1
|
Sun X, Shu P, Shen Y, Li Z, Liu N, Ouyang G, Tang Y, Huang M, Wang X. Targeted therapy acts to sensitize stereotactic body radiotherapy for pulmonary oligometastases from colorectal cancer. Front Oncol 2025; 15:1464707. [PMID: 40406266 PMCID: PMC12095014 DOI: 10.3389/fonc.2025.1464707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 04/14/2025] [Indexed: 05/26/2025] Open
Abstract
Background Stereotactic body radiation therapy (SBRT) is used to manage lung metastases arising from colorectal cancer (CRC), but its effectiveness is constrained by the radioresistance of CRCs. Here, we explored whether concurrent therapy with cetuximab or bevacizumab could improve the prognosis of CRC patients with pulmonary oligometastases. Materials and methods CRC patients with oligometastatic lung tumors (OLTs) treated with concurrent chemoradiotherapy from March 2011 to March 2023 were retrospectively analyzed. Treatment outcomes for local control rate (LCR), progression-free survival (PFS), overall survival (OS), and toxicities were assessed. Results Sixty-nine patients were included, with a median follow-up of 34 months. The 1-year LCRs for SBRT + chemotherapy, SBRT + chemotherapy + bevacizumab, and SBRT + chemotherapy + cetuximab were 63.3%, 96.2%, and 94.4%, respectively. Incorporating bevacizumab or cetuximab significantly prolonged median OS compared to chemotherapy (61 vs. 46 vs. 24 months). Substantial differences in median PFS were noted, with durations of 5, 23, and 8 months for SBRT + chemotherapy, SBRT + chemotherapy + bevacizumab, and SBRT + chemotherapy + cetuximab, respectively. Our univariate analysis revealed that patients under targeted therapy of bevacizumab or cetuximab were linked to prolonged OS and PFS (p < 0.05). Tumor size <2 cm and median biologically effective dose (BED10) ≥100 Gy were correlated with higher local control rates (p < 0.05). Furthermore, comprehensive multivariate analysis confirmed that tumor sizes of <2 cm were linked to better local control (p < 0.05). All three combination regimens were well tolerated, and the occurrence of toxicities was higher in treatments involving targeted therapy. Conclusion Combining concurrent chemoradiotherapy with cetuximab or bevacizumab improves treatment outcomes, with manageable toxicity. Given the limited sample size of this study, larger studies such as prospective trials are needed.
Collapse
Affiliation(s)
- Xiye Sun
- Division of Thoracic Tumor Multimodality Treatment and Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Pei Shu
- Division of Abdominal Tumor Multimodality Treatment, Department of Radiation Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yali Shen
- Division of Abdominal Tumor Multimodality Treatment, Department of Radiation Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhiping Li
- Division of Abdominal Tumor Multimodality Treatment, Department of Radiation Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ning Liu
- Division of Thoracic Tumor Multimodality Treatment and Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ganlu Ouyang
- Division of Abdominal Tumor Multimodality Treatment, Department of Radiation Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuanling Tang
- Division of Abdominal Tumor Multimodality Treatment, Department of Radiation Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Meijuan Huang
- Division of Thoracic Tumor Multimodality Treatment and Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Wang
- Division of Abdominal Tumor Multimodality Treatment, Department of Radiation Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Lucas Calduch A, Macià Garau M, Villà Freixa S, García Expósito N, Modolell Farré I, Majós Torró C, Pons Escoda A, Mesía Barroso C, Vilariño Quintela N, Rosselló Gómez A, Plans Ahicart G, Martínez García M, Esteve Gómez A, Bruna Escuer J. Salvage reirradiation for recurrent glioblastoma: a retrospective case series analysis. Clin Transl Oncol 2025; 27:2104-2112. [PMID: 39388047 DOI: 10.1007/s12094-024-03750-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
PURPOSE To assess the clinical outcome of patients with recurrent glioblastoma treated with salvage reirradiation. METHODS Between 2005 and 2022, data from adult patients with glioblastoma treated with surgery and radio-chemotherapy Stupp regimen who developed a local in-field relapse and received stereotactic radiotherapy (SRT) were retrospectively reviewed. RESULTS The study population included 44 patients with recurrent glioblastoma (median of 9.5 months after the first radiotherapy). Reirradiation alone was given to 47.7% of patients. The median maximum diameter of the recurrence was 13.5 mm. The most common SRT regimen (52.3%) was 35 Gy in 10 fractions. Acute toxicity was mild, with transient worsening of previous neurological symptoms in only 15% of patients. After a median follow-up of 15 months, 40% presented radiological response, but a remarkable number of early distant progressions were recorded (32.5%). The median time to progression was 4.8 months, being the dose, the scheme, the size of the recurrence or the strategy (exclusive RT vs. combined) unrelated factors. The median overall survival (OS) was 14.9 months. Karnofsky index < 70 and the size of the recurrence (maximum diameter < 25 mm) were significant factors associated with OS. Radiological changes after reirradiation were commonly seen (> 50% of patients) hindering the response assessment. CONCLUSIONS Reirradiation is a feasible and safe therapeutic option to treat localized glioblastoma recurrences, able to control the disease for a few months in selected patients, especially those with good functional status and small lesions. Hypofractionated schemes provided a suitable toxicity profile. Radiological changes were common.
