1
|
Sakellis CG, Jacene HA. Imaging for Radiation Planning in Breast Cancer. Semin Nucl Med 2022; 52:542-550. [PMID: 35523601 DOI: 10.1053/j.semnuclmed.2022.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 03/27/2022] [Indexed: 01/31/2023]
Abstract
Radiation therapy is an integral component of the treatment of breast cancer. The indications and type of radiation therapy vary depending on disease invasiveness and stage. Imaging is the cornerstone for radiation therapy planning. While conventional imaging with CT remains the primary modality for radiation treatment planning locally in the breast, molecular imaging with [18F]FDG-PET/CT identifies additional occult disease that may help alter the local radiation therapy plan or treat oligometastatic disease. The ultimate effects on long-term outcomes remain to be determined. This article reviews the role of imaging in radiation planning for breast cancer.
Collapse
Affiliation(s)
- Christopher G Sakellis
- Department of Imaging, Dana-Farber Cancer Institute, Boston, MA; Department of Radiology, Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Heather A Jacene
- Department of Imaging, Dana-Farber Cancer Institute, Boston, MA; Department of Radiology, Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA.
| |
Collapse
|
2
|
Beddok A, Kirova Y, Laki F, Reyal F, Vincent Salomon A, Servois V, Fourquet A. The place of the boost in the breast cancer treatment: State of art. Radiother Oncol 2022; 170:55-63. [DOI: 10.1016/j.radonc.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/01/2022] [Accepted: 03/14/2022] [Indexed: 10/18/2022]
|
3
|
Zhao C, Li J, Wang W, Gong G, Xu L, Zhang Y, Li F, Shao Q, Wang J, Liu X, Xu M. DE-MR simulation imaging for prone radiotherapy after breast-conserving surgery: assessing its application in lumpectomy cavity delineation based on deformable image registration. Radiat Oncol 2021; 16:91. [PMID: 34001182 PMCID: PMC8130288 DOI: 10.1186/s13014-021-01817-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/05/2021] [Indexed: 11/10/2022] Open
Abstract
Background The application of delayed-enhancement magnetic resonance (DE-MR) simulation imaging in lumpectomy cavity (LC) delineation for prone radiotherapy in patients with an invisible seroma or a low seroma clarity score (SCS) after breast-conserving surgery (BCS) based on deformable image registration (DIR) was assessed. Methods Twenty-six patients who were suitable for radiotherapy in prone positions after BCS were enrolled, and both computed tomography (CT) and DE-MR simulation scans were acquired. The LC delineated based on titanium surgical clips on CT images was denoted as LCCT. The LC delineated based on the signal of cavity boundaries on fat-suppressed T2-weighted imaging (T2WI) and multiphase delayed-enhancement T1-weighted imaging (DE-T1WI), which was performed at 2 min, 5 min and 10 min postinjection, were denoted as LCT2, LC2T1, LC5T1 and LC10T1, respectively. Afterwards, DIR was performed to compare the volumes and locations of the LCs with MIM software. The generalized conformity index (CIgen) of inter (intra) observer (Inter-CIgen and Intra-CIgen) was also used to explore the inter(intra) observer variation for LC delineation on each image modality. Results LCCT–LC10T1 provided the best conformal index (CI) and degree of inclusion (DI), increasing by 2.08% and 4.48% compared to LCCT–LCT2, 11.36% and 2.94% for LCCT–LC2T1, and 8.89% and 7.69% for LC5T1–LCCT, respectively. The center of mass (COM) of LCCT–LC10T1 decreased by 17.86%, 6.12% and 13.21% compared with that of LCCT–LCT2, LCCT–LC2T1 and LCCT–LC5T1, respectively. The agreement of LC delineation was strongest for 10th min DE-TIWI (coefficient of variation, COV = 2.30%, Inter-CIgen = 87.06%, Intra-CIgen = 92.64%). Conclusion For patients with a low SCS (SCS ≤ 2) after BCS, it is feasible to contour the LC based on prone DE-MR simulation images. Furthermore, the LC derived from prone DE-T1WI at 10 min was found to be most similar to that derived from prone CT simulation scans using titanium surgical clips regardless of the volume and location of the LC. Inter (intra) variability was minimal for the delineation of the LC based on 10th min DE-TIWI.
