5.25 Gy (RBE) (p = 0.000) and 15.76 ± 11.11 Gy (p = 0.001) for the mean and the median rectal doses, respectively. No significant reductions in rectal volumes were found after high dose levels. The use of ERB resulted in significant reduction in rectal volume after receiving 50 Gy (RBE), 40 Gy (RBE), 30 Gy (RBE), 20 Gy (RBE), and 10 Gy (RBE) with p values of 0.034, 0.008, 0.003, 0.001, and 0.001, respectively. No differences between ERB and non-ERB plans for the anterior rectum were observed. ERB reduced posterior rectal volumes in patients who received 30 Gy (RBE), 20 Gy (RBE), or 10 Gy (RBE), with p values of 0.019, 0.003, and 0.001, respectively. According to the NTCP models, no significant reductions were observed in mean or median rectal toxicity (late rectal bleeding ≥ 2, necrosis or stenosis, and late rectal toxicity ≥ 3) when using the ERB. CONCLUSION ERB reduced rectal volumes exposed to intermediate or low dose levels. However, no significant reduction in rectal volume was observed in patients receiving high or intermediate doses. There was no benefit and also no disadvantage associated with the use of ERB for late rectal toxicity, according to available NTCP models.
Collapse
Affiliation(s)
- Dalia Ahmad Khalil
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), 45147 Essen, Germany
| | - Jörg Wulff
- Faculty of Physics, TU Dortmund University, 44227 Dortmund, Germany
| | - Danny Jazmati
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), 45147 Essen, Germany
| | - Dirk Geismar
- Faculty of Physics, TU Dortmund University, 44227 Dortmund, Germany
| | - Christian Bäumer
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), 45147 Essen, Germany
| | | | - Theresa Steinmeier
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), 45147 Essen, Germany
| | | | - Stephan Tschirdewahn
- Department of Urology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Boris Hadaschik
- Department of Urology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Beate Timmermann
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), 45147 Essen, Germany
- Faculty of Physics, TU Dortmund University, 44227 Dortmund, Germany
- German Cancer Consortium (DKTK), 45147 Essen, Germany
| |
Collapse
|
10
|
Li P, Hong Z, Li Y, Fu S, Zhang Q. Two-Year Toxicity and Efficacy of Carbon Ion Radiotherapy in the Treatment of Localized Prostate Cancer: A Single-Centered Study. Front Oncol 2022; 11:808216. [PMID: 35223457 PMCID: PMC8881099 DOI: 10.3389/fonc.2021.808216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/27/2021] [Indexed: 11/25/2022] Open
Abstract
Background We aimed at determining the safety and feasibility of spot-scanning carbon ion radiotherapy (CIRT) for patients with localized prostate cancer. Methods We enrolled 118 patients with localized prostate cancer who underwent treatment with spot-scanning CIRT at the Shanghai Proton and Heavy Ion Center (SPHIC) from January 2016 to December 2020. The dose was gradually increased from relative biological effectiveness (RBE)-weighted dose (DRBE) = 59.2–65.6 Gy in 16 fractions. The primary endpoint was the occurrence of acute and late toxicities, while the secondary endpoints were biochemical relapse-free survival (bRFS), distant metastasis-free survival (DMFS), prostate cancer-specific survival (PCSS), and overall survival (OS). Results The median follow-up time was 30.2 months (4.8–62.7 months). Acute grade 1 and 2 genitourinary (GU) toxicities were 15.3% and 18.6%, while acute grade 1 and 2 gastrointestinal (GI) toxicities were 2.5% and 0%, respectively. Late grade 1 and 2 GU toxicities were 4.2% and 1.7%, respectively. No late GI toxicity was observed. Moreover, there were no cases of severe acute or late toxicity (≥ grade 3). No significant association were observed between the factors and the acute GU toxicities, except for clinical target volume (CTV) (p = 0.031) on multivariate analysis. The 2-year bRFS, DMFS, PCSS, and OS were 100%, 100%, 100%, and 98.8%, respectively. Conclusion The 2-year outcomes were encouraging, providing additional and useful information on the feasibility and safety of spot-scanning CIRT for treating prostate cancer. Thus, we recommend long-term follow-up and prospective multicentered studies to reinforce the role of CIRT in the management of localized prostate cancer.
Collapse
Affiliation(s)
- Ping Li
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Zhengshan Hong
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Yongqiang Li
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Shen Fu
- Key Laboratory of Nuclear Physics and Ion-Beam Application (MOE), Fudan University, Shanghai, China
- Department of Radiation Oncology, Shanghai Concord Cancer Hospital, Shanghai, China
| | - Qing Zhang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
- *Correspondence: Qing Zhang,
| |
Collapse
|
11
|
Chen X, Yu Q, Li P, Fu S. Landscape of Carbon Ion Radiotherapy in Prostate Cancer: Clinical Application and Translational Research. Front Oncol 2021; 11:760752. [PMID: 34804961 PMCID: PMC8602827 DOI: 10.3389/fonc.2021.760752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/20/2021] [Indexed: 12/03/2022] Open
Abstract
Carbon ion radiotherapy (CIRT) is a useful and advanced technique for prostate cancer. This study sought to investigate the clinical efficacy and translational research for prostate cancer with carbon ion radiotherapy. We integrated the data from published articles, clinical trials websites, and our data. The efficacy of CIRT for prostate cancer was assessed in terms of overall survival, biochemical recurrence-free survival, and toxicity response. Up to now, clinical treatment of carbon ion radiotherapy has been carried in only five countries. We found that carbon ion radiotherapy induced little genitourinary and gastrointestinal toxicity when used for prostate cancer treatment. To some extent, it led to improved outcomes in overall survival, biochemical recurrence-free survival than conventional radiotherapy, especially for high-risk prostate cancer. Carbon ion radiotherapy brought clinical benefits for prostate cancer patients, and quality of life assessment indicated that CIRT affected patients to a lesser extent. Potential biomarkers from our omics-based study could be used to predict the efficacy of prostate cancer with CIRT. Carbon ion radiotherapy brought clinical benefits for prostate cancer patients. The omics-based translational research may provide insights into individualized therapy.
Collapse
Affiliation(s)
- Xue Chen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Qi Yu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China.,Proton & Heavy Ion Medical Center, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Department of Radiation Oncology, Shanghai Concord Cancer Center, Shanghai, China
| | - Ping Li
- Department of Radiation Oncology, Shanghai Proton and Heavy lon Center, Shanghai, China
| | - Shen Fu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China.,Proton & Heavy Ion Medical Center, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Department of Radiation Oncology, Shanghai Concord Cancer Center, Shanghai, China.,Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai, China
| |
Collapse
|
12
|
Eichkorn T, König L, Held T, Naumann P, Harrabi S, Ellerbrock M, Herfarth K, Haberer T, Debus J. Carbon Ion Radiation Therapy: One Decade of Research and Clinical Experience at Heidelberg Ion Beam Therapy Center. Int J Radiat Oncol Biol Phys 2021; 111:597-609. [PMID: 34560023 DOI: 10.1016/j.ijrobp.2021.05.131] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 12/26/2022]
Affiliation(s)
- Tanja Eichkorn
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; National Center for Radiation Oncology, Heidelberg Institute for Radiation Oncology, Heidelberg, Germany; National Center for Tumor Diseases, Heidelberg, Germany; Heidelberg Ion Beam Therapy Center, Heidelberg, Germany.
| | - Laila König
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; National Center for Radiation Oncology, Heidelberg Institute for Radiation Oncology, Heidelberg, Germany; National Center for Tumor Diseases, Heidelberg, Germany; Heidelberg Ion Beam Therapy Center, Heidelberg, Germany
| | - Thomas Held
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; National Center for Radiation Oncology, Heidelberg Institute for Radiation Oncology, Heidelberg, Germany; National Center for Tumor Diseases, Heidelberg, Germany; Heidelberg Ion Beam Therapy Center, Heidelberg, Germany
| | - Patrick Naumann
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; National Center for Radiation Oncology, Heidelberg Institute for Radiation Oncology, Heidelberg, Germany; National Center for Tumor Diseases, Heidelberg, Germany; Heidelberg Ion Beam Therapy Center, Heidelberg, Germany
| | - Semi Harrabi
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; National Center for Radiation Oncology, Heidelberg Institute for Radiation Oncology, Heidelberg, Germany; National Center for Tumor Diseases, Heidelberg, Germany; Heidelberg Ion Beam Therapy Center, Heidelberg, Germany
| | | | - Klaus Herfarth
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; National Center for Radiation Oncology, Heidelberg Institute for Radiation Oncology, Heidelberg, Germany; National Center for Tumor Diseases, Heidelberg, Germany; Heidelberg Ion Beam Therapy Center, Heidelberg, Germany
| | | | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; National Center for Radiation Oncology, Heidelberg Institute for Radiation Oncology, Heidelberg, Germany; National Center for Tumor Diseases, Heidelberg, Germany; Heidelberg Ion Beam Therapy Center, Heidelberg, Germany; Clinical Cooperation Unit, Radiation Oncology, German Cancer Research Center, Heidelberg, Germany; German Cancer Consortium, Partner Site Heidelberg, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
13
|
Zhao J, Wang W, Shahnaz K, Wu X, Mao J, Li P, Zhang Q. Dosimetric impact of using a commercial metal artifact reduction tool in carbon ion therapy in patients with hip prostheses. J Appl Clin Med Phys 2021; 22:224-234. [PMID: 34159721 PMCID: PMC8292709 DOI: 10.1002/acm2.13314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/17/2021] [Accepted: 05/11/2021] [Indexed: 12/20/2022] Open
Abstract
The study investigated the dosimetric impact of an iterative metal artifact reduction (iMAR) tool on carbon ion therapy for pelvic cancer patients with hip prostheses. An anthropomorphic pelvic phantom with unilateral and bilateral hip prostheses was used to simulate pelvic cancer patients with metal implants. The raw data obtained from phantom CT scanning were reconstructed with a regular filtered back projection (FBP) algorithm and then corrected with iMAR. The phantom without hip prosthesis was also scanned and used as a reference ground truth (GT). The CT images of three prostate and four sarcoma patients with unilateral hip prosthesis were also reconstructed by FBP and iMAR algorithm and compared. iMAR algorithm reduced the metal artifacts and the maximum WEPL deviation in phantom images from −19.1 to −0.4 mm. However, the CT numbers cannot be retrieved using iMAR for periprosthetic bone materials, eventually leading to a WEPL deviation of −3.6 mm. The use of iMAR improved large discrepancies in DVHs of PTVs and the gamma index between FBP and GT images but increased the difference in the bladder DVH for bilateral hip prostheses due to newly introduced artifacts. In the patient study, the discrepancies of dose distribution were small on iMAR images when compared with FBP images for most cases, except for two sarcoma cases where gamma analysis failed and dose coverage in 98% of the PTV maximally reduced due to large volume of dark metal artifacts. iMAR reduced the metal artifacts and improved dose distribution accuracy in carbon ion radiotherapy for pelvic cancer. However, the residual and newly introduced artifacts, especially with bilateral hip prostheses, may potentially increase WEPL inaccuracy and dose uncertainty. The use of iMAR has the potential to improve carbon ion treatment planning of pelvic cancer but should be used with caution.