Collapse
Affiliation(s)
- Anna Lucas Calduch
- Radiation Oncology Service, Institut Català d'Oncologia (ICO)-Hospital Duran I Reynals, L'Hospitalet de Llobregat, Avda. Gran Via de L'Hospitalet 199-203, 08908, Barcelona, Spain.
| | - Miquel Macià Garau
- Radiation Oncology Service, Institut Català d'Oncologia (ICO)-Hospital Duran I Reynals, L'Hospitalet de Llobregat, Avda. Gran Via de L'Hospitalet 199-203, 08908, Barcelona, Spain
| | | | - Nagore García Expósito
- Radiation Oncology Service, Institut Català d'Oncologia (ICO)-Hospital Duran I Reynals, L'Hospitalet de Llobregat, Avda. Gran Via de L'Hospitalet 199-203, 08908, Barcelona, Spain
| | - Ignasi Modolell Farré
- Medical Physics, Institut Català de'Oncologia (ICO), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Carles Majós Torró
- Institut de Diagnòstic per la Imatge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Albert Pons Escoda
- Institut de Diagnòstic per la Imatge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Carlos Mesía Barroso
- Medical Oncology, Institut Català de'Oncologia (ICO)- L'Hospitalet de Llobregat, Barcelona, Spain
| | - Noelia Vilariño Quintela
- Medical Oncology, Institut Català de'Oncologia (ICO)- L'Hospitalet de Llobregat, Barcelona, Spain
| | - Aleix Rosselló Gómez
- Neurosurgery, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Gerard Plans Ahicart
- Neurosurgery, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | | | - Anna Esteve Gómez
- Badalona Applied Research Group in Oncology (B-ARGO), Badalona, Barcelona, Spain
| | - Jordi Bruna Escuer
- Neurology, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
3
|
Sahebjam S, Raval RR, Forsyth PA, Enderling H, Tran ND, Arrington JA, Macaulay R, Perlow HK, Palmer JD, Ghose J, Rajappa P, Giglio P, Li Z, Etame AB, Mokhtari S, Cruz-Chamorro RJ, Bhandari M, Thapa R, Robinson TJ, Chen DT, Yu HHM. Phase 1 trial of hypofractionated stereotactic re-irradiation in combination with nivolumab, ipilimumab, and bevacizumab for recurrent high-grade gliomas. Neurooncol Adv 2025; 7:vdaf033. [PMID: 40134851 PMCID: PMC11934552 DOI: 10.1093/noajnl/vdaf033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025] Open
Abstract
Background Our previous clinical investigation suggested that hypofractionated stereotactic re-irradiation (HFSRT) and PD-1 blockade may act synergistically to enhance the immune response against glioma. This subsequent trial investigated the dual blockade of CTLA4 and PD-1 in combination with HFSRT and bevacizumab. Methods This phase I study enrolled eligible patients with bevacizumab-naïve recurrent glioblastoma or anaplastic astrocytoma. Participants received nivolumab, ipilimumab, and bevacizumab concurrently with HFSRT (3000 cGy in 5 fractions). Subsequently, nivolumab, ipilimumab, and bevacizumab were administered for a total of 4 cycles followed by nivolumab and bevacizumab until progression. The primary end point of this study was the safety and tolerability of HFSRT in combination with nivolumab, ipilimumab, and bevacizumab in patients with recurrent HGGs. Secondary end points included 6-month survival and 9-month survival. Results Twenty-six patients were treated. Treatment-related adverse events (TRAEs) of grade 3 or 4 were observed in 12 (48%) evaluable patients with no unexpected TRAEs. Six months and 9 months survival were 92% (95% CI, 82-100%) and 75% (95% CI, 60-95%), respectively. The median progression-free survival and overall survival were 7.1 months (95% CI, 5.2-12.2) and 15.6 months (95% CI, 11.3-27.0), respectively. Conclusions The combination of HFSRT with ipilimumab, nivolumab, and bevacizumab is safe. Our results underscore the potential synergies between stereotactic re-irradiation and checkpoint immunotherapy in patients with recurrent high-grade gliomas.