Collapse
Affiliation(s)
- Changhui Zhao
- School of Medicine, Shandong University, Jinan, 250012, Shandong Province, China
| | - Jianbin Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong Province, China.
| | - Wei Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong Province, China.
| | - Guanzhong Gong
- Department of Medical Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Liang Xu
- Department of Medical Imagings, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Yingjie Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong Province, China
| | - Fengxiang Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong Province, China
| | - Qian Shao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong Province, China
| | - Jinzhi Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong Province, China
| | - Xijun Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong Province, China
| | - Min Xu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong Province, China
| |
Collapse
|
4
|
Effective of Pre-operative 2-Deoxy-2-[fluorine-18] fluoro-d-glucose/Positron Emission Tomography/Computed Tomography in the Determination of Boost Volume in Adjuvant Radiotherapy after Breast-conserving Surgery. MEDICAL BULLETIN OF SISLI ETFAL HOSPITAL 2021; 55:81-85. [PMID: 33935540 PMCID: PMC8085456 DOI: 10.14744/semb.2020.25986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/02/2020] [Indexed: 11/21/2022]
Abstract
Objectives: Determining boost volume (BV) during breast radiotherapy can be challenging at times. Therefore, surgical clips are now being widely used. At times, when surgical clips are inadequate in determining the BV, other additional imaging methods are required. In the present study, we aimed to demonstrate that pre-operative positron emission tomography/computed tomography (PET-CT) can be used to determine the BV after a breast-conversing surgery. Methods: We selected thirty patients who underwent breast-conserving surgery with surgical clips and had preoperative Fluorine-18-Fluorodeoxyglucose PET (18 FDG PET/CT). The BV in planning tomography (CT) and primary tumor volume (TV) in pre-operative F-18 FDG PET/CT was contoured by a radiation oncologist. These two volumes were superposed using rigid image fusion. In every patient, two BVs were measured. The mean shift between the two volumes by the calculation of the center of mass and percentage of the PET-CT TV (PET-CT TV) in planning the BV (planning target volume [PTV]-BV) was calculated. Results: The median age was 52 years (range 25–72 years). The pre-operative PET-CT TV median was 8.89 cm3 (range 1.00–64.30 cm3). The median PTV-BV was 62.92 cm3 (12.57–123.07 cm3). The median shifts between the center of volumes were 1.76 cm (range 0.90–3.50) in X(coronal), 1.73 cm (range 0.60–3.60) in the Y(axial), and 1.20 cm (0.40–2.80) in the Z(sagittal) directions, respectively. The shifts in these three planes were determined to be statistically significant (p<0.001). The percent volume of PET-CT TV included PTV TV, ranging from 35% to 100% (mean 54%, standard deviation 29.53) and 100% in two out of 31 patients. Conclusion: Our study has shown that pre-operative PET-CT cannot be used to determine the BV in patients who replaced surgical clips and had undergone breast-conserving surgery. To define a more accurate BV, surgical clips should be placed in four planes, and more PTV margins should be given in treatment planning.
Collapse
|
5
|
Das SK, McGurk R, Miften M, Mutic S, Bowsher J, Bayouth J, Erdi Y, Mawlawi O, Boellaard R, Bowen SR, Xing L, Bradley J, Schoder H, Yin FF, Sullivan DC, Kinahan P. Task Group 174 Report: Utilization of [ 18 F]Fluorodeoxyglucose Positron Emission Tomography ([ 18 F]FDG-PET) in Radiation Therapy. Med Phys 2019; 46:e706-e725. [PMID: 31230358 DOI: 10.1002/mp.13676] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 04/30/2019] [Accepted: 06/06/2019] [Indexed: 02/03/2023] Open
Abstract
The use of positron emission tomography (PET) in radiation therapy (RT) is rapidly increasing in the areas of staging, segmentation, treatment planning, and response assessment. The most common radiotracer is 18 F-fluorodeoxyglucose ([18 F]FDG), a glucose analog with demonstrated efficacy in cancer diagnosis and staging. However, diagnosis and RT planning are different endeavors with unique requirements, and very little literature is available for guiding physicists and clinicians in the utilization of [18 F]FDG-PET in RT. The two goals of this report are to educate and provide recommendations. The report provides background and education on current PET imaging systems, PET tracers, intensity quantification, and current utilization in RT (staging, segmentation, image registration, treatment planning, and therapy response assessment). Recommendations are provided on acceptance testing, annual and monthly quality assurance, scanning protocols to ensure consistency between interpatient scans and intrapatient longitudinal scans, reporting of patient and scan parameters in literature, requirements for incorporation of [18 F]FDG-PET in treatment planning systems, and image registration. The recommendations provided here are minimum requirements and are not meant to cover all aspects of the use of [18 F]FDG-PET for RT.