Collapse
Affiliation(s)
- Jingfang Zhao
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Weiwei Wang
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Medical physics, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Kambiz Shahnaz
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Medical physics, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Xianwei Wu
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Medical physics, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Jingfang Mao
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Ping Li
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Qing Zhang
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
| |
Collapse
|
14
|
Wang W, Li P, Sheng Y, Huang Z, Zhao J, Hong Z, Shahnazi K, Jiang GL, Zhang Q. Conversion and validation of rectal constraints for prostate carcinoma receiving hypofractionated carbon-ion radiotherapy with a local effect model. Radiat Oncol 2021; 16:72. [PMID: 33849589 PMCID: PMC8045205 DOI: 10.1186/s13014-021-01801-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 04/07/2021] [Indexed: 11/12/2022] Open
Abstract
Background The study objective was to establish the local effect model (LEM) rectum constraints for 12-, 8-, and 4-fraction carbon-ion radiotherapy (CIRT) in patients with localized prostate carcinoma (PCA) using microdosimetric kinetic model (MKM)-defined and LEM-defined constraints for 16-fraction CIRT. Methods We analyzed 40 patients with PCA who received 16- or 12-fraction CIRT at our center. Linear-quadratic (LQ) and RBE-conversion models were employed to convert the constraints into various fractionations and biophysical models. Based on them, the MKM LQ strategy converted MKM rectum constraints for 16-fraction CIRT to 12-, 8-, and 4-fraction CIRT using the LQ model. Then, MKM constraints were converted to LEM using the RBE-conversion model. Meanwhile the LEM LQ strategy converted MKM rectum constraints for 16-fraction CIRT to LEM using the RBE-conversion model. Then, LEM constraints were converted from 16-fraction constraints to the rectum constraints for 12-, 8-, and 4-fraction CIRT using the LQ model. The LEM constraints for 16- and 12-fraction CIRT were evaluated using rectum doses and clinical follow-up. To adapt them for the MKM LQ strategy, CNAO LEM constraints were first converted to MKM constraints using the RBE-conversion model. Results The NIRS (i.e. DMKM|v, V-20%, 10%, 5%, and 0%) and CNAO rectum constraints (i.e. DLEM|v, V-10 cc, 5 cc, and 1 cc) were converted for 12-fraction CIRT using the MKM LQ strategy to LEM 37.60, 49.74, 55.27, and 58.01 Gy (RBE), and 45.97, 51.70, and 55.97 Gy (RBE), and using the LEM LQ strategy to 39.55, 53.08, 58.91, and 61.73 Gy (RBE), and 49.14, 55.30, and 59.69 Gy (RBE). We also established LEM constraints for 8- and 4-fraction CIRT. The 10-patient RBE-conversion model was comparable to 30-patient model. Eight patients who received 16-fraction CIRT exceeded the corresponding rectum constraints; the others were within the constraints. After a median follow-up of 10.8 months (7.1–20.8), No ≥ G1 late rectum toxicities were observed. Conclusions The LEM rectum constraints from the MKM LQ strategy were more conservative and might serve as the reference for hypofractionated CIRT. However, Long-term follow-up plus additional patients is necessary.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai Key Laboratory of Radiation Oncology (20dz226100), Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, 4365 Kangxin Road, Pudong District, Shanghai, 201315, China
| | - Ping Li
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center; Shanghai Key Laboratory of Radiation Oncology (20dz226100), Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, 4365 Kangxin Road, Pudong District, Shanghai, 201315, China
| | - Yinxiangzi Sheng
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai Key Laboratory of Radiation Oncology (20dz226100), Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, 4365 Kangxin Road, Pudong District, Shanghai, 201315, China
| | - Zhijie Huang
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai Key Laboratory of Radiation Oncology (20dz226100), Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, 4365 Kangxin Road, Pudong District, Shanghai, 201315, China
| | - Jingfang Zhao
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai Key Laboratory of Radiation Oncology (20dz226100), Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, 4365 Kangxin Road, Pudong District, Shanghai, 201315, China.,Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Xuhui District, 270 Dongan Road, Shanghai, 200032, China
| | - Zhengshan Hong
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center; Shanghai Key Laboratory of Radiation Oncology (20dz226100), Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, 4365 Kangxin Road, Pudong District, Shanghai, 201315, China
| | - Kambiz Shahnazi
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai Key Laboratory of Radiation Oncology (20dz226100), Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, 4365 Kangxin Road, Pudong District, Shanghai, 201315, China
| | - Guo-Liang Jiang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center; Shanghai Key Laboratory of Radiation Oncology (20dz226100), Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, 4365 Kangxin Road, Pudong District, Shanghai, 201315, China
| | - Qing Zhang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center; Shanghai Key Laboratory of Radiation Oncology (20dz226100), Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, 4365 Kangxin Road, Pudong District, Shanghai, 201315, China.
| |
Collapse
|
15
|
Kubo N, Yokobori T, Takahashi R, Ogawa H, Gombodorj N, Ohta N, Ohno T, Saeki H, Shirabe K, Asao T. An abdominal spacer that does not require surgical removal and allows drainage of abdominal fluids in patients undergoing carbon ion radiotherapy. PLoS One 2020; 15:e0234471. [PMID: 32520972 PMCID: PMC7286516 DOI: 10.1371/journal.pone.0234471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 05/27/2020] [Indexed: 11/18/2022] Open
Abstract
Abdominal spacers are useful for maintaining the distance between the target tumors and surrounding tissues, such as the gastrointestinal tract, in patients treated with carbon ion radiotherapy. Surgical intervention to remove the spacers is sometimes necessary because of abdominal infections triggered by long-term spacer placement or intestinal perforation. Therefore, spacers that do not require surgical removal and provide effective drainage against abdominal infections are urgently needed. This study aimed to develop a spacer that could be removed non-surgically and one that provides the therapeutic effect of drainage in patients who receive carbon ion radiotherapy for abdominal tumors. A novel fan-shaped spacer was constructed from a film drain that was folded along the trigger line. Simple withdrawal of the trigger line caused the film drain to fold and the holding lines to become free. We performed laparoscopy-assisted insertion with pneumoperitoneum and blind removal of the spacer fourteen times using a porcine model. Saline in the abdominal cavity was effectively aspirated using the spacer. Our novel fan-shaped spacer could be removed safely without surgery and was able to drain fluid effectively from the abdominal cavity.
Collapse
Affiliation(s)
- Norio Kubo
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
- * E-mail:
| | - Takehiko Yokobori
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research (GIAR), Maebashi, Gunma, Japan
- Department of Innovative Cancer Immunotherapy, Gunma University, Maebashi, Gunma, Japan
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Ryo Takahashi
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Hiroomi Ogawa
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Navchaa Gombodorj
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research (GIAR), Maebashi, Gunma, Japan
| | - Naoya Ohta
- Division of Electronics and Informatics, Gunma University Graduate School of Engineering, Kiryu, Gunma, Japan
| | - Tatsuya Ohno
- Gunma University Heavy Ion Medical Center, Maebashi, Gunma, Japan
| | - Hiroshi Saeki
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Ken Shirabe
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Takayuki Asao
- Big Data Center for Integrative Analysis, Gunma University Initiative for Advance Research, Maebashi, Gunma, Japan
| |
Collapse
|
16
|
Takakusagi Y, Katoh H, Kano K, Anno W, Tsuchida K, Mizoguchi N, Serizawa I, Yoshida D, Kamada T. Preliminary result of carbon-ion radiotherapy using the spot scanning method for prostate cancer. Radiat Oncol 2020; 15:127. [PMID: 32460889 PMCID: PMC7254700 DOI: 10.1186/s13014-020-01575-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 05/18/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Carbon-ion radiotherapy (CIRT) for prostate cancer was initiated at Kanagawa Cancer Center in 2015. The present study analyzed the preliminary clinical outcomes of CIRT for prostate cancer. METHODS The clinical outcomes of 253 patients with prostate cancer who were treated with CIRT delivered using the spot scanning method between December 2015 and December 2017 were retrospectively analyzed. The irradiation dose was set at 51.6 Gy (relative biological effectiveness) delivered in 12 fractions over 3 weeks. Biochemical relapse was defined using the Phoenix definition. Toxicities were assessed according to CTCAE version 4.0. RESULTS The median patient age was 70 (47-86) years. The median follow-up duration was 35.3 (4.1-52.9) months. According to the D'Amico classification system, 8, 88, and 157 patients were classified as having low, intermediate, and high risks, respectively. Androgen deprivation therapy was administered in 244 patients. The biochemical relapse-free rate in the low-, intermediate-, and high-risk groups at 3 years was 87.5, 88.0, and 97.5%, respectively (P = 0.036). Grade 2 acute urinary toxicity was observed in 12 (4.7%) patients. Grade 2 acute rectal toxicity was not observed. Grade 2 late urinary toxicity and grade 2 late rectal toxicity were observed in 17 (6.7%) and 3 patients (1.2%), respectively. Previous transurethral resection of the prostate was significantly associated with late grade 2 toxicity in univariate analysis. The predictive factor for late rectal toxicity was not detected. CONCLUSION The present study demonstrated that CIRT using the spot scanning method for prostate cancer produces favorable outcomes.
