1
|
A novel approach to SBRT patient quality assurance using EPID-based real-time transit dosimetry. Strahlenther Onkol 2020; 196:182-192. [DOI: 10.1007/s00066-019-01549-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 10/26/2019] [Indexed: 12/25/2022]
|
2
|
Biltekin F, Yedekci Y, Ozyigit G. Feasibility of novel in vivo EPID dosimetry system for linear accelerator quality control tests. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2019; 42:995-1009. [PMID: 31515686 DOI: 10.1007/s13246-019-00798-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/04/2019] [Indexed: 11/26/2022]
Abstract
The main aim was to validate the capability of a novel EPID-based in vivo dosimetry system for machine-specific quality control (QC) tests. In current study, two sets of measurements were performed in Elekta Versa HD linear accelerator using novel iViewDose™ in vivo dosimetry software. In the first part, measurements were carried out to evaluate the feasibility of novel in vivo system for daily dosimetric QC tests including output constancy, percentage depth dose (PDD) and beam profile measurements. In addition to daily QC tests, measured output factor as a function of field size, leaf transmission and tongue and groove effect were compared with calculated TPS data. In the second part of the measurements, detection capability of iViewDose software for basic mechanical QC tests were investigated for different setup conditions. In dosimetric QC tests, measured output factor with changing field size, PDD, beam profile and leaf transmission factors were found to be compatible with calculated TPS data. Additionally, the EPID-based system was capable to detect given dose calibration errors of 1% with ± 0.02% deviation. In mechanical QC tests, it was found that iViewDose software was sensitive for catching errors in collimator rotation (≥ 1°), changes in phantom thickness (≥ 1 cm) and major differences in irradiated field size down to 1 mm. In conclusion, iViewDose was proved to be as useful EPID-based software for daily monitoring of linear accelerator beam parameters and it provides extra safety net to prevent machine based radiation incidents.
Collapse
Affiliation(s)
- Fatih Biltekin
- Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, 06100, Ankara, Turkey.
| | - Yagiz Yedekci
- Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, 06100, Ankara, Turkey
| | - Gokhan Ozyigit
- Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, 06100, Ankara, Turkey
| |
Collapse
|
3
|
Abstract
Abstract
Biomedical accelerators used in radiotherapy are equipped with detector arrays which are commonly used to obtain the image of patient position during the treatment session. These devices use both kilovolt and megavolt x-ray beams. The advantage of EPID (Electronic Portal Imaging Device) megavolt panels is the correlation of the measured signal with the calibrated dose. The EPID gives a possibility to verify delivered dose. The aim of the study is to answer the question whether EPID can be useful as a tool for interfraction QC (quality control) of dose and geometry repeatability.
The EPID system has been calibrated according to the manufacturer’s recommendations to obtain a signal and dose values correlation. Initially, the uncertainty of the EPID matrix measurement was estimated. According to that, the detecting sensitivity of two parameters was checked: discrepancies between the planned and measured dose and field geometry variance. Moreover, the linearity of measured signal-dose function was evaluated.
In the second part of the work, an analysis of several dose distributions was performed. In this study, the analysis of clinical cases was limited to stereotactic dynamic radiotherapy. Fluence maps were obtained as a result of the dose distribution measurements with the EPID during treatment sessions. The compatibility of fluence maps was analyzed using the gamma index. The fluence map acquired during the first fraction was the reference one. The obtained results show that EPID system can be used for interfraction control of dose and geometry repeatability.
Collapse
|
4
|
Utitsarn K, Biasi G, Stansook N, Alrowaili ZA, Petasecca M, Carolan M, Perevertaylo VL, Tomé WA, Kron T, Lerch MLF, Rosenfeld AB. Two-dimensional solid-state array detectors: A technique for in vivo dose verification in a variable effective area. J Appl Clin Med Phys 2019; 20:88-94. [PMID: 31609090 PMCID: PMC6839376 DOI: 10.1002/acm2.12744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/25/2019] [Accepted: 09/16/2019] [Indexed: 11/24/2022] Open
Abstract
PURPOSE We introduce a technique that employs a 2D detector in transmission mode (TM) to verify dose maps at a depth of dmax in Solid Water. TM measurements, when taken at a different surface-to-detector distance (SDD), allow for the area at dmax (in which the dose map is calculated) to be adjusted. METHODS We considered the detector prototype "MP512" (an array of 512 diode-sensitive volumes, 2 mm spatial resolution). Measurements in transmission mode were taken at SDDs in the range from 0.3 to 24 cm. Dose mode (DM) measurements were made at dmax in Solid Water. We considered radiation fields in the range from 2 × 2 cm2 to 10 × 10 cm2 , produced by 6 MV flattened photon beams; we derived a relationship between DM and TM measurements as a function of SDD and field size. The relationship was used to calculate, from TM measurements at 4 and 24 cm SDD, dose maps at dmax in fields of 1 × 1 cm2 and 4 × 4 cm2 , and in IMRT fields. Calculations were cross-checked (gamma analysis) with the treatment planning system and with measurements (MP512, films, ionization chamber). RESULTS In the square fields, calculations agreed with measurements to within ±2.36%. In the IMRT fields, using acceptance criteria of 3%/3 mm, 2%/2 mm, 1%/1 mm, calculations had respective gamma passing rates greater than 96.89%, 90.50%, 62.20% (for a 4 cm SSD); and greater than 97.22%, 93.80%, 59.00% (for a 24 cm SSD). Lower rates (1%/1 mm criterion) can be explained by submillimeter misalignments, dose averaging in calculations, noise artifacts in film dosimetry. CONCLUSIONS It is possible to perform TM measurements at the SSD which produces the best fit between the area at dmax in which the dose map is calculated and the size of the monitored target.
Collapse
Affiliation(s)
- Kananan Utitsarn
- Centre for Medical Radiation Physics (CMRP)University of WollongongWollongongNSWAustralia
- Department of Medical ServicesLopburi Cancer HospitalLopburiThailand
| | - Giordano Biasi
- Centre for Medical Radiation Physics (CMRP)University of WollongongWollongongNSWAustralia
| | - Nauljun Stansook
- Centre for Medical Radiation Physics (CMRP)University of WollongongWollongongNSWAustralia
- Department of RadiologyFaculty of MedicineMahidol UniversityBangkokThailand
| | - Ziyad A. Alrowaili
- Centre for Medical Radiation Physics (CMRP)University of WollongongWollongongNSWAustralia
- Physics DepartmentCollege of ScienceJouf UniversitySakakaSaudi Arabia
| | - Marco Petasecca
- Centre for Medical Radiation Physics (CMRP)University of WollongongWollongongNSWAustralia
| | - Martin Carolan
- Illawarra Cancer Care Centre (ICCC)Wollongong HospitalWollongongNSWAustralia
| | | | - Wolfgang A. Tomé
- Department of Radiation OncologyAlbert Einstein College of MedicineNew York CityNYUSA
| | - Tomas Kron
- Centre for Medical Radiation Physics (CMRP)University of WollongongWollongongNSWAustralia
- Department of Physical SciencesPeter MacCallum Cancer CentreMelbourneVic.Australia
- Sir Peter MacCallum Cancer InstituteUniversity of MelbourneMelbourneVic.Australia
| | - Michael L. F. Lerch
- Centre for Medical Radiation Physics (CMRP)University of WollongongWollongongNSWAustralia
| | - Anatoly B. Rosenfeld
- Centre for Medical Radiation Physics (CMRP)University of WollongongWollongongNSWAustralia
| |
Collapse
|
5
|
Ray X, Bojechko C, Moore KL. Evaluating the sensitivity of Halcyon's automatic transit image acquisition for treatment error detection: A phantom study using static IMRT. J Appl Clin Med Phys 2019; 20:131-143. [PMID: 31587477 PMCID: PMC6839375 DOI: 10.1002/acm2.12749] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 07/12/2019] [Accepted: 09/11/2019] [Indexed: 11/06/2022] Open
Abstract
PURPOSE The Varian Halcyon™ electronic portal imaging detector is always in-line with the beam and automatically acquires transit images for every patient with full-field coverage. These images could be used for "every patient, every monitor unit" quality assurance (QA) and eventually adaptive radiotherapy. This study evaluated the imager's sensitivity to potential clinical errors and day-to-day variations from clinical exit images. METHODS Open and modulated fields were delivered for each potential error. To evaluate output changes, monitor units were scaled by 2%-10% and delivered to solid water slabs and a homogeneous CIRS phantom. To mimic weight changes, 0.5-5.0 cm of buildup was added to the solid water. To evaluate positioning changes, a homogeneous and heterogeneous CIRS phantom were shifted 2-10 cm and 0.2-1.5 cm, respectively. For each test, mean relative differences (MRDs) and standard deviations in the pixel-difference histograms (σRD ) between test and baseline images were calculated. Lateral shift magnitudes were calculated using cross-correlation and edge-detection filtration. To assess patient variations, MRD and σRD were calculated from six prostate patients' daily exit images and compared between fractions with and without gas present. RESULTS MRDs responded linearly to output and buildup changes with a standard deviation of 0.3%, implying a 1% output change and 0.2 cm changes in buildup could be detected with 2.5σ confidence. Shifting the homogenous phantom laterally resulted in detectable MRD and σRD changes, and the cross-correlation function calculated the shift to within 0.5 mm for the heterogeneous phantom. MRD and σRD values were significantly associated with the presence of gas for five of the six patients. CONCLUSIONS Rapid analyses of automatically acquired Halcyon™ exit images could detect mid-treatment changes with high sensitivity, though appropriate thresholds will need to be set. This study presents the first steps toward developing effortless image evaluation for all aspects of every patient's treatment.