Collapse
Affiliation(s)
- Shiva K Das
- Department of Radiation Oncology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Ross McGurk
- Department of Radiation Oncology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Moyed Miften
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Sasa Mutic
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - James Bowsher
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - John Bayouth
- Human Oncology, University of Wisconsin, Madison, WI, USA
| | - Yusuf Erdi
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Osama Mawlawi
- Department of Imaging Physics, University of Texas, M D Anderson Cancer Center, Houston, TX, USA
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Stephen R Bowen
- Department of Radiation Oncology, University of Washington, Seattle, WA, USA
| | - Lei Xing
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jeffrey Bradley
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Heiko Schoder
- Molecular Imaging and Therapy Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Fang-Fang Yin
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Daniel C Sullivan
- Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Paul Kinahan
- Department of Radiology, University of Washington, Seattle, WA, USA
| |
Collapse
|
6
|
Wang W, Li J, Xing J, Xu M, Shao Q, Fan T, Guo B, Liu S. Analysis of the variability among radiation oncologists in delineation of the postsurgical tumor bed based on 4D-CT. Oncotarget 2018; 7:70516-70523. [PMID: 27655639 PMCID: PMC5342570 DOI: 10.18632/oncotarget.12044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 08/24/2016] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE This study investigated interobserver and intraobserver variability in radiation oncologists' definition of the tumor bed (TB) after breast-conserving surgery (BCS). RESULTS The TB volume, CVS and number of surgical clips were not significantly related to intraobserver variability. Moreover, no correlation was noted between CT slice thickness and interobserver variability (Δinter, DSCinter) in TB delineation, and no significant difference was noted among the three groups. The TB volume was negatively correlated with Δinter. DSCinter improved significantly with increased TB volume and decreased Δinter. DSCinter also increased significantly in patients with a CVS of 3 to 5 compared with patients with a CVS of 1 to 2. DSCinter was thus positively correlated with the CVS, with a correlation coefficient of 0.451. The use of 7 to 9 surgical clips neither decreased Δinter nor increased DSCinter. MATERIALS AND METHODS Five or more surgical clips were placed at the TB during lumpectomy. The TB was delineated on the end expiration scan. The data were stratified based on the cavity visualization score (CVS), CT slice thickness and surgical clip number. The Dice similarity coefficient (DSC) and inter(intra)observer variability (Δinter and Δintra) in different groups were evaluated and compared. CONCLUSIONS Inter(intra)observer variability in TB delineation was decreased for breast cancer patients implanted with 5 or more surgical clips in the cohort with a higher CVS and a larger TB. The use of more than 6 surgical clips did not significantly improve TB delineation, so 5 to 6 surgical clips are likely adequate to delineate the TB.
Collapse
Affiliation(s)
- Wei Wang
- Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong province, China, 250117
| | - Jianbin Li
- Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong province, China, 250117
| | - Jun Xing
- Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong province, China, 250117
| | - Min Xu
- Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong province, China, 250117
| | - Qian Shao
- Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong province, China, 250117
| | - Tingyong Fan
- Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong province, China, 250117
| | - Bing Guo
- Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong province, China, 250117
| | - Shanshan Liu
- Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong province, China, 250117
| |
Collapse
|
7
|
Tabouret-Viaud C, Botsikas D, Delattre BMA, Mainta I, Amzalag G, Rager O, Vinh-Hung V, Miralbell R, Ratib O. PET/MR in Breast Cancer. Semin Nucl Med 2016; 45:304-21. [PMID: 26050658 DOI: 10.1053/j.semnuclmed.2015.03.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Breast cancer is an international public health concern in which an optimal treatment plan requires a precise staging. Both MRI and PET imaging techniques have made significant progress in the last decades with constant improvements that made both modalities clinically relevant in several stages of breast cancer management and follow-up. On one hand, specific breast MRI permits high diagnostic accuracy for local tumor staging, and whole-body MRI can also be of great use in distant staging, eventually accompanied by organ-specific MRI sequences. Moreover, many different MRI sequences can be performed, including functional MRI, letting us foresee important improvements in breast cancer characterization in the future. On the contrary, (18)F-FDG-PET has a high diagnostic performance for the detection of distant metastases, and several other tracers currently under development may profoundly affect breast cancer management in the future with better determination of different types of breast cancers allowing personalized treatments. As a consequence PET/MR is a promising emerging technology, and it is foreseeable that in cases where both PET and MRI data are needed, a hybrid acquisition is justified when available. However, at this stage of deployment of such hybrid scanners in a clinical setting, more data are needed to demonstrate their added value beyond just patient comfort of having to undergo a single examination instead of two, and the higher confidence of diagnostic interpretation of these co-registered images. Optimized imaging protocols are still being developed and are prone to provide more efficient hybrid protocols with a potential improvement in diagnostic accuracy. More convincing studies with larger number of patients as well as cost-effectiveness studies are needed. This article provides insights into the current state-of-the-art of PET/MR in patients with breast cancer and gives an outlook on future developments of both imaging techniques and potential applications in the future.