Collapse
Affiliation(s)
- Yosuke Takakusagi
- Department of Radiation Oncology, Kanagawa Cancer Center, Asahi-ku, Yokohama, Kanagawa, 241-8515, Japan
| | - Hiroyuki Katoh
- Department of Radiation Oncology, Kanagawa Cancer Center, Asahi-ku, Yokohama, Kanagawa, 241-8515, Japan.
| | - Kio Kano
- Department of Radiation Oncology, Kanagawa Cancer Center, Asahi-ku, Yokohama, Kanagawa, 241-8515, Japan
| | - Wataru Anno
- Department of Radiation Oncology, Kanagawa Cancer Center, Asahi-ku, Yokohama, Kanagawa, 241-8515, Japan
| | - Keisuke Tsuchida
- Department of Radiation Oncology, Kanagawa Cancer Center, Asahi-ku, Yokohama, Kanagawa, 241-8515, Japan
| | - Nobutaka Mizoguchi
- Department of Radiation Oncology, Kanagawa Cancer Center, Asahi-ku, Yokohama, Kanagawa, 241-8515, Japan
| | - Itsuko Serizawa
- Department of Radiation Oncology, Kanagawa Cancer Center, Asahi-ku, Yokohama, Kanagawa, 241-8515, Japan
| | - Daisaku Yoshida
- Department of Radiation Oncology, Kanagawa Cancer Center, Asahi-ku, Yokohama, Kanagawa, 241-8515, Japan
| | - Tadashi Kamada
- Department of Radiation Oncology, Kanagawa Cancer Center, Asahi-ku, Yokohama, Kanagawa, 241-8515, Japan
| |
Collapse
|
17
|
Applegate KE, Rühm W, Wojcik A, Bourguignon M, Brenner A, Hamasaki K, Imai T, Imaizumi M, Imaoka T, Kakinuma S, Kamada T, Nishimura N, Okonogi N, Ozasa K, Rübe CE, Sadakane A, Sakata R, Shimada Y, Yoshida K, Bouffler S. Individual response of humans to ionising radiation: governing factors and importance for radiological protection. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2020; 59:185-209. [PMID: 32146555 DOI: 10.1007/s00411-020-00837-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 02/26/2020] [Indexed: 05/23/2023]
Abstract
Tissue reactions and stochastic effects after exposure to ionising radiation are variable between individuals but the factors and mechanisms governing individual responses are not well understood. Individual responses can be measured at different levels of biological organization and using different endpoints following varying doses of radiation, including: cancers, non-cancer diseases and mortality in the whole organism; normal tissue reactions after exposures; and, cellular endpoints such as chromosomal damage and molecular alterations. There is no doubt that many factors influence the responses of people to radiation to different degrees. In addition to the obvious general factors of radiation quality, dose, dose rate and the tissue (sub)volume irradiated, recognized and potential determining factors include age, sex, life style (e.g., smoking, diet, possibly body mass index), environmental factors, genetics and epigenetics, stochastic distribution of cellular events, and systemic comorbidities such as diabetes or viral infections. Genetic factors are commonly thought to be a substantial contributor to individual response to radiation. Apart from a small number of rare monogenic diseases such as ataxia telangiectasia, the inheritance of an abnormally responsive phenotype among a population of healthy individuals does not follow a classical Mendelian inheritance pattern. Rather it is considered to be a multi-factorial, complex trait.
Collapse
Affiliation(s)
| | - W Rühm
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Radiation Medicine, Neuherberg, Germany
| | - A Wojcik
- Centre for Radiation Protection Research, MBW Department, Stockholm University, Stockholm, Sweden
| | - M Bourguignon
- Department of Biophysics and Nuclear Medicine, University of Paris Saclay (UVSQ), Verseilles, France
| | - A Brenner
- Department of Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | - K Hamasaki
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - T Imai
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba, Japan
| | - M Imaizumi
- Department of Nagasaki Clinical Studies, Radiation Effects Research Foundation, Nagasaki, Japan
| | - T Imaoka
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - S Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - T Kamada
- QST Hospital, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - N Nishimura
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - N Okonogi
- QST Hospital, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - K Ozasa
- Department of Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | - C E Rübe
- Department of Radiation Oncology, Saarland University Medical Center, Homburg/Saar, Germany
| | - A Sadakane
- Department of Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | - R Sakata
- Department of Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Y Shimada
- National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
- Institute for Environmental Sciences, Aomori, Japan
| | - K Yoshida
- Immunology Laboratory, Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - S Bouffler
- Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilto, Didcot, UK
| |
Collapse
|
18
|
Sasaki R, Demizu Y, Yamashita T, Komatsu S, Akasaka H, Miyawaki D, Yoshida K, Wang T, Okimoto T, Fukumoto T. First-In-Human Phase 1 Study of a Nonwoven Fabric Bioabsorbable Spacer for Particle Therapy: Space-Making Particle Therapy (SMPT). Adv Radiat Oncol 2019; 4:729-737. [PMID: 31673666 PMCID: PMC6817542 DOI: 10.1016/j.adro.2019.05.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/09/2019] [Accepted: 05/02/2019] [Indexed: 11/03/2022] Open
Abstract
Purpose Surgical spacer placement (SSP) is useful in particle therapy (PT) for patients with abdominal or pelvic tumors located adjacent to normal organs. We developed a nonwoven fabric bioabsorbable spacer made of polyglycolic acid (PGA) sutures that degrades via hydrolysis. We then conducted this first-in-human phase 1 study of the combination of SSP and PT using the PGA spacer, which we termed space-making PT (SMPT). This study aimed to evaluate the safety and efficacy of SMPT in patients with unresectable malignant tumor located adjacent to normal organs. Methods and Materials The eligibility criteria included histologically proven malignant abdominal or pelvic tumor adjacent to the intestines, no metastasis, and no previous radiation therapy. Periodic computed tomography (CT) images were obtained before SSP and before, during, and after PT until the spacer disappeared. Treatment planning was performed for each CT image set until the end of PT, and doses for the planning target volume and organs at risk were analyzed. The thickness and volume of the PGA spacer were measured in each CT image set. Adverse events were evaluated according to the Common Terminology Criteria for Adverse Events version 4.0. Results Five patients were enrolled in this study. All patients received 70.4 Gy (relative biological effectiveness) of irradiation. V95% of the planning target volume before SSP, at the beginning of PT, and at the end of PT was 82.1% ± 11.3%, 98.1% ± 1.1%, and 97.1% ± 0.8%, respectively. The PGA spacers maintained enough thickness (≥1 cm) until the end of PT and disappeared within 8 months after SSP in all patients. No grade ≥3 acute adverse events were observed. Conclusions The SMPT is feasible and useful for abdominal or pelvic tumors adjacent to the intestines. This method may be applicable to unresectable tumors located adjacent to normal organs and may expand the indications of PT.