Collapse
Affiliation(s)
- Solmaz Sahebjam
- Johns Hopkins University School of Medicine, The Sidney Kimmel Cancer Center, Sibley Memorial Hospital, Washington, DC, USA
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Raju R Raval
- Pelotonia Institute for Immuno-Oncology, Columbus, Ohio, USA
- The Ohio State University Wexner Medical Center, James Cancer Hospital, Columbus, OH, USA
| | - Peter A Forsyth
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Heiko Enderling
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nam D Tran
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - John A Arrington
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Robert Macaulay
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Haley K Perlow
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
- The Ohio State University Wexner Medical Center, James Cancer Hospital, Columbus, OH, USA
| | - Joshua D Palmer
- The Ohio State University Wexner Medical Center, James Cancer Hospital, Columbus, OH, USA
| | - Jayeeta Ghose
- The Ohio State University Wexner Medical Center, James Cancer Hospital, Columbus, OH, USA
| | - Prajwal Rajappa
- Pelotonia Institute for Immuno-Oncology, Columbus, Ohio, USA
- The Ohio State University Wexner Medical Center, James Cancer Hospital, Columbus, OH, USA
| | - Pierre Giglio
- The Ohio State University Wexner Medical Center, James Cancer Hospital, Columbus, OH, USA
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, Columbus, Ohio, USA
- The Ohio State University Wexner Medical Center, James Cancer Hospital, Columbus, OH, USA
| | - Arnold B Etame
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Sepideh Mokhtari
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | | | - Menal Bhandari
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Ram Thapa
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Timothy J Robinson
- Yale School of Medicine, Smilow Cancer Center, New Haven, Connecticut, USA
| | - Dung-Tsa Chen
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | | |
Collapse
|
4
|
Fleischmann DF, Gajdi L, Corradini S, Schönecker S, Marschner S, Bodensohn R, Hofmaier J, Garny S, Forbrig R, Thon N, Belka C, Niyazi M. Re-irradiation treatment regimens for patients with recurrent glioma - Evaluation of the optimal dose and best concurrent therapy. Radiother Oncol 2024; 199:110437. [PMID: 39013502 DOI: 10.1016/j.radonc.2024.110437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/18/2024]
Abstract
PURPOSE Re-irradiation (reRT) is an effective treatment modality for patients with recurrent glioma. Data on dose escalation, the use of simulated integrated boost and concomitant therapy to reRT are still scarce. In this monocentric cohort of n = 223 patients we investigated the influence of reRT dose escalation as well as the concomitant use of bevacizumab (BEV) with regard to post-recurrence survival (PRS) and risk of radionecrosis (RN). PATIENTS AND METHODS Patients with recurrent glioma treated between July 2008 and August 2022 with reRT with BEV, reRT with temozolomide (TMZ) and reRT without concomitant systemic therapy were retrospectively analyzed. PRS and RN-free survival (RNFS) were calculated for all patients using the Kaplan-Meier estimator. Univariable and multivariable cox regression was performed for PRS and for RNFS. The reRT Risk Score (RRRS) was calculated for all patients. RESULTS Good, intermediate and poor risk of the RRRS translated into 11 months, 9 months and 7 months of median PRS (univariable: p = 0.008, multivariable: p = 0.013). ReRT was applied with a dose of ≤36 Gy (n = 140) or >36 Gy (n = 83). Concomitant bevacizumab (BEV) therapy was performed in n = 122 and concomitant temozolomide (TMZ) therapy in n = 32 patients. Median PRS was 10 months in patients