Collapse
Affiliation(s)
- Claire Tabouret-Viaud
- Service de Médecine Nucléaire, Hôpitaux Universitaires de Genève, rue Gabrielle-Perret-Gentil, Genève, Switzerland
| | - Diomidis Botsikas
- Service de Radiologie, Hôpitaux Universitaires de Genève, rue Gabrielle-Perret-Gentil, Genève, Switzerland
| | - Bénédicte M A Delattre
- Service de Radiologie, Hôpitaux Universitaires de Genève, rue Gabrielle-Perret-Gentil, Genève, Switzerland
| | - Ismini Mainta
- Service de Médecine Nucléaire, Hôpitaux Universitaires de Genève, rue Gabrielle-Perret-Gentil, Genève, Switzerland
| | - Gaël Amzalag
- Service de Médecine Nucléaire, Hôpitaux Universitaires de Genève, rue Gabrielle-Perret-Gentil, Genève, Switzerland
| | - Olivier Rager
- Service de Médecine Nucléaire, Hôpitaux Universitaires de Genève, rue Gabrielle-Perret-Gentil, Genève, Switzerland
| | - Vincent Vinh-Hung
- Service de Radio-Oncologie, Hôpitaux Universitaires de Genève, rue Gabrielle-Perret-Gentil, Genève, Switzerland
| | - Raymond Miralbell
- Service de Radio-Oncologie, Hôpitaux Universitaires de Genève, rue Gabrielle-Perret-Gentil, Genève, Switzerland; Servei de Radio-Oncologia, Instituto Oncológico Teknon, Barcelona, Spain
| | - Osman Ratib
- Service de Médecine Nucléaire, Hôpitaux Universitaires de Genève, rue Gabrielle-Perret-Gentil, Genève, Switzerland.
| |
Collapse
|
8
|
Interobserver variations of target volume delineation in multicatheter partial breast brachytherapy after open cavity surgery. Brachytherapy 2015. [DOI: 10.1016/j.brachy.2015.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Yang TJ, Tao R, Elkhuizen PHM, van Vliet-Vroegindeweij C, Li G, Powell SN. Tumor bed delineation for external beam accelerated partial breast irradiation: a systematic review. Radiother Oncol 2013; 108:181-9. [PMID: 23806188 DOI: 10.1016/j.radonc.2013.05.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 05/12/2013] [Accepted: 05/12/2013] [Indexed: 11/15/2022]
Abstract
In recent years, accelerated partial breast irradiation (APBI) has been considered an alternative to whole breast irradiation for patients undergoing breast-conserving therapy. APBI delivers higher doses of radiation in fewer fractions to the post-lumpectomy tumor bed with a 1-2 cm margin, targeting the area at the highest risk of local recurrence while sparing normal breast tissue. However, there are inherent challenges in defining accurate target volumes for APBI. Studies have shown that significant interobserver variation exists among radiation oncologists defining the lumpectomy cavity, which raises the question of how to improve the accuracy and consistency in the delineation of tumor bed volumes. The combination of standardized guidelines and surgical clips significantly improves an observer's ability in delineation, and it is the standard in multiple ongoing external-beam APBI trials. However, questions about the accuracy of the clips to mark the lumpectomy cavity remain, as clips only define a few points at the margin of the cavity. This paper reviews the techniques that have been developed so far to improve target delineation in APBI delivered by conformal external beam radiation therapy, including the use of standardized guidelines, surgical clips or fiducial markers, pre-operative computed tomography imaging, and additional imaging modalities, including magnetic resonance imaging, ultrasound imaging, and positron emission tomography/computed tomography. Alternatives to post-operative APBI, future directions, and clinical recommendations were also discussed.
