1
|
Roy TK, Secomb TW. Functional implications of microvascular heterogeneity for oxygen uptake and utilization. Physiol Rep 2022; 10:e15303. [PMID: 35581743 PMCID: PMC9114652 DOI: 10.14814/phy2.15303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023] Open
Abstract
In the vascular system, an extensive network structure provides convective and diffusive transport of oxygen to tissue. In the microcirculation, parameters describing network structure, blood flow, and oxygen transport are highly heterogeneous. This heterogeneity can strongly affect oxygen supply and organ function, including reduced oxygen uptake in the lung and decreased oxygen delivery to tissue. The causes of heterogeneity can be classified as extrinsic or intrinsic. Extrinsic heterogeneity refers to variations in oxygen demand in the systemic circulation or oxygen supply in the lungs. Intrinsic heterogeneity refers to structural heterogeneity due to stochastic growth of blood vessels and variability in flow pathways due to geometric constraints, and resulting variations in blood flow and hematocrit. Mechanisms have evolved to compensate for heterogeneity and thereby improve oxygen uptake in the lung and delivery to tissue. These mechanisms, which involve long-term structural adaptation and short-term flow regulation, depend on upstream responses conducted along vessel walls, and work to redistribute flow and maintain blood and tissue oxygenation. Mathematically, the variance of a functional quantity such as oxygen delivery that depends on two or more heterogeneous variables can be reduced if one of the underlying variables is controlled by an appropriate compensatory mechanism. Ineffective regulatory mechanisms can result in poor oxygen delivery even in the presence of adequate overall tissue perfusion. Restoration of endothelial function, and specifically conducted responses, should be considered when addressing tissue hypoxemia and organ failure in clinical settings.
Collapse
Affiliation(s)
- Tuhin K. Roy
- Department of AnesthesiologyMayo ClinicRochesterMinnesotaUSA
| | | |
Collapse
|
2
|
Foehrenbacher A, Patel K, Abbattista MR, Guise CP, Secomb TW, Wilson WR, Hicks KO. The Role of Bystander Effects in the Antitumor Activity of the Hypoxia-Activated Prodrug PR-104. Front Oncol 2013; 3:263. [PMID: 24109591 PMCID: PMC3791487 DOI: 10.3389/fonc.2013.00263] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 09/19/2013] [Indexed: 12/02/2022] Open
Abstract
Activation of prodrugs in tumors (e.g., by bioreduction in hypoxic zones) has the potential to generate active metabolites that can diffuse within the tumor microenvironment. Such “bystander effects” may offset spatial heterogeneity in prodrug activation but the relative importance of this effect is not understood. Here, we quantify the contribution of bystander effects to antitumor activity for the first time, by developing a spatially resolved pharmacokinetic/pharmacodynamic (SR-PK/PD) model for PR-104, a phosphate ester pre-prodrug that is converted systemically to the hypoxia-activated prodrug PR-104A. Using Green’s function methods we calculated concentrations of oxygen, PR-104A and its active metabolites, and resultant cell killing, at each point of a mapped three-dimensional tumor microregion. Model parameters were determined in vitro, using single cell suspensions to determine relationships between PR-104A metabolism and clonogenic cell killing, and multicellular layer (MCL) cultures to measure tissue diffusion coefficients. LC-MS/MS detection of active metabolites in the extracellular medium following exposure of anoxic single cell suspensions and MCLs to PR-104A confirmed that metabolites can diffuse out of cells and through a tissue-like environment. The SR-PK/PD model estimated that bystander effects contribute 30 and 50% of PR-104 activity in SiHa and HCT116 tumors, respectively. Testing the model by modulating PR-104A-activating reductases and hypoxia in tumor xenografts showed overall clonogenic killing broadly consistent with model predictions. Overall, our data suggest that bystander effects are important in PR-104 antitumor activity, although their reach may be limited by macroregional heterogeneity in hypoxia and reductase expression in tumors. The reported computational and experimental techniques are broadly applicable to all targeted anticancer prodrugs and could be used to identify strategies for rational prodrug optimization.