treated with >36 Gy and 8 months in patients treated with ≤36 Gy (univariable: p = 0.032, multivariable: p = 0.576). Regarding concomitant TMZ therapy, median PRS was 14 months vs. 9 months for patients treated with or without TMZ (univariable: p = 0.041, multivariable: p = 0.019). No statistically significant influence on PRS was seen for concomitant BEV therapy in this series. RN was less frequent for reRT with concomitant BEV, (17/122; 13.9 %) than for reRT without BEV (30/101; 29.7 %). Regarding RNFS, the hazard ratio for reRT with BEV was 0.436 (univariable; p = 0.006) and 0.479 (multivariable; p = 0.023), respectively. ReRT dose did not show statistical significance in regards to RN (univariable: p = 0.073, multivariable: p = 0.404). RNFS was longer for patients receiving concomitant BEV to reRT than for patients treated with reRT only (mean 31.7 vs. 30.9 months, p = 0.004). CONCLUSION In this cohort, in patients treated with concomitant BEV therapy RN was less frequently detected and in patients treated with concomitant TMZ longer PRS was observed. Based on these results, the best concomitant therapy and the optimal dose should be decided on a patient-by-patient basis.
Collapse
Affiliation(s)
- Daniel F Fleischmann
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Laura Gajdi
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Stephan Schönecker
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sebastian Marschner
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Raphael Bodensohn
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany; Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Jan Hofmaier
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sylvia Garny
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Robert Forbrig
- Institute of Neuroradiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Niklas Thon
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany; Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany; Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany; German Cancer Consortium (DKTK), Partner Site Tübingen, Tübingen, Germany
| |
Collapse
|
5
|
Zhong W, Mao J, Wu D, Peng J, Ye W. The efficacy of stereotactic radiotherapy followed by bevacizumab and temozolomide in the treatment of recurrent glioblastoma: a case report. Front Pharmacol 2024; 15:1401000. [PMID: 39295944 PMCID: PMC11408163 DOI: 10.3389/fphar.2024.1401000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive malignant brain tumor among adults. Despite advancements in multimodality therapy for GBM, the overall prognosis remains poor, with an extremely high risk of recurrence. Currently, there is no established consensus on the optimal treatment option for recurrent GBM, which may include reoperation, reirradiation, chemotherapy, or a combination of the above. Bevacizumab is considered a first-line treatment option for recurrent GBM, as is temozolomide. However, in recurrent GBM, it is necessary to balance the risks and benefits of reirradiation in combination with bevacizumab and temozolomide. Herein, we report the case of a patient with recurrent GBM after standard treatment who benefited from stereotactic radiotherapy followed by bevacizumab and temozolomide maintenance therapy. Following 16 months of concurrent chemoradiotherapy (CCRT), the patient was diagnosed with recurrent GBM by a 3-T contrast-enhanced magnetic resonance imaging (MRI). The addition of localized radiotherapy to the ongoing treatment regimen of bevacizumab, in combination with temozolomide therapy, prolonged the patient's disease-free survival to over 2 years, achieving a significant long-term outcome, with no notable adverse effects observed. This clinical case may provide a promising new option for patients with recurrent GBM.