Collapse
MESH Headings
- Adult
- Aged
- Breast Neoplasms/mortality
- Breast Neoplasms/pathology
- Breast Neoplasms/radiotherapy
- Breast Neoplasms/surgery
- Dose Fractionation, Radiation
- Dose-Response Relationship, Radiation
- Female
- Humans
- Magnetic Resonance Imaging/methods
- Mastectomy, Segmental/methods
- Middle Aged
- Neoplasm Recurrence, Local/mortality
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/therapy
- Neoplasm, Residual/pathology
- Neoplasm, Residual/radiotherapy
- Positron-Emission Tomography/methods
- Postoperative Care/methods
- Radiotherapy Dosage
- Radiotherapy, Adjuvant
- Radiotherapy, Conformal/methods
- Radiotherapy, Intensity-Modulated/methods
- Risk Assessment
- Survival Analysis
- Tomography, X-Ray Computed
- Treatment Outcome
Collapse
Affiliation(s)
- T Jonathan Yang
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, United States
| | | | | | | | | | | |
Collapse
|
10
|
Oncological Applications of Positron Emission Tomography for Evaluation of the Thorax. J Thorac Imaging 2013; 28:11-24. [DOI: 10.1097/rti.0b013e318279449b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
11
|
Zhu A, Marcus DM, Shu HKG, Shim H. Application of metabolic PET imaging in radiation oncology. Radiat Res 2012; 177:436-48. [PMID: 22339451 DOI: 10.1667/rr2702.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Positron emission tomography (PET) is a noninvasive imaging technique that provides functional or metabolic assessment of normal tissue or disease conditions and is playing an increasing role in cancer radiotherapy planning. (18)F-Fluorodeoxyglucose PET imaging (FDG-PET) is widely used in the clinic for tumor imaging due to increased glucose metabolism in most types of tumors; its role in radiotherapy management of various cancers is reviewed. In addition, other metabolic PET imaging agents at various stages of preclinical and clinical development are reviewed. These agents include radiolabeled amino acids such as methionine for detecting increased protein synthesis, radiolabeled choline for detecting increased membrane lipid synthesis, and radiolabeled acetate for detecting increased cytoplasmic lipid synthesis. The amino acid analogs choline and acetate are often more specific to tumor cells than FDG, so they may play an important role in differentiating cancers from benign conditions and in the diagnosis of cancers with either low FDG uptake or high background FDG uptake. PET imaging with FDG and other metabolic PET imaging agents is playing an increasing role in complementary radiotherapy planning.
Collapse
Affiliation(s)
- Aizhi Zhu
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | | | |
Collapse
|
12
|
Human-computer interaction in radiotherapy target volume delineation: a prospective, multi-institutional comparison of user input devices. J Digit Imaging 2012; 24:794-803. [PMID: 20978922 DOI: 10.1007/s10278-010-9341-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The purpose of this study was the prospective comparison of objective and subjective effects of target volume region of interest (ROI) delineation using mouse-keyboard and pen-tablet user input devices (UIDs). The study was designed as a prospective test/retest sequence, with Wilcoxon signed rank test for matched-pair comparison. Twenty-one physician-observers contoured target volume ROIs on four standardized cases (representative of brain, prostate, lung, and head and neck malignancies) twice: once using QWERTY keyboard/scroll-wheel mouse UID and once with pen-tablet UID (DTX2100, Wacom Technology Corporation, Vancouver, WA, USA). Active task time, ROI manipulation task data, and subjective survey data were collected. One hundred twenty-nine target volume ROI sets were collected, with 62 paired pen-tablet/mouse-keyboard sessions. Active contouring time was reduced using the pen-tablet UID, with mean ± SD active contouring time of 26 ± 23 min, compared with 32 ± 25 with the mouse (p ≤ 0.01). Subjective estimation of time spent was also reduced from 31 ± 26 with mouse to 27 ± 22 min with the pen (p = 0.02). Task analysis showed ROI correction task reduction (p = 0.045) and decreased panning and scrolling tasks (p < 0.01) with the pen-tablet; drawing, window/level changes, and zoom commands were unchanged (p = n.s.) Volumetric analysis demonstrated no detectable differences in ROI volume nor intra- or inter-observer volumetric coverage. Fifty-two of 62 (84%) users preferred the tablet for each contouring task; 5 of 62 (8%) denoted no preference, and 5 of 62 (8%) chose the mouse interface. The pen-tablet UID reduced active contouring time and reduced correction of ROIs, without substantially altering ROI volume/coverage.