Collapse
Affiliation(s)
- Ryohei Sasaki
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yusuke Demizu
- Department of Radiation Oncology, Hyogo Ion Beam Medical Center Kobe Proton Center, Kobe, Hyogo, Japan.,Department of Radiology, Hyogo Ion Beam Medical Center, Tatsuno, Hyogo, Japan
| | - Tomohiro Yamashita
- Department of Radiation Physics, Hyogo Ion Beam Medical Center Kobe Proton Center, Kobe, Hyogo, Japan
| | - Shohei Komatsu
- Department of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Hiroaki Akasaka
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Daisuke Miyawaki
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Kenji Yoshida
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Tianyuan Wang
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Tomoaki Okimoto
- Department of Radiation Oncology, Hyogo Ion Beam Medical Center Kobe Proton Center, Kobe, Hyogo, Japan
| | - Takumi Fukumoto
- Department of Radiation Physics, Hyogo Ion Beam Medical Center Kobe Proton Center, Kobe, Hyogo, Japan
| |
Collapse
|
19
|
Okonogi N, Fukahori M, Wakatsuki M, Ohkubo Y, Kato S, Miyasaka Y, Tsuji H, Nakano T, Kamada T. Dose constraints in the rectum and bladder following carbon-ion radiotherapy for uterus carcinoma: a retrospective pooled analysis. Radiat Oncol 2018; 13:119. [PMID: 29941040 PMCID: PMC6019512 DOI: 10.1186/s13014-018-1061-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 06/13/2018] [Indexed: 12/17/2022] Open
Abstract
Background Carbon-ion radiotherapy (C-ion RT) provides better dose distribution in cancer treatment compared to photons. Additionally, carbon-ion beams provide a higher biological effectiveness, and thus a higher tumor control probability. However, information regarding the dose constraints for organs at risk in C-ion RT is limited. This study aimed to determine the predictive factors for late morbidities in the rectum and bladder after carbon-ion C-ion RT for uterus carcinomas. Methods Between June 1995 and January 2010, 134 patients with uterus carcinomas were treated with C-ion RT with curative intent; prescription doses of 52.8–74.4 Gy (relative biological effectiveness) were delivered in 20–24 fractions. Of these patients, 132 who were followed up for > 6 months were analyzed. We separated the data in two subgroups, a 24 fractions group and a 20 fractions group. Late morbidities, proctitis, and cystitis were assessed according to the Radiation Therapy Oncology Group/European Organisation for Research and Treatment of Cancer criteria. The correlations of clinical and dosimetric parameters, V10–V60, D5cc, D2cc, and Dmax, with the incidence of ≥grade 1 morbidities were retrospectively analyzed. Results In the 24 fractions group, the 3-year actuarial occurrence rates of ≥grade 1 rectal and bladder morbidities were 64 and 9%, respectively. In addition, in the 20 fractions group, the 3-year actuarial occurrence rates of ≥grade 1 rectal and bladder morbidities were 32 and 19%, respectively. Regarding the dose–volume histogram data on the rectum, the D5cc and D2cc were significantly higher in patients with ≥grade 1 proctitis than in those without morbidity. In addition, the D5cc for the bladder was significantly higher in patients with ≥grade 1 cystitis than in those without morbidity. Results of univariate analyses showed that D2cc of the rectum was correlated with the development of ≥grade 1 late proctitis. Moreover, D5cc of the bladder was correlated with the development of ≥grade 1 late cystitis. Conclusions The present study identified the dose–volume relationships in C-ion RT regarding the occurrence of late morbidities in the rectum and bladder. Assessment of the factors discussed herein would be beneficial in preventing late morbidities after C-ion RT for pelvic malignancies. Trial registration Retrospectively registered (NIRS: 16–040). Electronic supplementary material The online version of this article (10.1186/s13014-018-1061-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Noriyuki Okonogi
- National Institute of Radiological Sciences Hospital, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan.
| | - Mai Fukahori
- Quality Control Section, Clinical Research Cluster, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Masaru Wakatsuki
- Department of Radiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Yu Ohkubo
- Department of Radiation Oncology, Saku Central Hospital Advanced Care Center, 3400-28 Nakagomi, Saku-shi, Nagano, 385-0051, Japan
| | - Shingo Kato
- Department of Radiation Oncology, Saitama Medical University, International Medical Center, 1397-1 yamane. Hidaka-shi, Saitama, 350-1241, Japan
| | - Yuhei Miyasaka
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Hiroshi Tsuji
- National Institute of Radiological Sciences Hospital, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Takashi Nakano
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Tadashi Kamada
- National Institute of Radiological Sciences Hospital, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| |
Collapse
|
20
|
Maebayashi T, Ishibashi N, Aizawa T, Sakaguchi M, Sato H, Sato K, Matsui T, Yamaguchi K, Takahashi S. Factors Predicting Late Rectal Disorders after Radiation Therapy for Prostate Cancer. Chin Med J (Engl) 2017; 130:2441-2446. [PMID: 29052565 PMCID: PMC5684637 DOI: 10.4103/0366-6999.216406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background: Methods: Results: Conclusions:
Collapse
|
21
|
Makishima H, Ishikawa H, Tanaka K, Mori Y, Mizumoto M, Ohnishi K, Aihara T, Fukumitsu N, Okumura T, Sakurai H. A retrospective study of late adverse events in proton beam therapy for prostate cancer. Mol Clin Oncol 2017; 7:547-552. [PMID: 29046789 PMCID: PMC5639311 DOI: 10.3892/mco.2017.1372] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/03/2017] [Indexed: 11/24/2022] Open
Abstract
The efficacy and safety of proton beam therapy (PBT) were retrospectively evaluated in 111 consecutive patients with prostate cancer who underwent definitive PBT between 2008 and 2012. Following exclusion of 18 patients due to treatment suspension, loss to follow-up, and histology, the analysis included 93 patients with a median age of 68 years (range, 49–81 years). A total of 7, 32 and 54 prostate cancer patients were classified as low-, intermediate- and high-risk, respectively, as follows: High-risk, T≥3a or prostate-specific antigen (PSA) ≥20 ng/ml or Gleason Score ≥8; low-risk, T ≤2b and PSA≤10 ng/ml and Gleason Score=6; intermediate-risk, all other combinations. The median initial prostate-specific antigen (PSA) level was 9.75 ng/ml (range, 1.4–100 ng/ml) and the median Gleason score was 7 (range, 6–10). Patients with low-risk disease received 74 GyE (relative biological effectiveness=1.1) in 37 fractions, and those at intermediate or higher risk received 78 GyE in 39 fractions. Complete androgen blockade (CAB) therapy was performed from 6 months prior to PBT for patients with intermediate- or high-risk disease. CAB was continued during PBT and then terminated at the end of PBT for intermediate-risk patients. Patients at high risk continued CAB for 3 years. No combination therapy was used for low-risk patients. All the patients were followed up for >2 years after PBT, and all but one were PSA failure-free. The Common Terminology Criteria for Adverse Events v.4.0 was used to evaluate late adverse events. One patient developed grade 3 non-infectious cystitis and hematuria. Grade 2 urinary frequency was observed in 1 patient, and grade 2 rectal bleeding occurred in 4 patients. Of the 4 patients with grade 2 rectal bleeding, 2 received anticoagulant therapy, but none had diabetes mellitus or another high-risk comorbidity. The median time to occurrence of an adverse event of grade ≥2 was 14 months (range, 3–41 months). Therefore, the present retrospective study revealed that PBT at 78 GyE/39 Fr was well-tolerated and achieved good tumor control in patients with prostate cancer.
Collapse
Affiliation(s)
- Hirokazu Makishima
- Department of Radiation Oncology and Proton Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8576, Japan
| | - Hitoshi Ishikawa
- Department of Radiation Oncology and Proton Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8576, Japan
| | - Keiichi Tanaka
- Department of Radiation Oncology and Proton Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8576, Japan
| | - Yutaro Mori
- Department of Radiation Oncology and Proton Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8576, Japan
| | - Masashi Mizumoto
- Department of Radiation Oncology and Proton Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8576, Japan
| | - Kayoko Ohnishi
- Department of Radiation Oncology and Proton Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8576, Japan
| | - Teruhito Aihara
- Department of Radiation Oncology and Proton Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8576, Japan
| | - Nobuyoshi Fukumitsu
- Department of Radiation Oncology and Proton Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8576, Japan
| | - Toshiyuki Okumura
- Department of Radiation Oncology and Proton Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8576, Japan
| | - Hideyuki Sakurai
- Department of Radiation Oncology and Proton Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8576, Japan
| |
Collapse
|
22
|
Carbon Ion Radiotherapy: A Review of Clinical Experiences and Preclinical Research, with an Emphasis on DNA Damage/Repair. Cancers (Basel) 2017; 9:cancers9060066. [PMID: 28598362 PMCID: PMC5483885 DOI: 10.3390/cancers9060066] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/21/2017] [Accepted: 06/06/2017] [Indexed: 12/31/2022] Open
Abstract
Compared to conventional photon-based external beam radiation (PhXRT), carbon ion radiotherapy (CIRT) has superior dose distribution, higher linear energy transfer (LET), and a higher relative biological effectiveness (RBE). This enhanced RBE is driven by a unique DNA damage signature characterized by clustered lesions that overwhelm the DNA repair capacity of malignant cells. These physical and radiobiological characteristics imbue heavy ions with potent tumoricidal capacity, while having the potential for simultaneously maximally sparing normal tissues. Thus, CIRT could potentially be used to treat some of the most difficult to treat tumors, including those that are hypoxic, radio-resistant, or deep-seated. Clinical data, mostly from Japan and Germany, are promising, with favorable oncologic outcomes and acceptable toxicity. In this manuscript, we review the physical and biological rationales for CIRT, with an emphasis on DNA damage and repair, as well as providing a comprehensive overview of the translational and clinical data using CIRT.
Collapse
|
23
|
Maruyama K, Tsuji H, Nomiya T, Katoh H, Ishikawa H, Kamada T, Wakatsuki M, Akakura K, Shimazaki J, Aoyama H, Tsujii H, the Working Group for Genitourinary Tumors. Five-year quality of life assessment after carbon ion radiotherapy for prostate cancer. JOURNAL OF RADIATION RESEARCH 2017; 58:260-266. [PMID: 28043947 PMCID: PMC5439371 DOI: 10.1093/jrr/rrw122] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/11/2016] [Indexed: 06/06/2023]
Abstract
The aim of this study was to prospectively assess 5-year health-related quality of life (HRQOL) of patients treated with carbon ion radiotherapy (C-ion RT) for clinically localized prostate cancer. A total of 417 patients received carbon ion radiotherapy at a total dose of 63-66 Gray-equivalents (GyE) in 20 fractions over 5 weeks, and neoadjuvant and adjuvant androgen deprivation therapy (ADT) were administered for intermediate and high-risk patients. A HRQOL assessment was performed at five time points (immediately before the initiation of C-ion RT, immediately after, and at 12, 36 and 60 months after completion of C-ion RT) using Functional Assessment of Cancer Therapy (FACT) questionnaires. FACT-G and FACT-P scores were significantly decreased; however, the absolute change after 60 months was minimal. The transient decreases in the Trial Outcome Index (TOI) score returned to their baseline levels. Use of ADT, presence of adverse events, and biochemical failure were related to lower scores. Scores of subdomains of FACT instruments indicated characteristic changes. The pattern of HRQOL change after C-ion RT was similar to that of other modalities. Further controlled studies focusing on a HRQOL in patients with prostate cancer are warranted.