Collapse
Affiliation(s)
- Xenia Ray
- Department of Radiation Medicine and Applied SciencesUCSD Moores Cancer CenterLa JollaCAUSA
| | - Casey Bojechko
- Department of Radiation Medicine and Applied SciencesUCSD Moores Cancer CenterLa JollaCAUSA
| | - Kevin L. Moore
- Department of Radiation Medicine and Applied SciencesUCSD Moores Cancer CenterLa JollaCAUSA
| |
Collapse
|
6
|
Kang S, Li J, Ma J, Zhang W, Liao X, Qing H, Tan T, Xin X, Tang B, Piermattei A, Orlandini LC. Evaluation of interfraction setup variations for postmastectomy radiation therapy using EPID-based in vivo dosimetry. J Appl Clin Med Phys 2019; 20:43-52. [PMID: 31541537 PMCID: PMC6806484 DOI: 10.1002/acm2.12712] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 07/18/2019] [Accepted: 08/07/2019] [Indexed: 12/20/2022] Open
Abstract
Postmastectomy radiation therapy is technically difficult and can be considered one of the most complex techniques concerning patient setup reproducibility. Slight patient setup variations — particularly when high‐conformal treatment techniques are used — can adversely affect the accuracy of the delivered dose and the patient outcome. This research aims to investigate the inter‐fraction setup variations occurring in two different scenarios of clinical practice: at the reference and at the current patient setups, when an image‐guided system is used or not used, respectively. The results were used with the secondary aim of assessing the robustness of the patient setup procedure in use. Forty eight patients treated with volumetric modulated arc and intensity modulated therapies were included in this study. EPID‐based in vivo dosimetry (IVD) was performed at the reference setup concomitantly with the weekly cone beam computed tomography acquisition and during the daily current setup. Three indices were analyzed: the ratio R between the reconstructed and planned isocenter doses, γ% and the mean value of γ from a transit dosimetry based on a two‐dimensional γ‐analysis of the electronic portal images using 5% and 5 mm as dose difference and distance to agreement gamma criteria; they were considered in tolerance if R was within 5%, γ% > 90% and γmean < 0.4. One thousand and sixteen EPID‐based IVD were analyzed and 6.3% resulted out of the tolerance level. Setup errors represented the main cause of this off tolerance with an occurrence rate of 72.2%. The percentage of results out of tolerance obtained at the current setup was three times greater (9.5% vs 3.1%) than the one obtained at the reference setup, indicating weaknesses in the setup procedure. This study highlights an EPID‐based IVD system's utility in the radiotherapy routine as part of the patient’s treatment quality controls and to optimize (or confirm) the performed setup procedures’ accuracy.
Collapse
Affiliation(s)
- Shengwei Kang
- Key Laboratory of Radiation Physics and Technology, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, China.,Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Chengdu, China
| | - Jie Li
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Chengdu, China
| | - Jiabao Ma
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Chengdu, China
| | - Wei Zhang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Chengdu, China
| | - Xiongfei Liao
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Chengdu, China
| | - Hou Qing
- Institute of Nuclear Science and Technology, Sichuan University, Chengdu, China
| | - Tingqiang Tan
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Chengdu, China
| | - Xin Xin
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Chengdu, China
| | - Bin Tang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Chengdu, China
| | - Angelo Piermattei
- UOC Fisica Sanitaria, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Lucia Clara Orlandini
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Chengdu, China
| |
Collapse
|
7
|
Quality assurance of linear accelerator: a comprehensive system using electronic portal imaging device. JOURNAL OF RADIOTHERAPY IN PRACTICE 2019. [DOI: 10.1017/s146039691800050x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractAimThe Electronic Portal Imaging Device (EPID), primarily used for patient setup during radiotherapy sessions is also used for dosimetric measurements. In the present study, the feasibility of EPID in both machine and patient-specific quality assurance (QA) are investigated. We have developed a comprehensive software tool for effective utilisation of EPID in our institutional QA protocol.Materials and methodsPortal Vision aS1000, amorphous silicon portal detector attached to Clinac iX—Linear Accelerator (LINAC) was used to measure daily profile and output constancy, various Multi-Leaf Collimator (MLC) checks and patient plan verification. Different QA plans were generated with the help of Eclipse Treatment Planning System (TPS) and MLC shaper software. The indigenously developed MATLAB programs were used for image analysis. Flatness, symmetry, output constancy, Field Width at Half Maximum (FWHM) and fluence comparison were studied from images obtained from TPS and EPID dosimetry.ResultsThe 3 years institutional data of profile constancy and patient-specific QA measured using EPID were found within the acceptable limits. The daily output of photon beam correlated with the output obtained through solid phantom measurements. The Pearson correlation coefficients are 0.941 (p = 0.0001), 0.888 (p = 0.0188) and 0.917 (p = 0.0007) for the years of 2014, 2015 and 2016, respectively. The accuracy of MLC for shaping complex treatment fields was studied in terms of FWHM at different portions of various fields, showed good agreement between TPS-generated and EPID-measured MLC positions. The comparison of selected patient plans in EPID with an independent 2D array detector system showed statistically significant correlation between these two systems. Percentage difference between TPS computed and EPID measured fluence maps calculated for number of patients using MATLAB code also exhibited the validity of those plans for treatment.
Collapse
|
8
|
Fielding AL, Mendieta JB, Maxwell S, Jones C. The effect of respiratory motion on electronic portal imaging device dosimetry. J Appl Clin Med Phys 2019; 20:45-55. [PMID: 30724011 PMCID: PMC6414145 DOI: 10.1002/acm2.12541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 12/04/2018] [Accepted: 12/21/2018] [Indexed: 11/12/2022] Open
Abstract
There is an increasing need to develop methods for in vivo verification of the delivery of radiotherapy treatments. Electronic portal imaging devices (EPID's) have been demonstrated to be of use for this application. The basic principle is relatively straightforward, the EPID is used to measure a two-dimensional (2D) planar exit or portal dose map behind the patient during the treatment delivery that can provide information on any errors in linear accelerator output or changes in the patient anatomy. In this paper we focused on the effect of intra-fraction motion, particularly respiratory motion, on the measured 2D EPID dose-response. Measurements were made with a breast phantom undergoing one-dimensional (1D) sinusoidal motion with a range of amplitudes (0.5, 1.0, and 1.5 cm) and frequencies (12, 15, and 20 cycles/min). Further measurements were made with the phantom undergoing breathing sequences measured during patient planning computed tomography simulation. We made use of the quadratic calibration method that converts the EPID images to a surrogate for dose, equivalent thickness of Plastic Water® . Comparisons were made of the 2D thickness maps derived for the different motions compared to the static phantom case and the resulting dose difference analyzed over the "breast" region of interest. A 2D gamma analysis within the same region of interest was performed of the motion images compared to static reference image. Comparisons were made of 1D thickness profiles for the moving and static phantom. The 1D and 2D analyses show the method to be sensitive to the smallest motion amplitude of 0.5 cm tested in the phantom measurements. The results using the phantom demonstrate the method to be a potentially useful tool for monitoring intra-fraction motion during the delivery of patient radiotherapy treatments as well as more generally providing information on the effects of motion on EPID based in vivo dosimetric verification.
Collapse
Affiliation(s)
- Andrew L Fielding
- Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, Qld, Australia
| | - Jessica Benitez Mendieta
- Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, Qld, Australia
| | - Sarah Maxwell
- Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, Qld, Australia
| | - Catherine Jones
- Department of Radiation Oncology, Princess Alexandra Hospital, Brisbane, Qld, Australia
| |
Collapse
|
9
|
Saito M, Sano N, Shibata Y, Kuriyama K, Komiyama T, Marino K, Aoki S, Ashizawa K, Yoshizawa K, Onishi H. Comparison of MLC error sensitivity of various commercial devices for VMAT pre-treatment quality assurance. J Appl Clin Med Phys 2018; 19:87-93. [PMID: 29500857 PMCID: PMC5978943 DOI: 10.1002/acm2.12288] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 12/04/2017] [Accepted: 01/21/2018] [Indexed: 11/10/2022] Open
Abstract
The purpose of this study was to compare the MLC error sensitivity of various measurement devices for VMAT pre-treatment quality assurance (QA). This study used four QA devices (Scandidos Delta4, PTW 2D-array, iRT systems IQM, and PTW Farmer chamber). Nine retrospective VMAT plans were used and nine MLC error plans were generated for all nine original VMAT plans. The IQM and Farmer chamber were evaluated using the cumulative signal difference between the baseline and error-induced measurements. In addition, to investigate the sensitivity of the Delta4 device and the 2D-array, global gamma analysis (1%/1, 2%/2, and 3%/3 mm), dose difference (1%, 2%, and 3%) were used between the baseline and error-induced measurements. Some deviations of the MLC error sensitivity for the evaluation metrics and MLC error ranges were observed. For the two ionization devices, the sensitivity of the IQM was significantly better than that of the Farmer chamber (P < 0.01) while both devices had good linearly correlation between the cumulative signal difference and the magnitude of MLC errors. The pass rates decreased as the magnitude of the MLC error increased for both Delta4 and 2D-array. However, the small MLC error for small aperture sizes, such as for lung SBRT, could not be detected using the loosest gamma criteria (3%/3 mm). Our results indicate that DD could be more useful than gamma analysis for daily MLC QA, and that a large-area ionization chamber has a greater advantage for detecting systematic MLC error because of the large sensitive volume, while the other devices could not detect this error for some cases with a small range of MLC error.