Collapse
Affiliation(s)
-
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, Mail Stop Code 7889, San Antonio, TX 78229, USA.
| |
Collapse
|
13
|
Wahl RL, Herman JM, Ford E. The promise and pitfalls of positron emission tomography and single-photon emission computed tomography molecular imaging-guided radiation therapy. Semin Radiat Oncol 2011; 21:88-100. [PMID: 21356477 PMCID: PMC4337868 DOI: 10.1016/j.semradonc.2010.11.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
External beam radiation therapy procedures have, until recently, been planned almost exclusively using anatomic imaging methods. Molecular imaging using hybrid positron emission tomography (PET)/computed tomography scanning or single-photon emission computed tomography (SPECT) imaging has provided new insights into the precise location of tumors (staging) and the extent and character of the biologically active tumor volume (BTV) and has provided differential response information during and after therapy. In addition to the commonly used radiotracer (18)F-fluoro- 2-deoxyD-glucose (FDG), additional radiopharmaceuticals are being explored to image major physiological processes as well as tumor biological properties, such as hypoxia, proliferation, amino acid accumulation, apoptosis, and receptor expression, providing the potential to target or boost the radiation dose to a biologically relevant region within a tumor, such as the most hypoxic or most proliferative area. Imaging using SPECT agents has furthered the possibility of limiting dose to functional normal tissues. PET can also portray the distribution of particle therapy by displaying activated species in situ. With both PET and SPECT imaging, fundamental physical issues of limited spatial resolution relative to the biological process, partial volume effects for quantification of small volumes, image misregistration, motion, and edge delineation must be carefully considered and can differ by agent or the method applied. Molecular imaging-guided radiation therapy (MIGRT) is a rapidly evolving and promising area of investigation and clinical translation. As MIGRT evolves, evidence must continue to be gathered to support improved clinical outcomes using MIGRT versus purely anatomic approaches.
Collapse
Affiliation(s)
- Richard L Wahl
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | | | |
Collapse
|
14
|
PET–CT for radiotherapy treatment planning and response monitoring in solid tumors. Nat Rev Clin Oncol 2011; 8:233-42. [DOI: 10.1038/nrclinonc.2010.218] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
15
|
Zaidi H, El Naqa I. PET-guided delineation of radiation therapy treatment volumes: a survey of image segmentation techniques. Eur J Nucl Med Mol Imaging 2010; 37:2165-87. [PMID: 20336455 DOI: 10.1007/s00259-010-1423-3] [Citation(s) in RCA: 227] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 02/20/2010] [Indexed: 12/23/2022]
Abstract
Historically, anatomical CT and MR images were used to delineate the gross tumour volumes (GTVs) for radiotherapy treatment planning. The capabilities offered by modern radiation therapy units and the widespread availability of combined PET/CT scanners stimulated the development of biological PET imaging-guided radiation therapy treatment planning with the aim to produce highly conformal radiation dose distribution to the tumour. One of the most difficult issues facing PET-based treatment planning is the accurate delineation of target regions from typical blurred and noisy functional images. The major problems encountered are image segmentation and imperfect system response function. Image segmentation is defined as the process of classifying the voxels of an image into a set of distinct classes. The difficulty in PET image segmentation is compounded by the low spatial resolution and high noise characteristics of PET images. Despite the difficulties and known limitations, several image segmentation approaches have been proposed and used in the clinical setting including thresholding, edge detection, region growing, clustering, stochastic models, deformable models, classifiers and several other approaches. A detailed description of the various approaches proposed in the literature is reviewed. Moreover, we also briefly discuss some important considerations and limitations of the widely used techniques to guide practitioners in the field of radiation oncology. The strategies followed for validation and comparative assessment of various PET segmentation approaches are described. Future opportunities and the current challenges facing the adoption of PET-guided delineation of target volumes and its role in basic and clinical research are also addressed.
Collapse
Affiliation(s)
- Habib Zaidi
- Geneva University Hospital, Geneva 4, Switzerland.