Collapse
Affiliation(s)
- Katsuya Maruyama
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
- Department of Radiology and Radiation Oncology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiroshi Tsuji
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | - Takuma Nomiya
- Department of Radiation Oncology, Kanagawa Cancer Center, Kanagawa, Japan
| | - Hiroyuki Katoh
- Gunma Heavy-ion Medical Center, Gunma University, Gunma, Japan
| | - Hitoshi Ishikawa
- Department of Radiation Oncology, University of Tsukuba Faculty of Medicine, Ibaraki, Japan
| | - Tadashi Kamada
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | - Masaru Wakatsuki
- Department of Radiology, Jichi Medical University, Tochigi, Japan
| | - Koichiro Akakura
- Japan Community Health Care Organization Tokyo Shinjuku Medical Center, Tokyo, Japan
| | - Jun Shimazaki
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hidefumi Aoyama
- Department of Radiology and Radiation Oncology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hirohiko Tsujii
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | | |
Collapse
|
24
|
Nomiya T, Tsuji H, Kawamura H, Ohno T, Toyama S, Shioyama Y, Nakayama Y, Nemoto K, Tsujii H, Kamada T. A multi-institutional analysis of prospective studies of carbon ion radiotherapy for prostate cancer: A report from the Japan Carbon ion Radiation Oncology Study Group (J-CROS). Radiother Oncol 2016; 121:288-293. [PMID: 27836119 DOI: 10.1016/j.radonc.2016.10.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 09/11/2016] [Accepted: 10/05/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND PURPOSE A multi-institutional observational study (J-CROS1501PR) has been carried out to analyze outcomes of carbon-ion radiotherapy (CIRT) for patients with prostate cancer. PATIENTS AND METHODS Data of the patients enrolled in prospective studies of following 3 CIRT institutions were analyzed: National Institute of Radiological Sciences (NIRS; Chiba, Japan), Gunma University Heavy Ion Medical Center (GHMC; Gunma, Japan), and Ion Beam Therapy Center, SAGA HIMAT Foundation (HIMAT; Saga, Japan). Endpoints of the clinical trial are biochemical recurrence-free survival (bRFS), overall survival (OS), cause-specific survival (CSS), local control rate (LCR), and acute/late adverse effects. RESULTS A total of 2157 patients' data were collected from NIRS (n=1432), GHMC (n=515), and HIMAT (n=210). The number of patients in low-risk, intermediate-risk, and high-risk groups was 263 (12%), 679 (31%), and 1215 (56%), respectively. The five-year bRFS in low-risk, intermediate-risk, and high-risk patients was 92%, 89%, and 92%, respectively. The five-year CSS in low-risk, intermediate-risk, and high-risk patients was 100%, 100%, and 99%, respectively. The incidence of grade 2 late GU/GI toxicities was 4.6% and 0.4%, respectively, and the incidence of ⩾G3 toxicities were 0%. CONCLUSIONS Favorable overall outcomes of CIRT for prostate cancer were suggested by the analysis of the first multi-institutional data.
Collapse
Affiliation(s)
- Takuma Nomiya
- Department of Radiation Oncology, Kanagawa Cancer Center, Japan.
| | - Hiroshi Tsuji
- National Institute of Radiological Sciences, Chiba, Japan
| | | | - Tatsuya Ohno
- Gunma University Heavy Ion Medical Center, Japan
| | - Shingo Toyama
- Ion Beam Therapy Center, SAGA-HIMAT Foundation, Japan
| | | | - Yuko Nakayama
- Department of Radiation Oncology, Kanagawa Cancer Center, Japan
| | - Kenji Nemoto
- Department of Radiation Oncology, Yamagata University Hospital, Japan
| | | | - Tadashi Kamada
- National Institute of Radiological Sciences, Chiba, Japan
| |
Collapse
|
25
|
Lorenzo C, Andrea P, Barbara V, Denis P, Rosaria FM, Piero F, Viviana V, Alberto I, Mario C, Brugnatelli S, Tommaso D, Bugada D, Marcello M, Mario A, Francesca V, Roberto O, Paolo D. Surgical spacer placement prior carbon ion radiotherapy (CIRT): an effective feasible strategy to improve the treatment for sacral chordoma. World J Surg Oncol 2016; 14:211. [PMID: 27507254 PMCID: PMC4977725 DOI: 10.1186/s12957-016-0966-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/02/2016] [Indexed: 11/10/2022] Open
Abstract
Background Sacral chordoma (SC) is a neoplasm arising from residual notochordal cells degeneration. SC is difficult to manage mainly because of anatomic location and tendency to extensive spread. Carbon ion radiotherapy (CIRT) is highly precise to selectively deliver high biological effective dose to the tumor target sparing the anatomical structure on its path even if when SC is contiguous to the intestine, and a surgical spacer might be an advantageous tool to create a distance around the target volume allowing radical curative dose delivery with a safe dose gradient to the surrounding organs. This paper describes a double approach—open and hand-assisted laparoscopic—for a silicon spacer placement in patients affected by sacral chordoma undergoing carbon ion radiotherapy. Methods Six consecutive patients have been enrolled for surgical spacer placement—open (three) or hand-assisted (three)—prior carbon ion radiotherapy treatment in order to increase efficacy of carbon ion radiotherapy minimizing its side effects. Results Results showed that silicon spacer placement for SC treatment is feasible both via laparoscopic and laparotomic approach. Conclusions Its use might improve CIRT safety and thus efficacy for SC treatment.
Collapse
Affiliation(s)
- Cobianchi Lorenzo
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia, Italy. .,IRCCS Policlinico San Matteo Foundation, General Surgery 1, Pavia, Italy. .,Department of General Surgery, IRCCS San Matteo Foundation, University of Pavia, Piazzale Golgi, Pavia, 27100, Italy.
| | - Peloso Andrea
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia, Italy.,IRCCS Policlinico San Matteo Foundation, General Surgery 1, Pavia, Italy
| | - Vischioni Barbara
- Department of Radiation Oncology and Medical Physics, Centro Nazionale Adroterapia Oncologica (CNAO), Pavia, Italy
| | - Panizza Denis
- Department of Radiation Oncology and Medical Physics, Centro Nazionale Adroterapia Oncologica (CNAO), Pavia, Italy
| | - Fiore Maria Rosaria
- Department of Radiation Oncology and Medical Physics, Centro Nazionale Adroterapia Oncologica (CNAO), Pavia, Italy
| | - Fossati Piero
- Department of Radiation Oncology, European Institute of Oncology (IEO), Milan, Italy
| | - Vitolo Viviana
- Department of Radiation Oncology and Medical Physics, Centro Nazionale Adroterapia Oncologica (CNAO), Pavia, Italy
| | - Iannalfi Alberto
- Department of Radiation Oncology and Medical Physics, Centro Nazionale Adroterapia Oncologica (CNAO), Pavia, Italy
| | - Ciocca Mario
- Department of Radiation Oncology and Medical Physics, Centro Nazionale Adroterapia Oncologica (CNAO), Pavia, Italy
| | - Silvia Brugnatelli
- IRCCS Policlinico San Matteo Foundation, Department of Onco-Hematology, Oncology Section, Pavia, Italy
| | - Dominioni Tommaso
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia, Italy.,IRCCS Policlinico San Matteo Foundation, General Surgery 1, Pavia, Italy
| | - Dario Bugada
- Department of Surgical Science, University of Parma, Parma, Italy
| | - Maestri Marcello
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia, Italy.,IRCCS Policlinico San Matteo Foundation, General Surgery 1, Pavia, Italy
| | - Alessiani Mario
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia, Italy.,IRCCS Policlinico San Matteo Foundation, General Surgery 1, Pavia, Italy
| | - Valvo Francesca
- Department of Radiation Oncology and Medical Physics, Centro Nazionale Adroterapia Oncologica (CNAO), Pavia, Italy
| | - Orecchia Roberto
- Department of Radiation Oncology and Medical Physics, Centro Nazionale Adroterapia Oncologica (CNAO), Pavia, Italy.,Department of Radiation Oncology, European Institute of Oncology (IEO), Milan, Italy
| | - Dionigi Paolo
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia, Italy.,IRCCS Policlinico San Matteo Foundation, General Surgery 1, Pavia, Italy
| |
Collapse
|
26
|
Estimation of late rectal normal tissue complication probability parameters in carbon ion therapy for prostate cancer. Radiother Oncol 2016; 118:136-40. [DOI: 10.1016/j.radonc.2015.11.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 11/25/2015] [Accepted: 11/26/2015] [Indexed: 12/25/2022]
|
27
|
Komatsu S, Iwasaki T, Demizu Y, Terashima K, Fujii O, Takebe A, Toyokawa A, Teramura K, Fukumoto T, Ku Y, Fuwa N. Two-stage treatment with hepatectomy and carbon-ion radiotherapy for multiple hepatic epithelioid hemangioendotheliomas. World J Gastroenterol 2014; 20:8729-8735. [PMID: 25024633 PMCID: PMC4093728 DOI: 10.3748/wjg.v20.i26.8729] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 02/10/2014] [Accepted: 03/10/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatic epithelioid hemangioendothelioma (HEH) is a rare neoplasm of vascular origin with variable malignant potential. Because most patients with this condition have multiple bilobar lesions, liver transplantation is the standard treatment, and hepatectomy is much less frequently indicated. We describe a case of a 35-year-old woman with unresectable multiple bilobar HEH successfully treated by combination treatment with hepatectomy and carbon-ion radiotherapy. This case is very meaningful since it demonstrated the effectiveness of carbon-ion radiotherapy for HEH and the possibility of expanding the curative treatment options for multiple bilobar hepatic tumors.