Collapse
Affiliation(s)
- Annika Foehrenbacher
- Auckland Cancer Society Research Centre, The University of Auckland , Auckland , New Zealand
| | | | | | | | | | | | | |
Collapse
|
3
|
Masunaga SI, Liu Y, Sakurai Y, Tanaka H, Suzuki M, Kondo N, Maruhashi A, Ono K. Usefulness of combined treatment with continuous administration of tirapazamine and mild temperature hyperthermia inγ-ray irradiation in terms of local tumour response and lung metastatic potential. Int J Hyperthermia 2012; 28:636-44. [DOI: 10.3109/02656736.2012.714517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
4
|
Manzoor AA, Lindner LH, Landon CD, Park JY, Simnick AJ, Dreher MR, Das S, Hanna G, Park W, Chilkoti A, Koning GA, ten Hagen TLM, Needham D, Dewhirst MW. Overcoming limitations in nanoparticle drug delivery: triggered, intravascular release to improve drug penetration into tumors. Cancer Res 2012; 72:5566-75. [PMID: 22952218 DOI: 10.1158/0008-5472.can-12-1683] [Citation(s) in RCA: 349] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Traditionally, the goal of nanoparticle-based chemotherapy has been to decrease normal tissue toxicity by improving drug specificity to tumors. The enhanced permeability and retention effect can permit passive accumulation into tumor interstitium. However, suboptimal delivery is achieved with most nanoparticles because of heterogeneities of vascular permeability, which limits nanoparticle penetration. Furthermore, slow drug release limits bioavailability. We developed a fast drug-releasing liposome triggered by local heat that has already shown substantial antitumor efficacy and is in human trials. Here, we show that thermally sensitive liposomes (Dox-TSL) release doxorubicin inside the tumor vasculature. Real-time confocal imaging of doxorubicin delivery to murine tumors in window chambers and histologic analysis of flank tumors illustrates that intravascular drug release increases free drug in the interstitial space. This increases both the time that tumor cells are exposed to maximum drug levels and the drug penetration distance, compared with free drug or traditional pegylated liposomes. These improvements in drug bioavailability establish a new paradigm in drug delivery: rapidly triggered drug release in the tumor bloodstream.
Collapse
Affiliation(s)
- Ashley A Manzoor
- Medical Physics Program, Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Mönnich D, Troost EGC, Kaanders JHAM, Oyen WJG, Alber M, Thorwarth D. Modelling and simulation of the influence of acute and chronic hypoxia on [18F]fluoromisonidazole PET imaging. Phys Med Biol 2012; 57:1675-84. [PMID: 22398239 DOI: 10.1088/0031-9155/57/6/1675] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tumour hypoxia can be assessed by positron emission tomography (PET) using radiotracers like [(18)F]fluoromisonidazole (Fmiso). The purpose of this work was to independently investigate the influence of chronic and acute hypoxia on the retention of Fmiso on the microscale. This was approached by modelling and simulating tissue oxygenation and Fmiso dynamics on the microscale based on tumour histology. Diffusion of oxygen and Fmiso molecules in tissue- and oxygen-dependent Fmiso binding were included in the model. Moreover, a model of fluctuating vascular oxygen tension was incorporated to theoretically predict the effects of acute hypoxia. Simulated tissue oxygen tensions (PO(2)) are strongly influenced by the modelled periodical fluctuations (period 40 min, total amplitude 10 mmHg and mean 35 mmHg). Fluctuations led to variations in mean PO(2) of up to 41% and in the hypoxic fraction (PO(2) < 5 mmHg) from 56% up to 65%. Significant Fmiso retention is caused by chronic (87%) as well as acute hypoxia (13%). By simulating Fmiso injection during different phases of the vascular PO(2) fluctuation cycle, it was found that acute hypoxia of an empirically valid magnitude does not influence the reproducibility of PET imaging. Thus, it may be impossible to separate acute and chronic hypoxia from serial PET images.
Collapse
Affiliation(s)
- David Mönnich
- Section for Biomedical Physics, University Hospital for Radiation Oncology, Hoppe-Seyler-Strasse 3, 72076 Tübingen, Germany.
| | | | | | | | | | | |
Collapse
|
6
|
Chang J, Wen B, Kazanzides P, Zanzonico P, Finn RD, Fichtinger G, Ling CC. A robotic system for 18F-FMISO PET-guided intratumoral pO2 measurements. Med Phys 2010; 36:5301-9. [PMID: 19994538 DOI: 10.1118/1.3239491] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
An image-guided robotic system was used to measure the oxygen tension (pO2) in rodent tumor xenografts using interstitial probes guided by tumor hypoxia PET images. Rats with approximately 1 cm diameter tumors were anesthetized and immobilized in a custom-fabricated whole-body mold. Imaging was performed using a dedicated small-animal PET scanner (R4 or Focus 120 microPET) approximately 2 h after the injection of the hypoxia tracer 18F-fluoromisonidazole (18F-FMISO). The coordinate systems of the robot and PET were registered based on fiducial markers in the rodent bed visible on the PET images. Guided by the 3D microPET image set, measurements were performed at various locations in the tumor and compared to the corresponding 18F-FMISO image intensity at the respective measurement points. Experiments were performed on four tumor-bearing rats with 4 (86), 3 (80), 7 (162), and 8 (235) measurement tracks (points) for each experiment. The 18F-FMISO image intensities were inversely correlated with the measured pO2, with a Pearson coefficient ranging from -0.14 to -0.97 for the 22 measurement tracks. The cumulative scatterplots of pO2 versus image intensity yielded a hyperbolic relationship, with correlation coefficients of 0.52, 0.48, 0.64, and 0.73, respectively, for the four tumors. In conclusion, PET image-guided pO2 measurement is feasible with this robot system and, more generally, this system will permit point-by-point comparison of physiological probe measurements and image voxel values as a means of validating molecularly targeted radiotracers. Although the overall data fitting suggested that 18F-FMISO may be an effective hypoxia marker, the use of static 18F-FMISO PET postinjection scans to guide radiotherapy might be problematic due to the observed high variation in some individual data pairs from the fitted curve, indicating potential temporal fluctuation of oxygen tension in individual voxels or possible suboptimal imaging time postadministration of hypoxia-related trapping of 18F-FMISO.