Collapse
Affiliation(s)
- Wangyan Zhong
- Department of Radiation Oncology, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Jiwei Mao
- Department of Radiation Oncology, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Dongping Wu
- Department of Radiation Oncology, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Jianghua Peng
- Department of General Practice, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Wanli Ye
- Department of Radiation Oncology, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| |
Collapse
|
6
|
Gregucci F, Di Guglielmo FC, Surgo A, Carbonara R, Laera L, Ciliberti MP, Gentile MA, Calbi R, Caliandro M, Sasso N, Davi' V, Bonaparte I, Fanelli V, Giraldi D, Tortora R, Internò V, Giuliani F, Surico G, Signorelli F, Lombardi G, Fiorentino A. Reirradiation with radiosurgery or stereotactic fractionated radiotherapy in association with regorafenib in recurrent glioblastoma. Strahlenther Onkol 2024; 200:751-759. [PMID: 37987802 DOI: 10.1007/s00066-023-02172-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/01/2023] [Indexed: 11/22/2023]
Abstract
PURPOSE No standard treatment has yet been established for recurrent glioblastoma (GBM). In this context, the aim of the current study was to evaluate safety and efficacy of reirradiation (re-RT) by radiosurgery or fractionated stereotactic radiotherapy (SRS/FSRT) in association with regorafenib. METHODS Patients with a histological or radiological diagnosis of recurrent GBM who received re-RT by SRS/FSRT and regorafenib as second-line systemic therapy were included in the analysis. RESULTS From January 2020 to December 2022, 21 patients were evaluated. The median time between primary/adjuvant RT and disease recurrence was 8 months (range 5-20). Median re-RT dose was 24 Gy (range 18-36 Gy) for a median number of 5 fractions (range 1-6). Median regorafenib treatment duration was 12 weeks (range 3-26). Re-RT was administered before starting regorafenib or in the week off regorafenib during the course of chemotherapy. The median and the 6‑month overall survival (OS) from recurrence were 8.4 months (95% confidence interval [CI] 6.9-12.7 months) and 75% (95% CI 50.9-89.1%), respectively. The median progression-free survival (PFS) from recurrence was 6 months (95% CI 3.7-8.5 months). The most frequent side effects were asthenia that occurred in 10 patients (8 cases of grade 2 and 2 cases of grade 3), and hand-foot skin reaction (2 patients grade 3, 3 patients grade 2). Adverse events led to permanent regorafenib discontinuation in 2 cases, while in 5/21 cases (23.8%), a dose reduction was administered. One patient experienced dehiscence of the surgical wound after reintervention and during regorafenib treatment, while another patient reported intestinal perforation that required hospitalization. CONCLUSION For recurrent GBM, re-RT with SRT/FSRT plus regorafenib is a safe treatment. Prospective trials are necessary.
Collapse
Affiliation(s)
- Fabiana Gregucci
- Department of Radiation Oncology, Miulli General Regional Hospital, Acquaviva delle Fonti-Bari, Italy.
| | | | - Alessia Surgo
- Department of Radiation Oncology, Miulli General Regional Hospital, Acquaviva delle Fonti-Bari, Italy
| | - Roberta Carbonara
- Department of Radiation Oncology, Miulli General Regional Hospital, Acquaviva delle Fonti-Bari, Italy
| | - Letizia Laera
- Department of Medical Oncology, Miulli General Regional Hospital, Acquaviva delle Fonti-Bari, Italy
| | - Maria Paola Ciliberti
- Department of Radiation Oncology, Miulli General Regional Hospital, Acquaviva delle Fonti-Bari, Italy
| | | | - Roberto Calbi
- Department of Radiology, Miulli General Regional Hospital, Acquaviva delle Fonti-Bari, Italy
| | - Morena Caliandro
- Department of Radiation Oncology, Miulli General Regional Hospital, Acquaviva delle Fonti-Bari, Italy
| | - Nicola Sasso
- Department of Medical Oncology, Miulli General Regional Hospital, Acquaviva delle Fonti-Bari, Italy
| | - Valerio Davi'