| | | |
Collapse
|
16
|
Whipp E, Beresford M, Sawyer E, Halliwell M. True Local Recurrence Rate in the Conserved Breast After Magnetic Resonance Imaging–Targeted Radiotherapy. Int J Radiat Oncol Biol Phys 2010; 76:984-90. [DOI: 10.1016/j.ijrobp.2009.03.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 02/24/2009] [Accepted: 03/03/2009] [Indexed: 11/27/2022]
|
17
|
Dzhugashvili M, Tournay E, Pichenot C, Dunant A, Pessoa E, Khallel A, Gouy S, Uzan C, Garbay JR, Rimareix F, Spielmann M, Vielh P, Marsiglia H, Bourgier C. 3D-conformal accelerated partial breast irradiation treatment planning: the value of surgical clips in the delineation of the lumpectomy cavity. Radiat Oncol 2009; 4:70. [PMID: 20042124 PMCID: PMC2808304 DOI: 10.1186/1748-717x-4-70] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2009] [Accepted: 12/31/2009] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Accurate localisation of the lumpectomy cavity (LC) volume is one of the most critical points in 3D-conformal Partial breast irradiation (3D-APBI) treatment planning because the irradiated volume is restricted to a small breast volume. Here, we studied the role of the placement of surgical clips at the 4 cardinal points of the lumpectomy cavity in target delineation. METHODS Forty CT-based 3D-APBI plans were retrieved on which a total of 4 radiation oncologists, two trainee and two experienced physicians, outlined the lumpectomy cavity. The inter-observer variability of LC contouring was assessed when the CTV was defined as the delineation that encompassed both surgical clips and remodelled breast tissue. RESULTS The conformity index of tumour bed delineation was significantly improved by the placement of surgical clips within the LC (median at 0.65). Furthermore, a better conformity index of LC was observed according to the experience of the physicians (median CI = 0.55 for trainee physicians vs 0.65 for experienced physicians). CONCLUSIONS The placement of surgical clips improved the accuracy of lumpectomy cavity delineation in 3D-APBI. However, a learning curve is needed to improve the conformity index of the lumpectomy cavity.
Collapse
Affiliation(s)
- Maia Dzhugashvili
- Department of Radiation Oncology, Institut Gustave Roussy, Villejuif, France
| | - Elodie Tournay
- Biostatistics, and Epidemiology Unit, Institut Gustave Roussy, Villejuif, France
| | | | - Ariane Dunant
- Biostatistics, and Epidemiology Unit, Institut Gustave Roussy, Villejuif, France
| | - Eduardo Pessoa
- Department of Radiation Oncology, Institut Gustave Roussy, Villejuif, France
| | - Adel Khallel
- Department of Radiation Oncology, Institut Gustave Roussy, Villejuif, France
| | - Sébastien Gouy
- Department of Breast Surgery, Institut Gustave Roussy, Villejuif, France
| | - Catherine Uzan
- Department of Breast Surgery, Institut Gustave Roussy, Villejuif, France
| | - Jean-Rémy Garbay
- Department of Breast Surgery, Institut Gustave Roussy, Villejuif, France
| | - Françoise Rimareix
- Department of Breast Surgery, Institut Gustave Roussy, Villejuif, France
| | - Marc Spielmann
- Department of Breast Oncology, Institut Gustave Roussy, Villejuif, France
| | - Philippe Vielh
- Department of Pathology, Institut Gustave Roussy, Villejuif, France
| | - Hugo Marsiglia
- Department of Radiation Oncology, Institut Gustave Roussy, Villejuif, France
- University of Florence, Italy
| | - Céline Bourgier
- Department of Radiation Oncology, Institut Gustave Roussy, Villejuif, France
| |
Collapse
|
18
|
Ford EC, Herman J, Yorke E, Wahl RL. 18F-FDG PET/CT for image-guided and intensity-modulated radiotherapy. J Nucl Med 2009; 50:1655-65. [PMID: 19759099 PMCID: PMC2899678 DOI: 10.2967/jnumed.108.055780] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Advances in technology have allowed extremely precise control of radiation dose delivery and localization within a patient. The ability to confidently delineate target tumor boundaries, however, has lagged behind. (18)F-FDG PET/CT, with its ability to distinguish metabolically active disease from normal tissue, may provide a partial solution to this problem. Here we review the current applications of (18)F-FDG PET/CT in a variety of disease sites, including non-small cell lung cancer, head and neck cancer, and pancreatic adenocarcinoma. This review focuses on the use of (18)F-FDG PET/CT to aid in planning radiotherapy and the associated benefits and challenges. We also briefly consider novel radiopharmaceuticals that are beginning to be used in the context of radiotherapy planning.
Collapse
Affiliation(s)
- Eric C Ford
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland 21231, USA.
| | | | | | | |
Collapse
|
19
|
Beriwal S. PET/CT in Radiation Therapy Planning for Breast Cancer. PET Clin 2009; 4:349-57. [PMID: 27157304 DOI: 10.1016/j.cpet.2009.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PET/computed tomography-based imaging is a valuable and useful test in the staging and restaging of breast cancer, especially in patients who have recurrent or locally advanced breast cancer. Its greatest clinical applications are in the detection and definition of the extent of recurrent or metastatic disease. However, the potential to improve radiation treatment planning by allowing for the tailoring of comprehensive radiation portals, particularly for locally advanced or recurrent breast cancer, makes it one of the most promising tools in the era of image-guided radiation therapy.