Collapse
Affiliation(s)
- Jenghwa Chang
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10021, USA.
| | | | | | | | | | | | | |
Collapse
|
7
|
Detecting vascular-targeting effects of the hypoxic cytotoxin tirapazamine in tumor xenografts using magnetic resonance imaging. Int J Radiat Oncol Biol Phys 2009; 74:957-65. [PMID: 19480975 DOI: 10.1016/j.ijrobp.2008.11.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 11/18/2008] [Accepted: 11/20/2008] [Indexed: 11/24/2022]
Abstract
PURPOSE To determine whether vascular-targeting effects can be detected in vivo using magnetic resonance imaging (MRI). METHODS AND MATERIALS MR images of HCT-116 xenograft-bearing mice were acquired at 7 Tesla before and 24 hours after intraperitoneal injections of tirapazamine. Quantitative dynamic contrast-enhanced MRI analyses were performed to evaluate changes in tumor perfusion using two biomarkers: the volume transfer constant (K(trans)) and the initial area under the concentration-time curve (IAUC). We used novel implanted fiducial markers to obtain cryosections that corresponded to MR image planes from excised tumors; quantitative immunohistochemical mapping of tumor vasculature, perfusion, and necrosis enabled correlative analysis between these and MR images. RESULTS Conventional histological analysis showed lower vascular perfusion or greater amounts of necrosis in the central regions of five of eight tirapazamine-treated tumors, with three treated tumors showing no vascular dysfunction response. MRI data reflected this result, and a striking decrease in both K(trans) and IAUC values was seen with the responsive tumors. Retrospective evaluation of pretreatment MRI parameters revealed that those tumors that did not respond to the vascular-targeting effects of tirapazamine had significantly higher pretreatment K(trans) and IAUC values. CONCLUSIONS MRI-derived parameter maps showed good agreement with histological tumor mapping. MRI was found to be an effective tool for noninvasively monitoring and predicting tirapazamine-mediated central vascular dysfunction.
Collapse
|
8
|
Pries AR, Cornelissen AJM, Sloot AA, Hinkeldey M, Dreher MR, Höpfner M, Dewhirst MW, Secomb TW. Structural adaptation and heterogeneity of normal and tumor microvascular networks. PLoS Comput Biol 2009; 5:e1000394. [PMID: 19478883 PMCID: PMC2682204 DOI: 10.1371/journal.pcbi.1000394] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 04/27/2009] [Indexed: 12/31/2022] Open
Abstract
Relative to normal tissues, tumor microcirculation exhibits high structural and functional heterogeneity leading to hypoxic regions and impairing treatment efficacy. Here, computational simulations of blood vessel structural adaptation are used to explore the hypothesis that abnormal adaptive responses to local hemodynamic and metabolic stimuli contribute to aberrant morphological and hemodynamic characteristics of tumor microcirculation. Topology, vascular diameter, length, and red blood cell velocity of normal mesenteric and tumor vascular networks were recorded by intravital microscopy. Computational models were used to estimate hemodynamics and oxygen distribution and to simulate vascular diameter adaptation in response to hemodynamic, metabolic and conducted stimuli. The assumed sensitivity to hemodynamic and conducted signals, the vascular growth tendency, and the random variability of vascular responses were altered to simulate ‘normal’ and ‘tumor’ adaptation modes. The heterogeneous properties of vascular networks were characterized by diameter mismatch at vascular branch points (d3var) and deficit of oxygen delivery relative to demand (O2def). In the tumor, d3var and O2def were higher (0.404 and 0.182) than in normal networks (0.278 and 0.099). Simulated remodeling of the tumor network with ‘normal’ parameters gave low values (0.288 and 0.099). Conversely, normal networks attained tumor-like characteristics (0.41 and 0.179) upon adaptation with ‘tumor’ parameters, including low conducted sensitivity, increased growth tendency, and elevated random biological variability. It is concluded that the deviant properties of tumor microcirculation may result largely from defective structural adaptation, including strongly reduced responses to conducted stimuli. Blood vessels of tumors have abnormal structures, being irregular and tortuous. Oxygen supply to tumors is heterogeneous, with regions of low oxygen that resist radiation treatment and some types of chemotherapy. Blood vessels undergo continual structural change (adaptation) in response to blood flow and metabolite levels. Our hypothesis is that abnormal adaptation of tumor microvessels causes their heterogeneous structure and impaired function. We used computational models to estimate blood flow and oxygen delivery and to simulate diameter adaptation in networks of microvessels, using network structures derived from microscopic observations of living normal and tumor tissues. The simulation of adaptation depends on several parameters that describe vessel sensitivity to fluid shear stress, to blood pressure, to oxygen levels, and to signals propagated along vessel walls (conducted response). We found that structural adaptation of a tumor network using parameters derived from normal tissues could ‘normalize’ the network, giving it properties similar to a normal tissue. Conversely, adaptation of normal networks using parameters derived from the tumor network, including reduced conducted response, gave tumor-like properties. We conclude that the deviant properties of tumor microcirculation may result largely from defective structural adaptation, including reduced conducted responses.