Collapse
|
28
|
Phase I/II trial of definitive carbon ion radiotherapy for prostate cancer: evaluation of shortening of treatment period to 3 weeks. Br J Cancer 2014; 110:2389-95. [PMID: 24722181 PMCID: PMC4021525 DOI: 10.1038/bjc.2014.191] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 03/04/2014] [Accepted: 03/15/2014] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The purpose of this study was to evaluate the feasibility of a new shortened 3-week treatment schedule of carbon ion radiotherapy (CIRT) for prostate cancer. METHODS Beginning in May 2010, patients with T1b-T3bN0M0, histologically proven prostate adenocarcinoma were enrolled in the phase II trial of CIRT. Patients received 51.6 GyE in 12 fractions over 3 weeks (protocol 1002). The primary end point was defined as the incidence of late adverse events that were evaluated based on the Common Terminology Criteria for Adverse Events version 4.0. Biochemical failure was determined using the Phoenix definition (nadir +2.0 ng ml(-1)). RESULTS Forty-six patients were enrolled, and all patients were included in the analysis. The number of low-, intermediate-, and high-risk patients was 12 (26%), 9 (20%), and 25 (54%), respectively. The median follow-up period of surviving patients was 32.3 months. Two patients had intercurrent death without recurrence, and the remaining 44 patients were alive at the time of this analysis. In the analysis of late toxicities, grade 1 (G1) rectal haemorrhage was observed in 3 (7%) patients. The incidence of G1 haematuria was observed in 6 (13%) patients, and G1 urinary frequency was observed in 17 (37%) patients. No ⩾G2 late toxicities were observed. In the analysis of acute toxicities, 2 (4%) patients showed G2 urinary frequency, and no other G2 acute toxicities were observed. CONCLUSIONS The new shortened CIRT schedule over 3 weeks was considered as feasible. The analysis of long-term outcome is warranted.
Collapse
|
29
|
Suetens A, Moreels M, Quintens R, Chiriotti S, Tabury K, Michaux A, Grégoire V, Baatout S. Carbon ion irradiation of the human prostate cancer cell line PC3: a whole genome microarray study. Int J Oncol 2014; 44:1056-72. [PMID: 24504141 PMCID: PMC3977812 DOI: 10.3892/ijo.2014.2287] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 10/29/2013] [Indexed: 01/13/2023] Open
Abstract
Hadrontherapy is a form of external radiation therapy, which uses beams of charged particles such as carbon ions. Compared to conventional radiotherapy with photons, the main advantage of carbon ion therapy is the precise dose localization along with an increased biological effectiveness. The first results obtained from prostate cancer patients treated with carbon ion therapy showed good local tumor control and survival rates. In view of this advanced treatment modality we investigated the effects of irradiation with different beam qualities on gene expression changes in the PC3 prostate adenocarcinoma cell line. For this purpose, PC3 cells were irradiated with various doses (0.0, 0.5 and 2.0 Gy) of carbon ions (LET=33.7 keV/μm) at the beam of the Grand Accélérateur National d’Ions Lourds (Caen, France). Comparative experiments with X-rays were performed at the Belgian Nuclear Research Centre. Genome-wide gene expression was analyzed using microarrays. Our results show a downregulation in many genes involved in cell cycle and cell organization processes after 2.0 Gy irradiation. This effect was more pronounced after carbon ion irradiation compared with X-rays. Furthermore, we found a significant downregulation of many genes related to cell motility. Several of these changes were confirmed using qPCR. In addition, recurrence-free survival analysis of prostate cancer patients based on one of these motility genes (FN1) revealed that patients with low expression levels had a prolonged recurrence-free survival time, indicating that this gene may be a potential prognostic biomarker for prostate cancer. Understanding how different radiation qualities affect the cellular behavior of prostate cancer cells is important to improve the clinical outcome of cancer radiation therapy.
Collapse
Affiliation(s)
- Annelies Suetens
- Radiobiology Unit, Molecular and Cellular Biology, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
| | - Marjan Moreels
- Radiobiology Unit, Molecular and Cellular Biology, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
| | - Roel Quintens
- Radiobiology Unit, Molecular and Cellular Biology, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
| | - Sabina Chiriotti
- Radiation Protection, Dosimetry and Calibration Expert Group, SCK•CEN, Mol, Belgium
| | - Kevin Tabury
- Radiobiology Unit, Molecular and Cellular Biology, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
| | - Arlette Michaux
- Radiobiology Unit, Molecular and Cellular Biology, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
| | - Vincent Grégoire
- Department of Radiation Oncology and Center for Molecular Imaging, Radiotherapy and Oncology, Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Molecular and Cellular Biology, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
| |
Collapse
|
30
|
Koto M, Hasegawa A, Takagi R, Fujikawa A, Morikawa T, Kishimoto R, Jingu K, Tsujii H, Kamada T. Risk factors for brain injury after carbon ion radiotherapy for skull base tumors. Radiother Oncol 2013; 111:25-9. [PMID: 24332023 DOI: 10.1016/j.radonc.2013.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 11/05/2013] [Accepted: 11/09/2013] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND PURPOSE This study aimed to determine the risk factors for radiation-induced brain injury (RIBI) after carbon ion radiotherapy (CIRT) for treating skull base tumors. MATERIALS AND METHODS Between April 1997 and January 2009, CIRT at a total dose of 48.0-60.8Gy equivalent (GyE) was administered in 16 fractions to 47 patients with skull base tumors. Of these patients, 39 who were followed up with magnetic resonance imaging (MRI) for more than 24months were analyzed. RIBI was assessed according to the MRI findings based on the Late Effects of Normal Tissue-Subjective, Objective, Management, Analytic criteria; clinical symptoms were assessed according to the Radiation Therapy Oncology Group/European Organisation for Research and Treatment of Cancer tables. The correlations of clinical and dosimetric parameters with incidence of ⩾grade 2 RIBI were retrospectively analyzed. RESULTS The median follow-up period was 67months. The 5-year actuarial likelihoods of ⩾grade 2 RIBI and ⩾grade 2 clinical symptoms were 24.5% and 7.0%, respectively. Multivariate analysis demonstrated that the brain volume receiving more than 50GyE (V50) was a significant risk factor for the development of ⩾grade 2 RIBI (p=0.004). CONCLUSION V50 was a significant risk factor for ⩾grade 2 RIBI after CIRT using a 16-fraction regimen.
Collapse
Affiliation(s)
- Masashi Koto
- Research Center for Charged Particle Therapy Hospital, National Institute of Radiological Sciences, Chiba, Japan.
| | - Azusa Hasegawa
- Research Center for Charged Particle Therapy Hospital, National Institute of Radiological Sciences, Chiba, Japan
| | - Ryo Takagi
- Research Center for Charged Particle Therapy Hospital, National Institute of Radiological Sciences, Chiba, Japan
| | - Akira Fujikawa
- Research Center for Charged Particle Therapy Hospital, National Institute of Radiological Sciences, Chiba, Japan
| | - Takamichi Morikawa
- Research Center for Charged Particle Therapy Hospital, National Institute of Radiological Sciences, Chiba, Japan
| | - Riwa Kishimoto
- Research Center for Charged Particle Therapy Hospital, National Institute of Radiological Sciences, Chiba, Japan
| | - Keiichi Jingu
- Department of Radiation Oncology, Tohoku University School of Medicine, Sendai, Japan
| | - Hirohiko Tsujii
- Research Center for Charged Particle Therapy Hospital, National Institute of Radiological Sciences, Chiba, Japan
| | - Tadashi Kamada
- Research Center for Charged Particle Therapy Hospital, National Institute of Radiological Sciences, Chiba, Japan
| |
Collapse
|
31
|
Management of high-risk prostate cancer: Radiation therapy and hormonal therapy. Cancer Treat Rev 2013; 39:872-8. [DOI: 10.1016/j.ctrv.2013.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Revised: 04/04/2013] [Accepted: 04/08/2013] [Indexed: 11/20/2022]
|
32
|
Harada K, Ishikawa H, Saito Y, Nakamoto S, Kawamura H, Wakatsuki M, Etsunaga T, Takezawa Y, Kobayashi M, Nakano T. Risk factors for rectal bleeding associated with I-125 brachytherapy for prostate cancer. JOURNAL OF RADIATION RESEARCH 2012; 53:923-9. [PMID: 22859567 PMCID: PMC3483856 DOI: 10.1093/jrr/rrs059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/26/2012] [Accepted: 06/26/2012] [Indexed: 05/09/2023]
Abstract
The purpose of this study was to determine the risk factors for rectal bleeding after prostate brachytherapy. Between April 2005 and September 2009, 89 patients with T1c-2cN0M0 prostate cancer were treated with permanent I-125 seed implantation alone. The prostate prescription dose was 145 Gy, and the grade of rectal bleeding was scored according to the Common Terminology Criteria for Adverse Events version 4.0. Post-treatment planning was performed with fusion images of computerized tomography and magnetic resonance imaging 4-5 weeks after brachytherapy. Patient characteristics and dosimetric parameters were evaluated to determine risk factors for bleeding. The calculated parameters included the rectal volume in cubic centimeters that received >50-200% of the prescribed dose (RV50-200) and the minimal doses received by 1-30% of the rectal volume (RD1-30). The median follow-up time was 42 months (ranging 18-73 months). Grade 1 rectal bleeding occurred in 24 (27.0%) patients, but no Grade 2 or severe bleeding was observed. Usage of anticoagulants had a significant correlation with the occurrence of bleeding (P = 0.007). The RV100-150 and RD1-10 were significantly higher in patients with rectal bleeding than in those without bleeding. The RV100 was identified as a possible threshold value; the 3-year rectal bleeding rate in patients with an RV100 > 1.0 cm(3) was 36%, whereas that with an RV100 ≤ 1.0 cm(3) was 14% (P < 0.05). Although no Grade 2 morbidity developed in this study, the RV100 should be kept below 1.0 cm(3), especially in additional dose-escalated brachytherapy.