Collapse
Affiliation(s)
- Sushil Beriwal
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Magee-Womens Hospital of UPMC, 300 Halket Street, Pittsburgh, PA 15213, USA
| |
Collapse
|
20
|
Zaidi H, Vees H, Wissmeyer M. Molecular PET/CT imaging-guided radiation therapy treatment planning. Acad Radiol 2009; 16:1108-33. [PMID: 19427800 DOI: 10.1016/j.acra.2009.02.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 02/11/2009] [Accepted: 02/19/2009] [Indexed: 01/01/2023]
Abstract
The role of positron emission tomography (PET) during the past decade has evolved rapidly from that of a pure research tool to a methodology of enormous clinical potential. (18)F-fluorodeoxyglucose (FDG)-PET is currently the most widely used probe in the diagnosis, staging, assessment of tumor response to treatment, and radiation therapy planning because metabolic changes generally precede the more conventionally measured parameter of change in tumor size. Data accumulated rapidly during the last decade, thus validating the efficacy of FDG imaging and many other tracers in a wide variety of malignant tumors with sensitivities and specificities often in the high 90 percentile range. As a result, PET/computed tomography (CT) had a significant impact on the management of patients because it obviated the need for further evaluation, guided further diagnostic procedures, and assisted in planning therapy for a considerable number of patients. On the other hand, the progress in radiation therapy technology has been enormous during the last two decades, now offering the possibility to plan highly conformal radiation dose distributions through the use of sophisticated beam targeting techniques such as intensity-modulated radiation therapy (IMRT) using tomotherapy, volumetric modulated arc therapy, and many other promising technologies for sculpted three-dimensional (3D) dose distribution. The foundation of molecular imaging-guided radiation therapy lies in the use of advanced imaging technology for improved definition of tumor target volumes, thus relating the absorbed dose information to image-based patient representations. This review documents technological advancements in the field concentrating on the conceptual role of molecular PET/CT imaging in radiation therapy treatment planning and related image processing issues with special emphasis on segmentation of medical images for the purpose of defining target volumes. There is still much more work to be done and many of the techniques reviewed are themselves not yet widely implemented in clinical settings.
Collapse
|
21
|
Abstract
PET/CT is an effective tool for the diagnosis, staging and restaging of cancer patients. It combines the complementary information of functional PET images and anatomical CT images in one imaging session. Conventional stand-alone PET has been replaced by PET/CT for improved patient comfort, patient throughput, and most importantly the proven clinical outcome of PET/CT over that of PET and that of separate PET and CT. There are over two thousand PET/CT scanners installed worldwide since 2001. Oncology is the main application for PET/CT. Fluorine-18 deoxyglucose is the choice of radiopharmaceutical in PET for imaging the glucose uptake in tissues, correlated with an increased rate of glycolysis in many tumor cells. New molecular targeted agents are being developed to improve the accuracy of targeting different disease states and assessing therapeutic response. Over 50% of cancer patients receive radiation therapy (RT) in the course of their disease treatment. Clinical data have demonstrated that the information provided by PET/CT often changes patient management of the patient and/or modifies the RT plan from conventional CT simulation. The application of PET/CT in RT is growing and will become increasingly important. Continuing improvement of PET/CT instrumentation will also make it easier for radiation oncologists to integrate PET/CT in RT. The purpose of this article is to provide a review of the current PET/CT technology, to project the future development of PET and CT for PET/CT, and to discuss some issues in adopting PET/CT in RT and potential improvements in PET/CT simulation of the thorax in radiation therapy.
Collapse
Affiliation(s)
- Tinsu Pan
- Department of Imaging Physics, M. D. Anderson Cancer Center, The University of Texas, Houston, Texas 77030, USA.
| | | |
Collapse
|
22
|
Abstract
Anatomically based technologies (computed tomography scans, magnetic resonance imaging, and so on) are in routine use in radiotherapy for planning and assessment purposes. Even with improvements in imaging, however, radiotherapy is still limited in efficacy and toxicity in certain applications. Further advances may be provided by technologies that image the molecular activities of tumors and normal tissues. Possible uses for molecular imaging include better localization of tumor regions and early assay for the radiation response of tumors and normal tissues. Critical to the success of this approach is the identification and validation of molecular probes that are suitable in the radiotherapy context. Recent developments in molecular-imaging probes and integration of functional imaging with radiotherapy are promising. This review focuses on recent advances in molecular imaging strategies and probes that may aid in improving the efficacy of radiotherapy.
Collapse
|