Collapse
Affiliation(s)
- Masahide Saito
- Department of Radiology, University of Yamanashi, Yamanashi, Japan
| | - Naoki Sano
- Department of Radiology, University of Yamanashi, Yamanashi, Japan
| | - Yuki Shibata
- Department of Radiology, University of Yamanashi, Yamanashi, Japan
| | - Kengo Kuriyama
- Department of Radiology, University of Yamanashi, Yamanashi, Japan
| | | | - Kan Marino
- Department of Radiology, University of Yamanashi, Yamanashi, Japan
| | - Shinichi Aoki
- Department of Radiology, University of Yamanashi, Yamanashi, Japan
| | | | - Kazuya Yoshizawa
- Department of Radiology, University of Yamanashi, Yamanashi, Japan
| | - Hiroshi Onishi
- Department of Radiology, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
10
|
Setup in a clinical workflow and impact on radiotherapy routine of an in vivo dosimetry procedure with an electronic portal imaging device. PLoS One 2018; 13:e0192686. [PMID: 29432473 PMCID: PMC5809064 DOI: 10.1371/journal.pone.0192686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 01/29/2018] [Indexed: 12/21/2022] Open
Abstract
High conformal techniques such as intensity-modulated radiation therapy and volumetric-modulated arc therapy are widely used in overloaded radiotherapy departments. In vivo dosimetric screening is essential in this environment to avoid important dosimetric errors. This work examines the feasibility of introducing in vivo dosimetry (IVD) checks in a radiotherapy routine. The causes of dosimetric disagreements between delivered and planned treatments were identified and corrected during the course of treatment. The efficiency of the corrections performed and the added workload needed for the entire procedure were evaluated. The IVD procedure was based on an electronic portal imaging device. A total of 3682 IVD tests were performed for 147 patients who underwent head and neck, abdomen, pelvis, breast, and thorax radiotherapy treatments. Two types of indices were evaluated and used to determine if the IVD tests were within tolerance levels: the ratio R between the reconstructed and planned isocentre doses and a transit dosimetry based on the γ-analysis of the electronic portal images. The causes of test outside tolerance level were investigated and corrected and IVD test was repeated during subsequent fraction. The time needed for each step of the IVD procedure was registered. Pelvis, abdomen, and head and neck treatments had 10% of tests out of tolerance whereas breast and thorax treatments accounted for up to 25%. The patient setup was the main cause of 90% of the IVD tests out of tolerance and the remaining 10% was due to patient morphological changes. An average time of 42 min per day was sufficient to monitor a daily workload of 60 patients in treatment. This work shows that IVD performed with an electronic portal imaging device is feasible in an overloaded department and enables the timely realignment of the treatment quality indices in order to achieve a patient’s final treatment compliant with the one prescribed.
Collapse
|
11
|
|
12
|
Bedford JL, Hanson IM, Hansen VN. Comparison of forward- and back-projection in vivo EPID dosimetry for VMAT treatment of the prostate. Phys Med Biol 2018; 63:025008. [PMID: 29165319 DOI: 10.1088/1361-6560/aa9c60] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In the forward-projection method of portal dosimetry for volumetric modulated arc therapy (VMAT), the integrated signal at the electronic portal imaging device (EPID) is predicted at the time of treatment planning, against which the measured integrated image is compared. In the back-projection method, the measured signal at each gantry angle is back-projected through the patient CT scan to give a measure of total dose to the patient. This study aims to investigate the practical agreement between the two types of EPID dosimetry for prostate radiotherapy. The AutoBeam treatment planning system produced VMAT plans together with corresponding predicted portal images, and a total of 46 sets of gantry-resolved portal images were acquired in 13 patients using an iViewGT portal imager. For the forward-projection method, each acquisition of gantry-resolved images was combined into a single integrated image and compared with the predicted image. For the back-projection method, iViewDose was used to calculate the dose distribution in the patient for comparison with the planned dose. A gamma index for 3% and 3 mm was used for both methods. The results were investigated by delivering the same plans to a phantom and repeating some of the deliveries with deliberately introduced errors. The strongest agreement between forward- and back-projection methods is seen in the isocentric intensity/dose difference, with moderate agreement in the mean gamma. The strongest correlation is observed within a given patient, with less correlation between patients, the latter representing the accuracy of prediction of the two methods. The error study shows that each of the two methods has its own distinct sensitivity to errors, but that overall the response is similar. The forward- and back-projection EPID dosimetry methods show moderate agreement in this series of prostate VMAT patients, indicating that both methods can contribute to the verification of dose delivered to the patient.
Collapse
Affiliation(s)
- James L Bedford
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, SM2 5PT, United Kingdom
| | | | | |
Collapse
|
13
|
Smith RL, Hanlon M, Panettieri V, Millar JL, Matheson B, Haworth A, Franich RD. An integrated system for clinical treatment verification of HDR prostate brachytherapy combining source tracking with pretreatment imaging. Brachytherapy 2018; 17:111-121. [DOI: 10.1016/j.brachy.2017.08.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 07/29/2017] [Accepted: 08/09/2017] [Indexed: 10/18/2022]
|
14
|
Impact of a monolithic silicon detector operating in transmission mode on clinical photon beams. Phys Med 2017; 43:114-119. [PMID: 29195553 DOI: 10.1016/j.ejmp.2017.10.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 11/21/2022] Open
Abstract
PURPOSE To investigate the effect on surface dose, as a function of different field sizes and distances from the solid water phantom to transmission detector (Dsd), of using the monolithic silicon detector MP512T in transmission mode. METHODS The influence of operating the MP512T in transmission mode on the surface dose of a phantom for SSD 100cm was evaluated by using a Markus IC. The MP512T was fixed to an adjustable stand holder and was positioned at different Dsd, ranging from 0.3 to 24 cm. For each Dsd, measurements were carried out for irradiation field sizes of 5 × 5cm2, 8 × 8 cm2 and 10 × 10 cm2. Measurements were obtained under two different operational setups, (i) with the MP512T face-up and (ii) with the MP512T face-down. In addition, the transmission factors for the MP512T and the printed circuit board were only evaluated using a Farmer IC. RESULTS For all Dsd and all field sizes, the MP512T led to the surface dose increasing by less than 25% when in the beam. For Dsd >18 cm the surface dose increase is less than 5%, and negligible for field size 5 × 5 cm2. The difference in the surface dose perturbation for the MP512T operating face up or operating face down is negligible (<2%) for all field sizes. The transmission factor of the MP512T ranged from 1.020 to 0.9950 for all measured Dsd and field sizes. CONCLUSION The study demonstrated that positioning the MP512T in air between the Linac head and the phantom produced negligible perturbation of the surface dose for Dsd >18 cm, and was completely transparent for 6 MV photon beams.
Collapse
|
15
|
McCurdy BM, McCowan PM. In vivo dosimetry for lung radiotherapy including SBRT. Phys Med 2017; 44:123-130. [DOI: 10.1016/j.ejmp.2017.05.065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/20/2017] [Accepted: 05/22/2017] [Indexed: 12/18/2022] Open
|
16
|
Fuangrod T, Greer PB, Simpson J, Zwan BJ, Middleton RH. A method for evaluating treatment quality using in vivo EPID dosimetry and statistical process control in radiation therapy. Int J Health Care Qual Assur 2017; 30:90-102. [PMID: 28256929 DOI: 10.1108/ijhcqa-03-2016-0028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose Due to increasing complexity, modern radiotherapy techniques require comprehensive quality assurance (QA) programmes, that to date generally focus on the pre-treatment stage. The purpose of this paper is to provide a method for an individual patient treatment QA evaluation and identification of a "quality gap" for continuous quality improvement. Design/methodology/approach A statistical process control (SPC) was applied to evaluate treatment delivery using in vivo electronic portal imaging device (EPID) dosimetry. A moving range control chart was constructed to monitor the individual patient treatment performance based on a control limit generated from initial data of 90 intensity-modulated radiotherapy (IMRT) and ten volumetric-modulated arc therapy (VMAT) patient deliveries. A process capability index was used to evaluate the continuing treatment quality based on three quality classes: treatment type-specific, treatment linac-specific, and body site-specific. Findings The determined control limits were 62.5 and 70.0 per cent of the χ pass-rate for IMRT and VMAT deliveries, respectively. In total, 14 patients were selected for a pilot study the results of which showed that about 1 per cent of all treatments contained errors relating to unexpected anatomical changes between treatment fractions. Both rectum and pelvis cancer treatments demonstrated process capability indices were less than 1, indicating the potential for quality improvement and hence may benefit from further assessment. Research limitations/implications The study relied on the application of in vivo EPID dosimetry for patients treated at the specific centre. Sampling patients for generating the control limits were limited to 100 patients. Whilst the quantitative results are specific to the clinical techniques and equipment used, the described method is generally applicable to IMRT and VMAT treatment QA. Whilst more work is required to determine the level of clinical significance, the authors have demonstrated the capability of the method for both treatment specific QA and continuing quality improvement. Practical implications The proposed method is a valuable tool for assessing the accuracy of treatment delivery whilst also improving treatment quality and patient safety. Originality/value Assessing in vivo EPID dosimetry with SPC can be used to improve the quality of radiation treatment for cancer patients.