Collapse
Affiliation(s)
- Kosaku Harada
- Department of Radiation Oncology, Isesaki Municipal Hospital, 12-1, Tsunatorimoto-machi, Isesaki-shi, Gunma 372-0802, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ishikawa H, Tsuji H, Kamada T, Akakura K, Suzuki H, Shimazaki J, Tsujii H. Carbon-ion radiation therapy for prostate cancer. Int J Urol 2012; 19:296-305. [PMID: 22320843 DOI: 10.1111/j.1442-2042.2012.02961.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
In 1994, carbon-ion radiotherapy was started at the National Institute of Radiological Sciences using the Heavy-Ion Medical Accelerator in Chiba. Between June 1995 and March 2000, two phase I/II dose escalation studies (protocols 9402 and 9703) of hypofractionated carbon-ion radiotherapy for both early- and advance-stage prostate cancer patients had been carried out to establish radiotherapy technique and to determine the optimal radiation dose. To validate the feasibility and efficacy of hypofractionated carbon-ion radiotherapy, a phase II study (9904) was initiated in April 2000 using the shrinking field technique and the recommended dose fractionation (66 gray equivalents in 20 fractions over 5 weeks) obtained from the phase I/II studies, and was successfully completed in October 2003. The data from 175 patients in the phase II study showed the importance of an appropriate use of androgen deprivation therapy according to tumor risk group. Since November 2003, carbon-ion radiotherapy for prostate cancer was approved as "Highly Advanced Medical Technology" from the Ministry of Health, Labor, and Welfare, and since then approximately 1100 patients have received carbon-ion radiotherapy as of July 2011. In this review, we introduce our steps thorough three clinical trials carried out at National Institute of Radiological Sciences, and show the updated data of carbon-ion radiotherapy obtained from approximately 1000 prostate cancer patients. In addition, our recent challenge and future direction will be also described.
Collapse
Affiliation(s)
- Hitoshi Ishikawa
- Department of Radiation Oncology, Tsukuba University Faculty of Medicine, Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Okamoto M, Ishikawa H, Ebara T, Kato H, Tamaki T, Akimoto T, Ito K, Miyakubo M, Yamamoto T, Suzuki K, Takahashi T, Nakano T. Rectal bleeding after high-dose-rate brachytherapy combined with hypofractionated external-beam radiotherapy for localized prostate cancer: the relationship between dose-volume histogram parameters and the occurrence rate. Int J Radiat Oncol Biol Phys 2011; 82:e211-7. [PMID: 21620579 DOI: 10.1016/j.ijrobp.2011.03.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 02/10/2011] [Accepted: 03/05/2011] [Indexed: 12/01/2022]
Abstract
PURPOSE To determine the predictive risk factors for Grade 2 or worse rectal bleeding after high-dose-rate brachytherapy (HDR-BT) combined with hypofractionated external-beam radiotherapy (EBRT) for prostate cancer using dose-volume histogram analysis. METHODS AND MATERIALS The records of 216 patients treated with HDR-BT combined with EBRT were analyzed. The treatment protocols for HDR-BT were 5 Gy × five times in 3 days or 7 Gy × three, 10.5 Gy × two, or 9 Gy × two in 2 days. The EBRT doses ranged from 45 to 51 Gy with a fractional dose of 3 Gy. RESULTS In 20 patients Grade 2 or worse rectal bleeding developed, and the cumulative incidence rate was 9% at 5 years. By converting the HDR-BT and EBRT radiation doses into biologic effective doses (BED), the BED(3) at rectal volumes of 5% and 10% in the patients who experienced bleeding were significantly higher than those in the remaining 196 patients. Univariate analysis showed that a higher rectal BED(3-5%) and the use of fewer needles in brachytherapy were correlated with the incidence of bleeding, but BED(3-5%) was found to be the only significant factor on multivariate analysis. CONCLUSIONS The radiation dose delivered to small rectal lesions as 5% is important for predicting Grade 2 or worse rectal bleeding after HDR-BT combined with EBRT for prostate cancer.
Collapse
Affiliation(s)
- Masahiko Okamoto
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Gunma, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Bau DT, Tsai CW, Wu CN. Role of the XRCC5/XRCC6 dimer in carcinogenesis and pharmacogenomics. Pharmacogenomics 2011; 12:515-34. [PMID: 21521024 DOI: 10.2217/pgs.10.209] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Over the past few decades, the incidence of cancer has rapidly increased all over the world and cancer remains a major threat to public health. It is believed that cancer results from a series of genetic alterations that lead to the progressive disorder of the normal mechanisms controlling cell proliferation, differentiation, death and/or genomic stability. The response of the cell to genetic injury and its ability to maintain genomic stability by means of a variety of DNA repair mechanisms are therefore essential in preventing tumor initiation and progression. From the same viewpoint, the relative role of DNA repair as a biomarker for prognosis, predictor of drug and therapy responses or indeed as a target for novel gene therapy, is very promising. In this article, we have summarized the studies investigating the association between the XRCC5/XRCC6 dimer and the susceptibility to multiple cancers and discuss its role in carcinogenesis and its potential application to anticancer drug discovery.
Collapse
Affiliation(s)
| | - Chia-Wen Tsai
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, 2 Yuh-Der Road, Taichung, 404 Taiwan, Republic of China
| | - Cheng-Nan Wu
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, 2 Yuh-Der Road, Taichung, 404 Taiwan, Republic of China
- Department of Medical Laboratory Science & Biotechnology, Central-Taiwan University of Science & Technology, Taichung, Taiwan, Republic of China
| |
Collapse
|
36
|
Komatsu S, Hori Y, Fukumoto T, Murakami M, Hishikawa Y, Ku Y. Surgical spacer placement and proton radiotherapy for unresectable hepatocellular carcinoma. World J Gastroenterol 2010; 16:1800-3. [PMID: 20380016 PMCID: PMC2852832 DOI: 10.3748/wjg.v16.i14.1800] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Few potentially curative treatment options exist apart from hepatic resection for patients with huge hepatocellular carcinoma (HCC). Proton radiotherapy is a promising new modality which has an inherent anti-tumor effect against HCC. However, the application of proton radiotherapy for tumors adjacent to the gastrointestinal tract is restricted because the tolerance dose of the intestine is extremely low. A novel two-step treatment was developed with surgical spacer placement and subsequent proton radiotherapy to administer proton radiotherapy with curative intent. This report presents a case of a patient with a huge unresectable HCC treated by this method who achieved disease-free survival of more than 2 years. This new strategy may potentially be an innovative and standard therapy for unresectable HCC in the near future.
Collapse
|
37
|
Hartel C, Nikoghosyan A, Durante M, Sommer S, Nasonova E, Fournier C, Lee R, Debus J, Schulz-Ertner D, Ritter S. Chromosomal aberrations in peripheral blood lymphocytes of prostate cancer patients treated with IMRT and carbon ions. Radiother Oncol 2010; 95:73-8. [DOI: 10.1016/j.radonc.2009.08.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 08/04/2009] [Accepted: 08/19/2009] [Indexed: 12/15/2022]
|
38
|
Fukumoto T, Komatsu S, Hori Y, Murakami M, Hishikawa Y, Ku Y. Particle beam radiotherapy with a surgical spacer placement for advanced abdominal leiomyosarcoma results in a significant clinical benefit. J Surg Oncol 2010; 101:97-9. [PMID: 19798696 DOI: 10.1002/jso.21417] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Takumi Fukumoto
- Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Zhang MR, Kumata K, Hatori A, Takai N, Toyohara J, Yamasaki T, Yanamoto K, Yui J, Kawamura K, Koike S, Ando K, Suzuki K. [11C]Gefitinib ([11C]Iressa): Radiosynthesis, In Vitro Uptake, and In Vivo Imaging of Intact Murine Fibrosarcoma. Mol Imaging Biol 2009; 12:181-91. [DOI: 10.1007/s11307-009-0265-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 03/30/2009] [Accepted: 04/28/2009] [Indexed: 10/20/2022]
|
40
|
Fokas E, Kraft G, An H, Engenhart-Cabillic R. Ion beam radiobiology and cancer: time to update ourselves. Biochim Biophys Acta Rev Cancer 2009; 1796:216-29. [PMID: 19682551 DOI: 10.1016/j.bbcan.2009.07.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 07/28/2009] [Accepted: 07/31/2009] [Indexed: 12/20/2022]
Abstract
High-energy protons and carbon ions exhibit an inverse dose profile allowing for increased energy deposition with penetration depth. Additionally, heavier ions like carbon beams have the advantage of a markedly increased biological effectiveness characterized by enhanced ionization density in the individual tracks of the heavy particles, where DNA damage becomes clustered and therefore more difficult to repair, but is restricted to the end of their range. These superior biophysical and biological profiles of particle beams over conventional radiotherapy permit more precise dose localization and make them highly attractive for treating anatomically complex and radioresistant malignant tumors but without increasing the severe side effects in the normal tissue. More than half a century since Wilson proposed their use in cancer therapy, the effects of particle beams have been extensively investigated and the biological complexity of particle beam irradiation begins to unfold itself. The goal of this review is to provide an as comprehensive and up-to-date summary as possible of the different radiobiological aspects of particle beams for effective application in cancer treatment.