Collapse
Affiliation(s)
- Axel R. Pries
- Department of Physiology, Charité, Berlin, Germany
- Deutsches Herzzentrum Berlin, Berlin, Germany
| | - Annemiek J. M. Cornelissen
- Department of Physiology, Charité, Berlin, Germany
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS & Université Paris-Diderot, Paris, France
| | - Anoek A. Sloot
- Department of Man Machine Systems, Faculty of Mechanical Engineering and Marine Technology, Delft University of Technology, Delft, The Netherlands
| | | | - Matthew R. Dreher
- National Institutes of Health, Clinical Center, Radiology and Imaging Sciences, Bethesda, Maryland, United States of America
| | | | - Mark W. Dewhirst
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Timothy W. Secomb
- Department of Physiology, University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
9
|
Abstract
Human oncology has clearly demonstrated the existence of hypoxic tumours and the problematic nature of those tumours. Hypoxia is a significant problem in the treatment of all types of solid tumours and a common reason for treatment failure. Hypoxia is a negative prognostic indicator of survival and is correlated with the development of metastatic disease. Resistance to radiation therapy and chemotherapy can be because of hypoxia. There are two dominant types of hypoxia recognized in tumours, static and intermittent. Both types of hypoxia are important in terms of resistance. A variety of physiological factors cause hypoxia, and in turn, hypoxia can induce genetic and physiological changes. A limited number of studies have documented that hypoxia exists in spontaneous canine tumours. The knowledge from the human literature of problematic nature of hypoxic tumours combined with the rapid growth of veterinary oncology has necessitated a better understanding of hypoxia in canine tumours.
Collapse
Affiliation(s)
- S A Snyder
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | | | | |
Collapse
|
10
|
Hypoxia-specific drug tirapazamine does not abrogate hypoxic tumor cells in combination therapy with irinotecan and methylselenocysteine in well-differentiated human head and neck squamous cell carcinoma a253 xenografts. Neoplasia 2008; 10:857-65. [PMID: 18670644 DOI: 10.1593/neo.08424] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 05/19/2008] [Accepted: 05/20/2008] [Indexed: 02/04/2023] Open
Abstract
Well-differentiated hypoxic regions in head and neck squamous cell carcinoma like in A253 xenografts are avascular and, therefore, hinder drug delivery leading to drug resistance and tumor regrowth. Methylselenocysteine (MSC, 0.2 mg/mouse per day per oral for 35 days starting 7 days before the first irinotecan (CPT-11)) has been found to increase efficacy of a wide variety of chemotherapeutic agents including CPT-11 (100 mg/kg per week x 4 intravenously). Whereas CPT-11 leads to a 10% complete response (CR) in A253 xenografts, the combination of MSC and CPT-11 increased the CR to 70%. Surviving tumors were found to consist largely of avascular hypoxic regions. Here, we investigated the combination of tirapazamine (TPZ, 70 mg/kg per week intraperitoneal x 4 administered 3 or 72 hours before CPT-11), a bioreductive drug in clinical trial with selective toxicity for hypoxic cells, with MSC and CPT-11 in further enhancing the cure rates. Tumor response, change in tumor hypoxic regions, and DNA damage were monitored in vivo. Tirapazamine administered 3 hours before CPT-11 in combination with MSC + CPT-11 led to a lower tumor burden. Tirapazamine did not increase cure rate beyond that of MSC + CPT-11 combination and was instead found to decrease cures with no evidence of an increased DNA damage or a significant reduction in avascular hypoxic tumor regions. CD31 immunostaining in A253 demonstrated disruption of tumor vessels by TPZ that could lower cytotoxic drug delivery to carbonic anhydrase IX-positive hypoxic tumor cells and may explain at least partially these unexpected results.
Collapse
|