Collapse
Affiliation(s)
- Todsaporn Fuangrod
- Faculty of Engineering and Built Environment, School of Electrical Engineering and Computer Science, University of Newcastle , Callaghan, Australia
| | - Peter B Greer
- Radiation Oncology, Calvary Mater Newcastle Hospital, Waratah, Australia.,School of Mathematical and Physical Sciences, University of Newcastle , Callaghan, Australia
| | - John Simpson
- Radiation Oncology, Calvary Mater Newcastle Hospital, Waratah, Australia.,School of Mathematical and Physical Sciences, University of Newcastle , Callaghan, Australia
| | - Benjamin J Zwan
- School of Mathematical and Physical Sciences, University of Newcastle , Callaghan, Australia.,Department of Radiation Oncology, Central Coast Cancer Centre, Gosford, Australia
| | - Richard H Middleton
- Faculty of Engineering and Built Environment, School of Electrical Engineering and Computer Science, University of Newcastle , Callaghan, Australia
| |
Collapse
|
17
|
Abstract
PURPOSE To improve patient safety and treatment quality, verification of dose delivery in radiotherapy is desirable. We present a simple, easy-to-implement, open-source method for in vivo planar dosimetry of conformal radiotherapy by electronic portal imaging device (EPID). METHODS Correlation ratios, which relate dose in the mid-depth of slab phantoms to transit EPID signal, were determined for multiple phantom thicknesses and field sizes. Off-axis dose is corrected for by means of model-based convolution. We tested efficacy of dose reconstruction through measurements with off-reference values of attenuator thickness, field size, and monitor units. We quantified the dose calculation error in the presence of thickness changes to simulate anatomical or setup variations. An example of dose calculation on patient data is provided. RESULTS With varying phantom thickness, field size, and monitor units, dose reconstruction was almost always within 3% of planned dose. In the presence of thickness changes from planning CT, the dose discrepancy is exaggerated by up to approximately 1.5% for 1 cm changes upstream of the isocenter plane and 4% for 1 cm changes downstream. CONCLUSION Our novel electronic portal imaging device in vivo dosimetry allows clinically accurate 2-dimensional reconstruction of dose inside a phantom/patient at isocenter depth. Due to its simplicity, commissioning can be performed in a few hours per energy and may be modified to the user's needs. It may provide useful dose delivery information to detect harmful errors, guide adaptive radiotherapy, and assure quality of treatment.
Collapse
Affiliation(s)
- Stefano Peca
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada.,Department of Medical Physics, Tom Baker Cancer Centre, Calgary, AB, Canada
| | - Derek Wilson Brown
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada.,Department of Radiation Medicine and Applied Sciences, Moores Cancer Center, UC San Diego, La Jolla, CA, USA
| | - Wendy Lani Smith
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada.,Department of Medical Physics, Tom Baker Cancer Centre, Calgary, AB, Canada.,Department of Radiation Oncology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
18
|
Abstract
Although many error pathways are common to both stereotactic body radiation therapy (SBRT) and conventional radiation therapy, SBRT presents a special set of challenges including short treatment courses and high-doses, an enhanced reliance on imaging, technical challenges associated with commissioning, special resource requirements for staff and training, and workflow differences. Emerging data also suggest that errors occur at a higher rate in SBRT treatments. Furthermore, when errors do occur they often have a greater effect on SBRT treatments. Given these challenges, it is important to understand and employ systematic approaches to ensure the quality and safety of SBRT treatment. Here, we outline the pathways by which error can occur in SBRT, illustrated through a series of case studies, and highlight 9 specific well-established tools to either reduce error or minimize its effect to the patient or both.
Collapse
Affiliation(s)
- Eric Ford
- Department of Radiation Oncology, University of Washington, Seattle, WA.
| | - Sonja Dieterich
- Department of Radiation Oncology, University of California, Davis, CA
| |
Collapse
|
19
|
Spreeuw H, Rozendaal R, Olaciregui-Ruiz I, González P, Mans A, Mijnheer B, van Herk M. Online 3D EPID-based dose verification: Proof of concept. Med Phys 2017; 43:3969. [PMID: 27370115 DOI: 10.1118/1.4952729] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
PURPOSE Delivery errors during radiotherapy may lead to medical harm and reduced life expectancy for patients. Such serious incidents can be avoided by performing dose verification online, i.e., while the patient is being irradiated, creating the possibility of halting the linac in case of a large overdosage or underdosage. The offline EPID-based 3D in vivo dosimetry system clinically employed at our institute is in principle suited for online treatment verification, provided the system is able to complete 3D dose reconstruction and verification within 420 ms, the present acquisition time of a single EPID frame. It is the aim of this study to show that our EPID-based dosimetry system can be made fast enough to achieve online 3D in vivo dose verification. METHODS The current dose verification system was sped up in two ways. First, a new software package was developed to perform all computations that are not dependent on portal image acquisition separately, thus removing the need for doing these calculations in real time. Second, the 3D dose reconstruction algorithm was sped up via a new, multithreaded implementation. Dose verification was implemented by comparing planned with reconstructed 3D dose distributions delivered to two regions in a patient: the target volume and the nontarget volume receiving at least 10 cGy. In both volumes, the mean dose is compared, while in the nontarget volume, the near-maximum dose (D2) is compared as well. The real-time dosimetry system was tested by irradiating an anthropomorphic phantom with three VMAT plans: a 6 MV head-and-neck treatment plan, a 10 MV rectum treatment plan, and a 10 MV prostate treatment plan. In all plans, two types of serious delivery errors were introduced. The functionality of automatically halting the linac was also implemented and tested. RESULTS The precomputation time per treatment was ∼180 s/treatment arc, depending on gantry angle resolution. The complete processing of a single portal frame, including dose verification, took 266 ± 11 ms on a dual octocore Intel Xeon E5-2630 CPU running at 2.40 GHz. The introduced delivery errors were detected after 5-10 s irradiation time. CONCLUSIONS A prototype online 3D dose verification tool using portal imaging has been developed and successfully tested for two different kinds of gross delivery errors. Thus, online 3D dose verification has been technologically achieved.
Collapse
Affiliation(s)
- Hanno Spreeuw
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Roel Rozendaal
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Igor Olaciregui-Ruiz
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Patrick González
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Anton Mans
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Ben Mijnheer
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Marcel van Herk
- The University of Manchester, Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, Manchester M20 4BX, United Kingdom
| |
Collapse
|
20
|
Martínez Ortega J, Gómez González N, Castro Tejero P, Pinto Monedero M, Tolani NB, Núñez Martín L, Sánchez Montero R. A portal dosimetry dose prediction method based on collapsed cone algorithm using the clinical beam model. Med Phys 2017; 44:333-341. [PMID: 28102946 DOI: 10.1002/mp.12018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 09/28/2016] [Accepted: 11/13/2016] [Indexed: 11/12/2022] Open
Abstract
PURPOSE Amorphous silicon electronical portal imaging devices (EPIDs) are widely used for dosimetric measurements in Radiation Therapy. The purpose of this work was to determine if a portal dose prediction method can be utilized for dose map calculations based on the linear accelerator model within a commercial treatment planning system (Pinnacle3 v8.0 m). METHODS The method was developed for a 6 MV photon beam on the Varian Clinac 21-EX, at a nominal dose rate of 400 MU/min. The Varian aS1000 EPID was unmounted from the linear accelerator and scanned to acquire CT images of the EPID. The CT images were imported into Pinnacle3 and were used as a quality assurance phantom to calculate dose on the EPID setup at a source to detector distance of 105 cm. The best match of the dose distributions was obtained considering the image plane located at 106 cm from the source to detector plane. The EPID was calibrated according to the manufacturer procedure and corrections were made for output factors. Arm-backscattering effect, based on profile correction curves, has been introduced. Five low-modulated and three high-modulated clinical planned treatments were predicted and measured with the method presented here and with MatriXX (IBA Dosimetry, Schwarzenbruck, Germany). RESULTS A portal dose prediction method based on Pinnacle3 was developed without modifying the commissioned parameters of the model in use in the clinic. CT images of the EPID were acquired and used as a quality assurance phantom. The CT images indicated a mean density of 1.16 g/cm3 for the sensitive area of the EPID. Output factor measured with the EPID were lower for small fields and larger for larger fields (beyond 10 × 10 cm2 ). Arm-backscatter correction showed a better agreement at the target side of the EPID. Analysis of Gamma index comparison (3%, 3 mm) indicated a minimum of 97.4% pass rate for low modulated and 98.3% for high modulated treatments. Pass rates were similar for MatriXX measurements. CONCLUSIONS The method developed here can be easily implemented into clinic, as neither additional modeling of the clinical energy nor an independent image prediction algorithm are necessary. The main advantage of this method is that portal dose prediction is calculated with the same algorithm and beam model used for patient dose distribution calculation. This method was independently validated with an ionization chamber matrix.