- Department of Radiation Oncology, Miulli General Regional Hospital, Acquaviva delle Fonti-Bari, Italy
| | - Ilaria Bonaparte
- Department of Radiation Oncology, Miulli General Regional Hospital, Acquaviva delle Fonti-Bari, Italy
| | - Vincenzo Fanelli
- Department of Neurosurgery, Miulli General Regional Hospital, Acquaviva delle Fonti-Bari, Italy
| | - David Giraldi
- Department of Neurosurgery, Miulli General Regional Hospital, Acquaviva delle Fonti-Bari, Italy
| | - Romina Tortora
- Centro Orientamento Oncologico (COrO), Miulli General Regional Hospital, Acquaviva delle Fonti-Bari, Italy
| | - Valeria Internò
- Department of Medical Oncology, Ospedale San Paolo, Bari, Italy
| | | | - Giammarco Surico
- Department of Medical Oncology, Miulli General Regional Hospital, Acquaviva delle Fonti-Bari, Italy
| | - Francesco Signorelli
- Division of Neurosurgery, Department of Translational Biomedicine and Neurosciences (DiBraiN), University "Aldo Moro" of Bari, Bari, Italy
| | - Giuseppe Lombardi
- Department of Medical Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Alba Fiorentino
- Department of Radiation Oncology, Miulli General Regional Hospital, Acquaviva delle Fonti-Bari, Italy
- Department of Medicine and Surgery, LUM University, Casamassima-Bari, Italy
| |
Collapse
|
7
|
Chen ATC, Serante AR, Ayres AS, Tonaki JO, Moreno RA, Shih H, Gattás GS, Lopez RVM, Dos Santos de Jesus GR, de Carvalho IT, Marotta RC, Marta GN, Feher O, Neto HS, Ribeiro ISN, Vasconcelos KGMDC, Figueiredo EG, Weltman E. Prospective Randomized Phase 2 Trial of Hypofractionated Stereotactic Radiation Therapy of 25 Gy in 5 Fractions Compared With 35 Gy in 5 Fractions in the Reirradiation of Recurrent Glioblastoma. Int J Radiat Oncol Biol Phys 2024; 119:1122-1132. [PMID: 38232937 DOI: 10.1016/j.ijrobp.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/19/2024]
Abstract
PURPOSE The aim of this work was to investigate whether reirradiation of recurrent glioblastoma with hypofractionated stereotactic radiation therapy (HSRT) consisting of 35 Gy in 5 fractions (35 Gy/5 fx) compared with 25 Gy in 5 fractions (25 Gy/5 fx) improves outcomes while maintaining acceptable toxicity. METHODS AND MATERIALS We conducted a prospective randomized phase 2 trial involving patients with recurrent glioblastoma (per the 2007 and 2016 World Health Organization classification). A minimum interval from first radiation therapy of 5 months and gross tumor volume of 150 cc were required. Patients were randomized 1:1 to receive HSRT alone in 25 Gy/5 fx or 35 Gy/5 fx. The primary endpoint was progression-free survival (PFS). We used a randomized phase 2 screening design with a 2-sided α of 0.15 for the primary endpoint. RESULTS From 2011 to 2019, 40 patients were randomized and received HSRT, with 20 patients in each group. The median age was 50 years (range, 27-71); a new resection before HSRT was performed in 75% of patients. The median PFS was 4.9 months in the 25 Gy/5 fx group and 5.2 months in the 35 Gy/5 fx group (P = .23). Six-month PFS was similar at 40% (85% CI, 24%-55%) for both groups. The median overall survival (OS) was 9.2 months in the 25 Gy/5 fx group and 10 months in the 35 Gy/5 fx group (P = .201). Grade ≥3 necrosis was numerically higher in the 35 Gy/5 fx group (3 [16%] vs 1 [5%]), but the difference was not statistically significant (P = .267). In an exploratory analysis, median OS of patients who developed treatment-related necrosis was 14.1 months, and that of patients who did not was 8.7 months (P = .003). CONCLUSIONS HSRT alone with 35 Gy/5 fx was not superior to 25 Gy/5 fx in terms of PFS or OS. Due to a potential increase in the rate of clinically meaningful treatment-related necrosis, we suggest 25 Gy/5 fx as the standard dose in HSRT alone. During follow-up, attention should be given to differentiating tumor progression from potentially manageable complications.
Collapse
Affiliation(s)
- Andre Tsin Chih Chen
- Department of Radiation Oncology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil.