Collapse
Affiliation(s)
- Emmanouil Fokas
- Department of Radiotherapy and Radiation Oncology, University Hospital Giessen and Marburg, Medical Faculty of Philipps University, Baldingerstrasse, 35043 Marburg, Germany.
| | | | | | | |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW Radiotherapy frequently results in persistent effects on gastrointestinal function adversely impacting on the quality of life of patients cured of their malignant disease. Long-term effects on gastrointestinal function remain prevalent despite the advent of three-dimensional techniques of radiotherapy because higher radiation doses and more combined modality treatments are prescribed to improve cure rates. RECENT FINDINGS Chronic elevation of cytokine levels and implication of the cyclooxygenase-2 pathway in radiation bowel injury in animals, and the involvement of the Rho/Rho kinase pathway in the fibrogenic differentiation of smooth muscle cells of patients with late radiation enteritis, suggest a role for inhibition of these pathways. The importance of limiting acute gastrointestinal toxicity by dietary, pharmacological and physical interventions and of optimizing radiotherapy techniques and prescriptions is underscored by increasing evidence that a component of the long-term effects of radiotherapy on gastrointestinal function is a consequence of acute damage. SUMMARY Strategies to control acute toxicity are important in reducing the impact of long-term effects of radiotherapy on gastrointestinal function. Further research into genetic profiling to characterize individual risk of radiation bowel damage and the pathways implicated in fibrogenic differentiation is needed to reduce and prevent bowel complications.
Collapse
|
42
|
Wakatsuki M, Tsuji H, Ishikawa H, Yanagi T, Kamada T, Nakano T, Suzuki H, Akakura K, Shimazaki J, Tsujii H. Quality of Life in Men Treated With Carbon Ion Therapy for Prostate Cancer. Int J Radiat Oncol Biol Phys 2008; 72:1010-5. [DOI: 10.1016/j.ijrobp.2008.02.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 02/18/2008] [Accepted: 02/19/2008] [Indexed: 11/25/2022]
|
43
|
Ishikawa H, Tsuji H, Kamada T, Hirasawa N, Yanagi T, Mizoe JE, Akakura K, Suzuki H, Shimazaki J, Nakano T, Tsujii H. Adverse Effects of Androgen Deprivation Therapy on Persistent Genitourinary Complications After Carbon Ion Radiotherapy for Prostate Cancer. Int J Radiat Oncol Biol Phys 2008; 72:78-84. [DOI: 10.1016/j.ijrobp.2007.12.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 11/27/2007] [Accepted: 12/13/2007] [Indexed: 11/29/2022]
|
44
|
Suga T, Iwakawa M, Tsuji H, Ishikawa H, Oda E, Noda S, Otsuka Y, Ishikawa A, Ishikawa KI, Shimazaki J, Mizoe JE, Tsujii H, Imai T. Influence of multiple genetic polymorphisms on genitourinary morbidity after carbon ion radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys 2008; 72:808-13. [PMID: 18374504 DOI: 10.1016/j.ijrobp.2008.01.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 01/24/2008] [Accepted: 01/24/2008] [Indexed: 10/22/2022]
Abstract
PURPOSE To investigate the genetic risk of late urinary morbidity after carbon ion radiotherapy in prostate cancer patients. METHODS AND MATERIALS A total of 197 prostate cancer patients who had undergone carbon ion radiotherapy were evaluated for urinary morbidity. The distribution of patients with dysuria was as follows: Grade 0, 165; Grade 1, 28; and Grade 2, 4 patients. The patients were divided (2:1) consecutively into the training and test sets and then categorized into control (Grade 0) and case (Grade 1 or greater) groups. First, 450 single nucleotide polymorphisms (SNPs) in 118 candidate genes were genotyped in the training set. The associations between the SNP genotypes and urinary morbidity were assessed using Fisher's exact test. Then, various combinations of the markers were tested for their ability to maximize the area under the receiver operating characteristics (AUC-ROC) curve analysis results. Finally, the test set was validated for the selected markers. RESULTS When the SNP markers in the SART1, ID3, EPDR1, PAH, and XRCC6 genes in the training set were subjected to AUC-ROC curve analysis, the AUC-ROC curve reached a maximum of 0.86. The AUC-ROC curve of these markers in the test set was 0.77. The SNPs in these five genes were defined as "risk genotypes." Approximately 90% of patients in the case group (Grade 1 or greater) had three or more risk genotypes. CONCLUSIONS Our results have shown that patients with late urinary morbidity after carbon ion radiotherapy can be stratified according to the total number of risk genotypes they harbor.
Collapse
Affiliation(s)
- Tomo Suga
- RadGenomics Research Group, National Institute of Radiological Sciences, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Vargas C, Mahajan C, Fryer A, Indelicato D, Henderson RH, McKenzie C, Horne D, Chellini A, Lawlor P, Li Z, Oliver K, Keole S. Rectal Dose–Volume Differences Using Proton Radiotherapy and a Rectal Balloon or Water Alone for the Treatment of Prostate Cancer. Int J Radiat Oncol Biol Phys 2007; 69:1110-6. [DOI: 10.1016/j.ijrobp.2007.04.075] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 04/23/2007] [Accepted: 04/24/2007] [Indexed: 11/28/2022]
|
46
|
Abstract
While dose escalation is proving important to achieve satisfactory long-term outcomes in prostate cancer, the optimal radiation modality to deliver the treatment is still a topic of debate. Charged particle beams can offer improved dose distributions to the target volume as compared to conventional 3D-conformal radiotherapy, with better sparing of surrounding healthy tissues. Exquisite dose distributions, with the fulfillment of dose-volume constraints to normal tissues, however, can also be achieved with photon-based intensity-modulated techniques. This review summarizes the literature on the use of particle therapy in prostate cancer and attempts to put in perspective its relative merits compared to current photon-based radiotherapy.
Collapse
Affiliation(s)
- C Greco
- Division of Radiation Oncology, University of Magna Graecia, Catanzaro, Italy.
| |
Collapse
|
47
|
Lodge M, Pijls-Johannesma M, Stirk L, Munro AJ, De Ruysscher D, Jefferson T. A systematic literature review of the clinical and cost-effectiveness of hadron therapy in cancer. Radiother Oncol 2007; 83:110-22. [PMID: 17502116 DOI: 10.1016/j.radonc.2007.04.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Accepted: 04/17/2007] [Indexed: 12/25/2022]
Abstract
BACKGROUND In view of the continued increase in the number of hadron (i.e. neutron, proton and light or heavy ion) therapy (HT) centres we performed a systematic literature review to identify reports of the efficacy of HT. METHODS Eleven databases were searched systematically. No limit was applied to language or study design. Established experts were contacted for unpublished data. Data on outcomes were extracted and summarised in tabular form. RESULTS Seven hundred and seventy three papers were identified. For proton and heavy ion therapy, the number of RCTs was too small to draw firm conclusions. Based on prospective and retrospective studies, proton irradiation emerges as the treatment of choice for some ocular and skull base tumours. For prostate cancer, the results were comparable with those from the best photon therapy series. Heavy ion therapy is still in an experimental phase. CONCLUSION Existing data do not suggest that the rapid expansion of HT as a major treatment modality would be appropriate. Further research into the clinical and cost-effectiveness of HT is needed. The formation of a European Hadron Therapy Register would offer a straightforward way of accelerating the rate at which we obtain high-quality evidence that could be used in assessing the role of HT in the management of cancer.
Collapse
|
48
|
Tsujii H, Mizoe J, Kamada T, Baba M, Tsuji H, Kato H, Kato S, Yamada S, Yasuda S, Ohno T, Yanagi T, Imai R, Kagei K, Kato H, Hara R, Hasegawa A, Nakajima M, Sugane N, Tamaki N, Takagi R, Kandatsu S, Yoshikawa K, Kishimoto R, Miyamoto T. Clinical Results of Carbon Ion Radiotherapy at NIRS. JOURNAL OF RADIATION RESEARCH 2007; 48 Suppl A:A1-A13. [PMID: 17513896 DOI: 10.1269/jrr.48.a1] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
In 1994 a Phase I/II clinical study on carbon ion radiotherapy was begun at NIRS using HIMAC, which was then the world's only heavy ion accelerator complex dedicated to medical use in a hospital environment. Among several types of ion species, we have chosen carbon ions for cancer therapy because they had the most optimal properties in terms of possessing, both physically and biologically, the most effective dose-localization in the body. The purpose of the clinical study was to investigate the efficacy of carbon ion radiotherapy against a variety of tumors as well as to develop effective techniques for delivering an efficient dose to the tumor. The RBE of carbon ions was estimated to be 2.0 to 3.0 along the SOBP for acute skin reactions. As of August 2006, a total of 2,867 patients had been entered into Phase I/II or Phase II studies and analyzed for toxicity and local tumor response. The results have shown that carbon ion radiotherapy has the potential ability to provide a sufficient dose to the tumor with acceptable morbidity in the surrounding normal tissues. Tumors that appear to respond favorably to carbon ions include locally advanced tumors and those with histologically non-squamous cell type of tumors such as adenocarcinoma, adenoid cystic carcinoma, malignant melanoma, hepatoma, and bone/soft tissue sarcoma. By taking advantage of the biological and physical properties of high-LET radiation, the efficacy of treatment regimens with small fractions in short treatment times has been confirmed for almost all types of tumors in carbon ion radiotherapy.
Collapse
Affiliation(s)
- Hirohiko Tsujii
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|