Collapse
Affiliation(s)
- J Martínez Ortega
- Medical Physics Department, Hospital Universitario Puerta de Hierro. C/Manuel de Falla 1, 28222, Majadahonda, (Madrid), Spain
| | - N Gómez González
- Medical Physics Department, Hospital Universitario Puerta de Hierro. C/Manuel de Falla 1, 28222, Majadahonda, (Madrid), Spain
| | - P Castro Tejero
- Radiation Physics, Radiation Oncology Department, Hospital Universitario de La Princesa. C/Diego de León 62, 28006, Madrid, Spain
| | - M Pinto Monedero
- Medical Physics Department, Hospital Universitario Puerta de Hierro. C/Manuel de Falla 1, 28222, Majadahonda, (Madrid), Spain
| | - N B Tolani
- Radiotherapy Department, ME DeBakey VA Medical Center. 2002 Holcombe Boulevard, 77030, Houston, Texas, USA
| | - L Núñez Martín
- Medical Physics Department, Hospital Universitario Puerta de Hierro. C/Manuel de Falla 1, 28222, Majadahonda, (Madrid), Spain
| | - R Sánchez Montero
- Signal Theory and Communications Department, University of Alcala. Campus Universitario, Ctra Madrid-Barcelona, km 33.600., 28805, Alcala de Henares (Madrid), Spain
| |
Collapse
|
21
|
Jomehzadeh A, Shokrani P, Mohammadi M, Amouheidari A. Assessment of a 2D electronic portal imaging devices-based dosimetry algorithm for pretreatment and in-vivo midplane dose verification. Adv Biomed Res 2016; 5:171. [PMID: 28028511 PMCID: PMC5157032 DOI: 10.4103/2277-9175.194799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 05/12/2014] [Indexed: 11/22/2022] Open
Abstract
Background: The use of electronic portal imaging devices (EPIDs) is a method for the dosimetric verification of radiotherapy plans, both pretreatment and in vivo. The aim of this study is to test a 2D EPID-based dosimetry algorithm for dose verification of some plans inside a homogenous and anthropomorphic phantom and in vivo as well. Materials and Methods: Dose distributions were reconstructed from EPID images using a 2D EPID dosimetry algorithm inside a homogenous slab phantom for a simple 10 × 10 cm2 box technique, 3D conformal (prostate, head-and-neck, and lung), and intensity-modulated radiation therapy (IMRT) prostate plans inside an anthropomorphic (Alderson) phantom and in the patients (one fraction in vivo) for 3D conformal plans (prostate, head-and-neck and lung). Results: The planned and EPID dose difference at the isocenter, on an average, was 1.7% for pretreatment verification and less than 3% for all in vivo plans, except for head-and-neck, which was 3.6%. The mean γ values for a seven-field prostate IMRT plan delivered to the Alderson phantom varied from 0.28 to 0.65. For 3D conformal plans applied for the Alderson phantom, all γ1% values were within the tolerance level for all plans and in both anteroposterior and posteroanterior (AP-PA) beams. Conclusion: The 2D EPID-based dosimetry algorithm provides an accurate method to verify the dose of a simple 10 × 10 cm2 field, in two dimensions, inside a homogenous slab phantom and an IMRT prostate plan, as well as in 3D conformal plans (prostate, head-and-neck, and lung plans) applied using an anthropomorphic phantom and in vivo. However, further investigation to improve the 2D EPID dosimetry algorithm for a head-and-neck case, is necessary.
Collapse
Affiliation(s)
- Ali Jomehzadeh
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Medical Physics, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Medical Physics, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Parvaneh Shokrani
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Alireza Amouheidari
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Bojechko C, Ford EC. Quantifying the performance of in vivo portal dosimetry in detecting four types of treatment parameter variations. Med Phys 2016; 42:6912-8. [PMID: 26632047 DOI: 10.1118/1.4935093] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To quantify the ability of electronic portal imaging device (EPID) dosimetry used during treatment (in vivo) in detecting variations that can occur in the course of patient treatment. METHODS Images of transmitted radiation from in vivo EPID measurements were converted to a 2D planar dose at isocenter and compared to the treatment planning dose using a prototype software system. Using the treatment planning system (TPS), four different types of variability were modeled: overall dose scaling, shifting the positions of the multileaf collimator (MLC) leaves, shifting of the patient position, and changes in the patient body contour. The gamma pass rate was calculated for the modified and unmodified plans and used to construct a receiver operator characteristic (ROC) curve to assess the detectability of the different parameter variations. The detectability is given by the area under the ROC curve (AUC). The TPS was also used to calculate the impact of the variations on the target dose-volume histogram. RESULTS Nine intensity modulation radiation therapy plans were measured for four different anatomical sites consisting of 70 separate fields. Results show that in vivo EPID dosimetry was most sensitive to variations in the machine output, AUC = 0.70 - 0.94, changes in patient body habitus, AUC = 0.67 - 0.88, and systematic shifts in the MLC bank positions, AUC = 0.59 - 0.82. These deviations are expected to have a relatively small clinical impact [planning target volume (PTV) D99 change <7%]. Larger variations have even higher detectability. Displacements in the patient's position and random variations in MLC leaf positions were not readily detectable, AUC < 0.64. The D99 of the PTV changed by up to 57% for the patient position shifts considered here. CONCLUSIONS In vivo EPID dosimetry is able to detect relatively small variations in overall dose, systematic shifts of the MLC's, and changes in the patient habitus. Shifts in the patient's position which can introduce large changes in the target dose coverage were not readily detected.
Collapse
Affiliation(s)
- C Bojechko
- Department of Radiation Oncology, University of Washington, 1959 NE Pacific Street, Seattle, Washington 98195
| | - E C Ford
- Department of Radiation Oncology, University of Washington, 1959 NE Pacific Street, Seattle, Washington 98195
| |
Collapse
|
23
|
Li T, Wu QJ, Matzen T, Yin FF, O'Daniel JC. Diode-based transmission detector for IMRT delivery monitoring: a validation study. J Appl Clin Med Phys 2016; 17:235-244. [PMID: 27685115 PMCID: PMC5874094 DOI: 10.1120/jacmp.v17i5.6204] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 06/02/2016] [Accepted: 05/02/2016] [Indexed: 11/23/2022] Open
Abstract
The purpose of this work was to evaluate the potential of a new transmission detector for real‐time quality assurance of dynamic‐MLC‐based radiotherapy. The accuracy of detecting dose variation and static/dynamic MLC position deviations was measured, as well as the impact of the device on the radiation field (surface dose, transmission). Measured dose variations agreed with the known variations within 0.3%. The measurement of static and dynamic MLC position deviations matched the known deviations with high accuracy (0.7–1.2 mm). The absorption of the device was minimal (∼ 1%). The increased surface dose was small (1%–9%) but, when added to existing collimator scatter effects could become significant at large field sizes (≥30×30 cm2). Overall the accuracy and speed of the device show good potential for real‐time quality assurance. PACS number(s): 87.55.Qr
Collapse
|
24
|
Investigation of a real-time EPID-based patient dose monitoring safety system using site-specific control limits. Radiat Oncol 2016; 11:106. [PMID: 27520279 PMCID: PMC4983007 DOI: 10.1186/s13014-016-0682-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 08/05/2016] [Indexed: 11/24/2022] Open
Abstract
Purpose The aim of this study is to investigate the performance and limitations of a real-time transit electronic portal imaging device (EPID) dosimetry system for error detection during dynamic intensity modulated radiation therapy (IMRT) treatment delivery. Sites studied are prostate, head and neck (HN), and rectal cancer treatments. Methods The system compares measured cumulative transit EPID image frames with predicted cumulative image frames in real-time during treatment using a χ comparison with 4 %, 4 mm criteria. The treatment site-specific thresholds (prostate, HN and rectum IMRT) were determined using initial data collected from 137 patients (274 measured treatment fractions) and a statistical process control methodology. These thresholds were then applied to data from 15 selected patients including 5 prostate, 5 HN, and 5 rectum IMRT treatments for system evaluation and classification of error sources. Results Clinical demonstration of real-time transit EPID dosimetry in IMRT was presented. For error simulation, the system could detect gross errors (i.e. wrong patient, wrong plan, wrong gantry angle) immediately after EPID stabilisation; 2 seconds after the start of treatment. The average rate of error detection was 7.0 % (prostate = 5.6 %, HN= 8.7 % and rectum = 6.7 %). The detected errors were classified as either clinical in origin (e.g. patient anatomical changes), or non-clinical in origin (e.g. detection system errors). Classified errors were 3.2 % clinical and 3.9 % non-clinical. Conclusion An EPID-based real-time error detection method for treatment verification during dynamic IMRT has been developed and tested for its performance and limitations. The system is able to detect gross errors in real-time, however improvement in system robustness is required to reduce the non-clinical sources of error detection.
Collapse
|
25
|
Bedford JL, Smyth G, Hanson IM, Tree AC, Dearnaley DP, Hansen VN. Quality of treatment plans and accuracy of in vivo portal dosimetry in hybrid intensity-modulated radiation therapy and volumetric modulated arc therapy for prostate cancer. Radiother Oncol 2016; 120:320-6. [PMID: 27470308 DOI: 10.1016/j.radonc.2016.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 06/27/2016] [Accepted: 07/04/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Delivering selected parts of volumetric modulated arc therapy (VMAT) plans using step-and-shoot intensity modulated radiotherapy (IMRT) beams has the potential to increase plan quality by allowing specific aperture positioning. This study investigates the quality of treatment plans and the accuracy of in vivo portal dosimetry in such a hybrid approach for the case of prostate radiotherapy. MATERIAL AND METHODS Conformal and limited-modulation VMAT plans were produced, together with five hybrid IMRT/VMAT plans, in which 0%, 25%, 50%, 75% or 100% of the segments were sequenced for IMRT, while the remainder were sequenced for VMAT. Integrated portal images were predicted for the plans. The plans were then delivered as a single hybrid beam using an Elekta Synergy accelerator with Agility head to a water-equivalent phantom and treatment time, isocentric dose and portal images were measured. RESULTS Increasing the IMRT percentage improves dose uniformity to the planning target volume (p<0.01 for 50% IMRT or more), substantially reduces the volume of rectum irradiated to 65Gy (p=0.02 for 25% IMRT) and increases the monitor units (p<0.001). Delivery time also increases substantially. All plans show accurate delivery of dose and reliable prediction of portal images. CONCLUSIONS Hybrid IMRT/VMAT can be efficiently planned and delivered as a single beam sequence. Beyond 25% IMRT, the delivery time becomes unacceptably long, with increased risk of intrafraction motion, but 25% IMRT is an attractive compromise. Integrated portal images can be used to perform in vivo dosimetry for this technique.