| | - Alexandre Ruggieri Serante
- Department of Radiation Oncology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| | - Aline Sgnolf Ayres
- Department of Radiology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da FMUSP, Sao Paulo, Brazil
| | - Juliana Ono Tonaki
- Division of Psychology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da FMUSP, Sao Paulo, Brazil
| | - Raquel Andrade Moreno
- Department of Radiology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da FMUSP, Sao Paulo, Brazil
| | - Helen Shih
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Rossana Veronica Mendoza Lopez
- Oncology Translational Research Center, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da FMUSP, Sao Paulo, Brazil
| | - Gabriela Reis Dos Santos de Jesus
- Department of Radiation Oncology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| | - Icaro Thiago de Carvalho
- Department of Radiation Oncology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| | - Rodrigo Carvalho Marotta
- Department of Radiation Oncology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| | - Gustavo Nader Marta
- Department of Radiation Oncology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| | - Olavo Feher
- Department of Clinical Oncology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da FMUSP, Sao Paulo, Brazil
| | - Hugo Sterman Neto
- Department of Neurosurgery, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da FMUSP, Sao Paulo, Brazil
| | - Iuri Santana Neville Ribeiro
- Department of Neurosurgery, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da FMUSP, Sao Paulo, Brazil
| | | | | | | |
Collapse
|
8
|
Cuccia F, Jafari F, D’Alessandro S, Carruba G, Craparo G, Tringali G, Blasi L, Ferrera G. Preferred Imaging for Target Volume Delineation for Radiotherapy of Recurrent Glioblastoma: A Literature Review of the Available Evidence. J Pers Med 2024; 14:538. [PMID: 38793120 PMCID: PMC11122491 DOI: 10.3390/jpm14050538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/29/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Recurrence in glioblastoma lacks a standardized treatment, prompting an exploration of re-irradiation's efficacy. METHODS A comprehensive systematic review from January 2005 to May 2023 assessed the role of MRI sequences in recurrent glioblastoma re-irradiation. The search criteria, employing MeSH terms, targeted English-language, peer-reviewed articles. The inclusion criteria comprised both retrospective and prospective studies, excluding certain types and populations for specificity. The PICO methodology guided data extraction, and the statistical analysis employed Chi-squared tests via MedCalc v22.009. RESULTS Out of the 355 identified studies, 81 met the criteria, involving 3280 patients across 65 retrospective and 16 prospective studies. The key findings indicate diverse treatment modalities, with linac-based photons predominating. The median age at re-irradiation was 54 years, and the median time interval between radiation courses was 15.5 months. Contrast-enhanced T1-weighted sequences were favored for target delineation, with PET-imaging used in fewer studies. Re-irradiation was generally well tolerated (median G3 adverse events: 3.5%). The clinical outcomes varied, with a median 1-year local control rate of 61% and a median overall survival of 11 months. No significant differences were noted in the G3 toxicity and clinical outcomes based on the MRI sequence preference or PET-based delineation. CONCLUSIONS In the setting of recurrent glioblastoma, contrast-enhanced T1-weighted sequences were preferred for target delineation, allowing clinicians to deliver a safe and effective therapeutic option; amino acid PET imaging may represent a useful device to discriminate radionecrosis from recurrent disease. Future investigations, including the ongoing GLIAA, NOA-10, ARO 2013/1 trial, will aim to refine approaches and standardize methodologies for improved outcomes in recurrent glioblastoma re-irradiation.
Collapse
Affiliation(s)
- Francesco Cuccia
- Radiation Oncology, ARNAS Civico Hospital, 90100 Palermo, Italy (G.F.)
| | - Fatemeh Jafari
- Radiation Oncology Department, Imam-Khomeini Hospital Complex, Teheran University of Medical Sciences, Teheran 1416634793, Iran
| | | | - Giuseppe Carruba
- Division of Internationalization and Health Research (SIRS), ARNAS Civico Hospital, 90100 Palermo, Italy
| | | | | | - Livio Blasi
- Medical Oncology, ARNAS Civico Hospital, 90100 Palermo, Italy;
| | - Giuseppe Ferrera
- Radiation Oncology, ARNAS Civico Hospital, 90100 Palermo, Italy (G.F.)
| |
Collapse
|
9
|
Yilmaz MT, Kahvecioglu A, Yazici G, Mohammadipour S, Kertmen N, Cifci GC, Zorlu F. Hypofractionated stereotactic re-irradiation for progressive glioblastoma: twelve years' experience of a single center. J Neurooncol 2024; 167:295-303. [PMID: 38383875 PMCID: PMC11023988 DOI: 10.1007/s11060-024-04607-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
PURPOSE We aimed to evaluate the prognostic factors and the role of stereotactic radiotherapy (SRT) as a re-irradiation technique in the management of progressive glioblastoma. METHODS The records of 77 previously irradiated glioblastoma patients who progressed and received second course hypofractionated SRT (1-5 fractions) between 2009 and 2022 in our department were evaluated retrospectively. Statistical Package for the Social Sciences (SPSS) version 23.0 (IBM, Armonk, NY, USA) was utilized for all statistical analyses. RESULTS The median time to progression from the end of initial radiotherapy was 14 months (range, 6-68 months). The most common SRT schedule was 30 Gy (range, 18-50 Gy) in 5 fractions (range, 1-5 fractions). The median follow-up after SRT was 9 months (range, 3-80 months). One-year overall (OS) and progression-free survival (PFS) rates after SRT were 46% and 35%, respectively. Re-irradiation dose and the presence of pseudoprogression were both significant independent positive prognostic factors for both OS (p = 0.009 and p = 0.04, respectively) and PFS (p = 0.008 and p = 0.04, respectively). For PFS, progression-free interval > 14 months was also a prognostic factor (p = 0.04). The treatment was well tolerated without significant acute toxicity. During follow-up, radiation necrosis was observed in 17 patients (22%), and 14 (82%) of them were asymptomatic. CONCLUSION Hypofractionated SRT is an effective treatment approach for patients with progressive glioblastoma. Younger patients who progressed later than 14 months, received higher SRT doses, and experienced pseudoprogression following SRT had improved survival rates.