Collapse
Affiliation(s)
- James L Bedford
- The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK.
| | - Gregory Smyth
- The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Ian M Hanson
- The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Alison C Tree
- The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - David P Dearnaley
- The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Vibeke N Hansen
- The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| |
Collapse
|
26
|
Kron T, Lehmann J, Greer PB. Dosimetry of ionising radiation in modern radiation oncology. Phys Med Biol 2016; 61:R167-205. [DOI: 10.1088/0031-9155/61/14/r167] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
27
|
Smith RL, Haworth A, Panettieri V, Millar JL, Franich RD. A method for verification of treatment delivery in HDR prostate brachytherapy using a flat panel detector for both imaging and source tracking. Med Phys 2016; 43:2435. [DOI: 10.1118/1.4946820] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
28
|
Chuter RW, Rixham PA, Weston SJ, Cosgrove VP. Feasibility of portal dosimetry for flattening filter-free radiotherapy. J Appl Clin Med Phys 2016; 17:112-120. [PMID: 26894337 PMCID: PMC5690198 DOI: 10.1120/jacmp.v17i1.5686] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 09/21/2015] [Accepted: 09/16/2015] [Indexed: 11/23/2022] Open
Abstract
The feasibility of using portal dosimetry (PD) to verify 6 MV flattening filter‐free (FFF) IMRT treatments was investigated. An Elekta Synergy linear accelerator with an Agility collimator capable of delivering FFF beams and a standard iViewGT amorphous silicon (aSi) EPID panel (RID 1640 AL5P) at a fixed SSD of 160 cm were used. Dose rates for FFF beams are up to four times higher than for conventional flattened beams, meaning images taken at maximum FFF dose rate can saturate the EPID. A dose rate of 800 MU/min was found not to saturate the EPID for open fields. This dose rate was subsequently used to characterize the EPID for FFF portal dosimetry. A range of open and phantom fields were measured with both an ion chamber and the EPID, to allow comparison between the two. The measured data were then used to create a model within The Nederlands Kanker Instituut's (NKI's) portal dosimetry software. The model was verified using simple square fields with a range of field sizes and phantom thicknesses. These were compared to calculations performed with the Monaco treatment planning system (TPS) and isocentric ion chamber measurements. It was found that the results for the FFF verification were similar to those for flattened beams with testing on square fields, indicating a difference in dose between the TPS and portal dosimetry of approximately 1%. Two FFF IMRT plans (prostate and lung SABR) were delivered to a homogeneous phantom and showed an overall dose difference at isocenter of ∼0.5% and good agreement between the TPS and PD dose distributions. The feasibility of using the NKI software without any modifications for high‐dose‐rate FFF beams and using a standard EPID detector has been investigated and some initial limitations highlighted. PACS number: 87.55.Qr
Collapse
|
29
|
Muren LP, Jornet N, Georg D, Garcia R, Thwaites DI. Improving radiotherapy through medical physics developments. Radiother Oncol 2015; 117:403-6. [DOI: 10.1016/j.radonc.2015.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 11/19/2015] [Indexed: 01/21/2023]
|
30
|
Woodruff HC, Fuangrod T, Van Uytven E, McCurdy BM, van Beek T, Bhatia S, Greer PB. First Experience With Real-Time EPID-Based Delivery Verification During IMRT and VMAT Sessions. Int J Radiat Oncol Biol Phys 2015; 93:516-22. [DOI: 10.1016/j.ijrobp.2015.07.2271] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 06/25/2015] [Accepted: 07/13/2015] [Indexed: 10/23/2022]
|
31
|
do Amaral LL, de Oliveira HF, Pavoni JF, Sampaio F, Ghillardi Netto T. A new transmission methodology for quality assurance in radiotherapy based on radiochromic film measurements. J Appl Clin Med Phys 2015; 16:1-12. [PMID: 26699306 PMCID: PMC5690170 DOI: 10.1120/jacmp.v16i5.5497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 05/06/2015] [Accepted: 04/29/2015] [Indexed: 11/23/2022] Open
Abstract
Despite individual quality assurance (QA) being recommended for complex techniques in radiotherapy (RT) treatment, the possibility of errors in dose delivery during therapeutic application has been verified. Therefore, it is fundamentally important to conduct in vivo QA during treatment. This work presents an in vivo transmission quality control methodology, using radiochromic film (RCF) coupled to the linear accelerator (linac) accessory holder. This QA methodology compares the dose distribution measured by the film in the linac accessory holder with the dose distribution expected by the treatment planning software. The calculated dose distribution is obtained in the coronal and central plane of a phantom with the same dimensions of the acrylic support used for positioning the film but in a source-to-detector distance (SDD) of 100 cm, as a result of transferring the IMRT plan in question with all the fields positioned with the gantry vertically, that is, perpendicular to the phantom. To validate this procedure, first of all a Monte Carlo simulation using PENELOPE code was done to evaluate the differences between the dose distributions measured by the film in a SDD of 56.8 cm and 100 cm. After that, several simple dose distribution tests were evaluated using the proposed methodology, and finally a study using IMRT treatments was done. In the Monte Carlo simulation, the mean percentage of points approved in the gamma function comparing the dose distribution acquired in the two SDDs were 99.92% ± 0.14%. In the simple dose distribution tests, the mean percentage of points approved in the gamma function were 99.85% ± 0.26% and the mean percentage differences in the normalization point doses were -1.41%. The transmission methodology was approved in 24 of 25 IMRT test irradiations. Based on these results, it can be concluded that the proposed methodology using RCFs can be applied for in vivo QA in RT treatments.
Collapse
|
32
|
Russo M, Piermattei A, Greco F, Azario L, Orlandini L, Zucca S, Cilla S, Menna S, Grusio M, Chiatti L, Fidanzio A. Step-and-Shoot IMRT by Siemens Beams: An EPID Dosimetry Verification During Treatment. Technol Cancer Res Treat 2015; 15:535-45. [PMID: 26134437 DOI: 10.1177/1533034615590962] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/15/2015] [Indexed: 11/15/2022] Open
Abstract
PURPOSE This work reports the extension of a semiempirical method based on the correlation ratios to convert electronic portal imaging devices transit signals into in vivo doses for the step-and-shoot intensity-modulated radiotherapy Siemens beams. The dose reconstructed at the isocenter point Diso, compared to the planned dose, Diso,TPS, and a γ-analysis between 2-dimensional electronic portal imaging device images obtained day to day, seems to supply a practical method to verify the beam delivery reproducibility. METHOD The electronic portal imaging device images were obtained by the superposition of many segment fields, and the algorithm for the Diso reconstruction for intensity-modulated radiotherapy step and shoot was formulated using a set of simulated intensity-modulated radiotherapy beams. Moreover, the in vivo dose-dedicated software was integrated with the record and verify system of the centers. RESULTS Three radiotherapy centers applied the in vivo dose procedure at 30 clinical intensity-modulated radiotherapy treatments, each one obtained with 5 or 7 beams, and planned for patients undergoing radiotherapy for prostatic tumors. Each treatment beam was checked 5 times, obtaining 900 tests of the ratios R = Diso/Diso,TPS. The average R value was equal to 1.002 ± 0.056 (2 standard deviation), while the mean R value for each patient was well within 5%, once the causes of errors were removed. The γ-analysis of the electronic portal imaging device images, with 3% 3 mm acceptance criteria, showed 90% of the tests with Pγ < 1 ≥ 95% and γmean ≤ 0.5. The off-tolerance tests were found due to incorrect setup or presence of morphological changes. This preliminary experience shows the great utility of obtaining the in vivo dose results in quasi real time and close to the linac, where the radiotherapy staff may immediately spot possible causes of errors. The in vivo dose procedure presented here is one of the objectives of a project, for the development of practical in vivo dose procedures, financially supported by the Istituto Nazionale di Fisica Nucleare.
Collapse
Affiliation(s)
- M Russo
- Istituto Nazionale di Fisica Nucleare, Sezione di Roma Tre, Roma, Italy Unità Operativa di Fisica Sanitaria, Ospedale Belcolle, Viterbo, Italy
| | - A Piermattei
- Istituto Nazionale di Fisica Nucleare, Sezione di Roma Tre, Roma, Italy Istituto di Fisica e Unità Operativa di Fisica Sanitaria, Università Cattolica del S. Cuore, Roma, Italy
| | - F Greco
- Istituto Nazionale di Fisica Nucleare, Sezione di Roma Tre, Roma, Italy Istituto di Fisica e Unità Operativa di Fisica Sanitaria, Università Cattolica del S. Cuore, Roma, Italy
| | - L Azario
- Istituto Nazionale di Fisica Nucleare, Sezione di Roma Tre, Roma, Italy Istituto di Fisica e Unità Operativa di Fisica Sanitaria, Università Cattolica del S. Cuore, Roma, Italy
| | - L Orlandini
- Unità Operativa di Fisica Medica, Centro Oncologico Fiorentino, Firenze, Italy
| | - S Zucca
- Istituto Nazionale di Fisica Nucleare, Sezione di Roma Tre, Roma, Italy Unità Operativa di Fisica Sanitaria, Presidio Oncologico Businco, Cagliari, Italy
| | - S Cilla
- Istituto Nazionale di Fisica Nucleare, Sezione di Roma Tre, Roma, Italy Unità Operativa di Fisica Sanitaria, Fondazione per la Ricerca e Cura "Giovanni Paolo II," Campobasso, Italy
| | - S Menna
- Istituto di Fisica e Unità Operativa di Fisica Sanitaria, Università Cattolica del S. Cuore, Roma, Italy
| | - M Grusio
- Istituto di Fisica e Unità Operativa di Fisica Sanitaria, Università Cattolica del S. Cuore, Roma, Italy
| | - L Chiatti
- Unità Operativa di Fisica Sanitaria, Ospedale Belcolle, Viterbo, Italy
| | - A Fidanzio
- Istituto Nazionale di Fisica Nucleare, Sezione di Roma Tre, Roma, Italy Istituto di Fisica e Unità Operativa di Fisica Sanitaria, Università Cattolica del S. Cuore, Roma, Italy
| |
Collapse
|
33
|
Meier G, Besson R, Nanz A, Safai S, Lomax AJ. Independent dose calculations for commissioning, quality assurance and dose reconstruction of PBS proton therapy. Phys Med Biol 2015; 60:2819-36. [DOI: 10.1088/0031-9155/60/7/2819] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
34
|
Hanson IM, Hansen VN, Olaciregui-Ruiz I, van Herk M. Clinical implementation and rapid commissioning of an EPID basedin-vivodosimetry system. Phys Med Biol 2014; 59:N171-9. [PMID: 25211121 DOI: 10.1088/0031-9155/59/19/n171] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
35
|
Ban L, Chin L, Wronski M, Weiser K, Turner A. Evaluating the Impact of In Vivo EPID Dosimetry on Intensity-Modulated Radiation Therapy Treatment Delivery Workflow: A Stakeholder Perspective. J Med Imaging Radiat Sci 2014; 45:253-259. [PMID: 31051976 DOI: 10.1016/j.jmir.2013.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/05/2013] [Accepted: 12/05/2013] [Indexed: 10/25/2022]
Abstract
INTRODUCTION In vivo electronic portal imaging device (EPID) dosimetry is an advanced imaging technique that can obtain patient-specific dose data for quality assurance purposes. However, clinical integration of this technique remains a challenge. This study evaluates the impact of implementing an in vivo EPID technique into the treatment delivery workflow for head and neck cancer (HNC) patients in a large cancer centre setting. MATERIALS/METHODS Intensity-modulated radiation therapy treatment delivery was simulated on a phantom for 10 HNC cases with and without in vivo EPID dosimetry. Investigators performed the EPID technique by using a preliminary protocol written by medical physicists. Process maps were created to illustrate changes in treatment delivery workflow. RESULTS Treatment delivery times increased by an average of 2.34 minutes (P = .0006) when the EPID technique was used. Factors that increased treatment times included the time for storing captured EPID data, adjustment of the imaging panel position as a function of field size, and an inability to use automatic field sequencing when acquiring images. CONCLUSIONS The involvement of stakeholders in protocol development allows for the identification of usability issues and staff training needs. Findings from this study have identified limitations of the in vivo EPID technique that may negatively impact treatment delivery workflow. Efficiencies within in vivo EPID dosimetry systems can be improved by enabling automatic field sequencing with automatic image-saving capabilities.
Collapse
Affiliation(s)
- Leann Ban
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Lee Chin
- Department of Medical Physics, Odette Cancer Centre, Toronto, Ontario, Canada
| | - Matt Wronski
- Department of Medical Physics, Odette Cancer Centre, Toronto, Ontario, Canada
| | - Karen Weiser
- Department of Administration, Odette Cancer Centre, Toronto, Ontario, Canada
| | - Angela Turner
- Department of Radiation Therapy, Odette Cancer Centre, Toronto, Ontario, Canada.
| |
Collapse
|
36
|
In vivo portal dosimetry for head-and-neck VMAT and lung IMRT: Linking γ-analysis with differences in dose–volume histograms of the PTV. Radiother Oncol 2014; 112:396-401. [DOI: 10.1016/j.radonc.2014.03.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 03/28/2014] [Accepted: 03/31/2014] [Indexed: 12/21/2022]
|
37
|
Cilla S, Azario L, Greco F, Fidanzio A, Porcelli A, Grusio M, Macchia G, Morganti A, Meluccio D, Piermattei A. An in-vivo dosimetry procedure for Elekta step and shoot IMRT. Phys Med 2014; 30:419-26. [DOI: 10.1016/j.ejmp.2013.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 11/22/2013] [Accepted: 11/23/2013] [Indexed: 10/25/2022] Open
|
38
|
Transit dosimetry in dynamic IMRT with an a-Si EPID. Med Biol Eng Comput 2014; 52:579-88. [PMID: 24878699 DOI: 10.1007/s11517-014-1161-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 05/19/2014] [Indexed: 10/25/2022]
Abstract
Using an amorphous silicon (a-Si) EPID for transit dosimetry requires detailed characterization of its dosimetric response in a variety of conditions. In this study, a measurement-based model was developed to calibrate an a-Si EPID response to dose for transit dosimetry by comparison with a reference ionization chamber. The ionization chamber reference depth and the required additional buildup thickness for electronic portal imaging devices (EPID) transit dosimetry were determined. The combined effects of changes in radiation field size, phantom thickness, and the off-axis distance on EPID transit dosimetry were characterized. The effect of scattered radiation on out-of-field response was investigated for different field sizes and phantom thicknesses by evaluation of the differences in image profiles and in-water measured profiles. An algorithm was developed to automatically apply these corrections to EPID images based on the user-specified field size and phantom thickness. The average phantom thickness and an effective field size were used for IMRT fields, and images were acquired in cine mode in the presence of an anthropomorphic phantom. The effective field size was defined as the percentage of the jaw-defined field that was involved during the delivery. Nine head and neck dynamic IMRT fields were tested by comparison with a MatriXX two-dimensional array dosimeter using the Gamma (3%, 3 mm) evaluation. A depth of 1.5 cm was selected as the ionization chamber reference depth. An additional 2.2 mm of copper buildup was added to the EPID. Comparison of EPID and MatriXX dose images for the tested fields showed that using a 10% threshold, the average number of points with Gamma index <1 was 96.5%. The agreement in the out-of field area was shown by selection of a 2% threshold which on average resulted in 94.8% of points with a Gamma index <1. The suggested method is less complicated than previously reported techniques and can be used for all a-Si EPIDs regardless of the manufacturer.
Collapse
|
39
|
Arumugam S, Xing A, Pagulayan C, Holloway L. A comprehensive tool to analyse dynamic log files from an Elekta-Synergy accelerator. ACTA ACUST UNITED AC 2014. [DOI: 10.1088/1742-6596/489/1/012068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
40
|
Bedford JL, Hanson IM, Hansen VN. Portal dosimetry for VMAT using integrated images obtained during treatment. Med Phys 2014; 41:021725. [DOI: 10.1118/1.4862515] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
41
|
Berry SL, Polvorosa C, Cheng S, Deutsch I, Chao KSC, Wuu CS. Initial Clinical Experience Performing Patient Treatment Verification With an Electronic Portal Imaging Device Transit Dosimeter. Int J Radiat Oncol Biol Phys 2014; 88:204-9. [DOI: 10.1016/j.ijrobp.2013.09.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/05/2013] [Accepted: 09/26/2013] [Indexed: 10/26/2022]
|
42
|
Olaciregui-Ruiz I, Rozendaal R, Mijnheer B, van Herk M, Mans A. Automaticin vivoportal dosimetry of all treatments. Phys Med Biol 2013; 58:8253-64. [DOI: 10.1088/0031-9155/58/22/8253] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
43
|
Smith RL, Taylor ML, McDermott LN, Haworth A, Millar JL, Franich RD. Source position verification and dosimetry in HDR brachytherapy using an EPID. Med Phys 2013; 40:111706. [DOI: 10.1118/1.4823758] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
44
|
Ali AS, Dirkx MLP, Cools RM, Heijmen BJM. Accurate IMRT fluence verification for prostate cancer patients using 'in-vivo' measured EPID images and in-room acquired kilovoltage cone-beam CT scans. Radiat Oncol 2013; 8:211. [PMID: 24020393 PMCID: PMC3851603 DOI: 10.1186/1748-717x-8-211] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 09/03/2013] [Indexed: 11/30/2022] Open
Abstract
Background To investigate for prostate cancer patients the comparison of ‘in-vivo’ measured portal dose images (PDIs) with predictions based on a kilovoltage cone-beam CT scan (CBCT), acquired during the same treatment fraction, as an alternative for pre-treatment verification. For evaluation purposes, predictions were also performed using the patients’ planning CTs (pCT). Methods To get reliable CBCT electron densities for PDI predictions, Hounsfield units from the pCT were mapped onto the CBCT, while accounting for non-rigidity in patient anatomy in an approximate way. PDI prediction accuracy was first validated for an anatomical phantom, using IMRT treatment plans of ten prostate cancer patients. Clinical performance was studied using data acquired for 50 prostate cancer patients. For each patient, 4–5 CBCTs were available, resulting in a total of 1413 evaluated images. Measured and predicted PDIs were compared using γ-analyses with 3% global dose difference and 3 mm distance to agreement as reference criteria. Moreover, the pass rate for automated PDI comparison was assessed. To quantify improvements in IMRT fluence verification accuracy results from multiple fractions were combined by generating a γ-image with values halfway the minimum and median γ values, pixel by pixel. Results For patients, CBCT-based PDI predictions showed a high agreement with measurements, with an average percentage of rejected pixels of 1.41% only. In spite of possible intra-fraction motion and anatomy changes, this was only slightly larger than for phantom measurements (0.86%). For pCT-based predictions, the agreement deteriorated (average percentage of rejected pixels 2.98%), due to an enhanced impact of anatomy variations. For predictions based on CBCT, combination of the first 2 fractions yielded gamma results in close agreement with pre-treatment analyses (average percentage of rejected pixels 0.63% versus 0.35%, percentage of rejected beams 0.6% versus 0%). For the pCT-based approach, only combination of the first 5 fractions resulted in acceptable agreement with pre-treatment results. Conclusion In-room acquired CBCT scans can be used for high accuracy IMRT fluence verification based on in-vivo measured EPID images. Combination of γ results for the first 2 fractions can largely compensate for small accuracy reductions, with respect to pre-treatment verification, related to intra-fraction motion and anatomy changes.
Collapse
Affiliation(s)
- Ali Sam Ali
- Department of Radiation Oncology, Erasmus MC-Daniel den Hoed Cancer Center, Groene Hilledijk 301, 3075 EA, Rotterdam, The Netherlands.
| | | | | | | |
Collapse
|
45
|
Fuangrod T, Woodruff HC, van Uytven E, McCurdy BMC, Kuncic Z, O'Connor DJ, Greer PB. A system for EPID-based real-time treatment delivery verification during dynamic IMRT treatment. Med Phys 2013; 40:091907. [DOI: 10.1118/1.4817484] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
46
|
Woodruff HC, Greer PB. 3D Dose reconstruction: Banding artefacts in cine mode EPID images during VMAT delivery. ACTA ACUST UNITED AC 2013. [DOI: 10.1088/1742-6596/444/1/012042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
47
|
Jin GH, Zhu JH, Chen LX, Deng XW, Huang BT, Yuan K, Liu XW. Gantry angle-dependent correction of dose detection error due to panel position displacement in IMRT dose verification using EPIDs. Phys Med 2013; 30:209-14. [PMID: 23786885 DOI: 10.1016/j.ejmp.2013.05.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/24/2013] [Accepted: 05/27/2013] [Indexed: 10/26/2022] Open
Abstract
PURPOSE The purpose of this study was to measure the mechanical position displacement of three types of electronic portal image device (EPID) panels at different gantry angles and evaluate the impact of positional displacement on intensity modulated radiation therapy (IMRT) dose verification using an EPID. METHODS Three types of linear accelerators and EPIDs (aS500, aS1000 and iViewGT) were used. The portal images were taken every 10° within 360° range. The position coordinate difference between the panel center and the portal film center at different gantry angles was measured, then the mechanical position displacement of EPIDs dependent on the gantry angles was analyzed. For the three linear accelerators and EPIDs, five IMRT plans were measured using EPIDs at 0° gantry angel and at the actual treatment angles. The Gamma technique was used to evaluate the resulted dose difference before and after the corrections of the position displacement by a in-house software. RESULTS For aS500, aS1000 and iViewGT, the maximum mechanical position displacement was 2.9 ± 0.1 mm, 0.2 ± 0.1 mm and 0.1 ± 0.3 mm in the lateral direction and -4.2 ± 0.2 mm, -4.2 ± 0.1 mm and -2.2 ± 0.1 mm in the longitudinal direction, respectively. The position displacement in the longitudinal direction of the three EPIDs can be fitted well with a function. For aS500, aS1000 and iViewGT, the 3%/3 mm gamma pass rates were increased by 6.7%, 2.9% and 0.1% after displacement corrections; and while the 2%/2 mm gamma pass rates were increased by 11.2%, 8.1% and 1.6%. After the displacement correction, there was a slight gamma pass rate difference between the fixed zero degree gantry and the actual treatment angles. CONCLUSION When the EPIDs were used for IMRT dose verification, there was occasionally large EPID mechanical position displacement, which should be corrected.
Collapse
Affiliation(s)
- Guang-hua Jin
- School of Physics and Engineering of SUN Yat-sen University, Guangzhou 510060, China; Department of Radiation Oncology, SUN Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Guangzhou 510060, China
| | - Jin-han Zhu
- School of Physics and Engineering of SUN Yat-sen University, Guangzhou 510060, China; Department of Radiation Oncology, SUN Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Guangzhou 510060, China
| | - Li-xin Chen
- Department of Radiation Oncology, SUN Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Guangzhou 510060, China
| | - Xiao-wu Deng
- Department of Radiation Oncology, SUN Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Guangzhou 510060, China
| | - Bo-tian Huang
- Department of Radiation Oncology, SUN Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Guangzhou 510060, China
| | - Ke Yuan
- Department of Radiation Oncology, SUN Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Guangzhou 510060, China
| | - Xiao-wei Liu
- School of Physics and Engineering of SUN Yat-sen University, Guangzhou 510060, China.
| |
Collapse
|
48
|
Chytyk-Praznik K, VanUytven E, vanBeek TA, Greer PB, McCurdy BMC. Model-based prediction of portal dose images during patient treatment. Med Phys 2013; 40:031713. [DOI: 10.1118/1.4792203] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
49
|
Rowshanfarzad P, Sabet M, O'Connor DJ, Greer PB. Impact of backscattered radiation from the bunker structure on EPID dosimetry. J Appl Clin Med Phys 2012; 13:4024. [PMID: 23149798 PMCID: PMC5718534 DOI: 10.1120/jacmp.v13i6.4024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 07/18/2012] [Accepted: 07/20/2012] [Indexed: 11/23/2022] Open
Abstract
Amorphous silicon electronic portal imaging devices (EPIDs) have been investigated and used for dosimetry in radiotherapy for several years. The presence of a phosphor scintillator layer in the structure of these EPIDs has made them sensitive to low-energy scattered and backscattered radiation. In this study, the backscattered radiation from the walls, ceiling, and floor of a linac bunker has been investigated as a possible source of inaccuracy in EPID dosimetry. EPID images acquired in integrated mode at discrete gantry angles and cine images taken during arcs were used with different field setups (18 × 18 and 10 × 10 cm2 open square fields at 150 and 105 cm source-to-detector distances) to compare the EPID response at different gantry angles. A sliding gap and a dynamic head-and-neck IMRT field and a square field with a 15 cm thick cylindrical phantom in the beam were also investigated using integrated EPID images at several gantry angles. The contribution of linac output variations at different angles was evaluated using a 2D array of ion chambers. In addition, a portable brick wall was moved to different distances from the EPID to check the effect at a single angle. The results showed an agreement of within 0.1% between the arc mode and gantry-static mode measurements, and the variation of EPID response during gantry rotation was about 1% in all measurement conditions.
Collapse
Affiliation(s)
- Pejman Rowshanfarzad
- School of Mathematical and Physical Sciences, University of Newcastle, Newcastle, NSW 2308, Australia.
| | | | | | | |
Collapse
|
50
|
Warkentin B, Rathee S, Steciw S. 2D lag and signal nonlinearity correction in an amorphous silicon EPID and their impact on pretreatment dosimetric verification. Med Phys 2012; 39:6597-608. [PMID: 23127054 DOI: 10.1118/1.4757582] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
PURPOSE This investigation provides measurements of signal lag and nonlinearity separately for the Varian aS500 electronic portal imaging device (EPID), and an algorithm to correct for these effects in 2D; their potential impact on intensity modulated radiation therapy (IMRT) verification is also investigated. The authors quantify lag, as a function of both delivered monitor units (MU) and time, by using a range of MUs delivered at a clinically used rate of 400 MU∕min. Explicit cumulative lag curves are thus determined for a range of MUs and times between the end of irradiation and the end of image acquisition. Signal nonlinearity is also investigated as a function of total MUs delivered. The family of cumulative lag curves and signal nonlinearity are then used to determine their effects on dynamic multileaf collimator (MLC) (IMRT) deliveries, and to correct for theses effects in 2D. METHODS Images acquired with an aS500 EPID and Varis Portal-Vision software were used to quantify detector lag and signal-nonlinearity. For the signal lag investigation, Portal-Vision's service monitor was used to acquire EPID images at a rate of 8 frames/s. The images were acquired during irradiation and 66 s thereafter, by inhibiting the M-holdoff-In signal of the Linac for a range of 4.5-198.5 MUs. Relative cumulative lag was calculated by integrating the EPID signal for a time after beam-off, and normalizing this to the integrated EPID signal accumulated during radiation. Signal nonlinearity was studied by acquiring 10 × 10 cm(2) open-field EPID images in "integrated image" mode for a range of 2-500 MUs, and normalized to the 100 MU case. All data were incorporated into in-house written software to create a 2D correction map for these effects, using the field's MLC file and a field-specific calculated 2D "time-map," which keeps track of the time elapsed from the last fluence delivered at each given point in the image to the end of the beam delivery. RESULTS Relative cumulative lag curves reveal that the lag alone can deviate the EPID's perceived dose by as large as 6% (1 MU delivery, 60 s postirradiation). For signal nonlinearity relative to 100 MU, EPID signals per MU of 0.84 and 1.01 were observed for 2 and 500 MUs, respectively. Correction maps were applied to a 1 cm sweeping-window 14 × 14 cm(2) field and clinical head-and-neck IMRT field. A mean correction of 1.028 was implemented in the head-and-neck field, which significantly reduced lag-related asymmetries in the EPID images, and restored linearity to the EPID imager's dose response. Corrections made to the sweeping-field showed good agreement with the treatment planning system-predicted field, yielding an average percent difference of 0.05% ± 0.91%, compared to the -1.32% ± 1.02% before corrections, or 1.75% ± 1.04% when only a signal nonlinearity correction is made. CONCLUSIONS Lag and signal-nonlinearity have been quantified for an aS500 EPID imager, and an effective 2D correction method has been developed which effectively removes nonlinearity and lag effects. Both of these effects were shown to negatively impact IMRT verifications. Especially fields that involve prolonged irradiation and small overall MUs should be corrected for in 2D.
Collapse
Affiliation(s)
- B Warkentin
- Department of Medical Physics, Cross Cancer Institute, Alberta T6G 1Z2, Canada
| | | | | |
Collapse
|