Collapse
Affiliation(s)
- Melek Tugce Yilmaz
- Department of Radiation Oncology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Alper Kahvecioglu
- Department of Radiation Oncology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Gozde Yazici
- Department of Radiation Oncology, Hacettepe University Faculty of Medicine, Ankara, Turkey.
| | - Sepideh Mohammadipour
- Department of Radiation Oncology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Neyran Kertmen
- Department of Medical Oncology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Gokcen Coban Cifci
- Radiology Department, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Faruk Zorlu
- Department of Radiation Oncology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
10
|
Sung SY, Song JH, Kim BH, Kwak YK, Kim KS, Yoo GS, Byun HK, Kim YJ, Kim YS. Evidence-based clinical recommendations for hypofractionated radiotherapy: exploring efficacy and safety - Part 1. Brain and head and neck. Radiat Oncol J 2024; 42:17-31. [PMID: 38549381 PMCID: PMC10982054 DOI: 10.3857/roj.2023.00899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 04/04/2024] Open
Abstract
Advances in radiotherapy (RT) techniques, including intensity-modulated RT and image-guided RT, have allowed hypofractionation, increasing the fraction size over the conventional dose of 1.8-2.0 Gy. Hypofractionation offers advantages such as shorter treatment times, improved compliance, and under specific conditions, particularly in tumors with a low α/β ratio, higher efficacy. It was initially explored for use in RT for prostate cancer and adjuvant RT for breast cancer, and its application has been extended to various other malignancies. Hypofractionated RT (HFRT) may also be effective in patients who are unable to undergo conventional treatment owing to poor performance status, comorbidities, or old age. The treatment of brain tumors with HFRT is relatively common because brain stereotactic radiosurgery has been performed for over two decades. However, re-irradiation of recurrent lesions and treatment of elderly or frail patients are areas under investigation. HFRT for head and neck cancer has not been widely used because of concerns regarding late toxicity. Thus, we aimed to provide a comprehensive summary of the current evidence for HFRT for brain tumors and head and neck cancer and to offer practical recommendations to clinicians faced with the challenge of choosing new treatment options.
Collapse
Affiliation(s)
- Soo-Yoon Sung
- Department of Radiation Oncology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jin Ho Song
- Department of Radiation Oncology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Byoung Hyuck Kim
- Department of Radiation Oncology, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Republic of Korea
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yoo-Kang Kwak
- Department of Radiation Oncology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon, Republic of Korea
| | - Kyung Su Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Gyu Sang Yoo
- Department of Radiation Oncology, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
| | - Hwa Kyung Byun
- Department of Radiation Oncology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Republic of Korea
| | - Yeon Joo Kim
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yeon-Sil Kim
- Department of Radiation Oncology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
11
|
Hatiboglu MA, Akdur K, Sakarcan A, Seyithanoglu MH, Turk HM, Sinclair G, Oztanir MN. Promising outcome of patients with recurrent glioblastoma after Gamma Knife-based hypofractionated radiotherapy. Neurochirurgie 2024; 70:101532. [PMID: 38215936 DOI: 10.1016/j.neuchi.2024.101532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/24/2023] [Accepted: 12/29/2023] [Indexed: 01/14/2024]
Abstract
BACKGROUND The role of Gamma Knife radiosurgery (GKRS) in recurrent glioblastoma remains unclear. The purpose of this study is to evaluate the effects of GKRS in a group of patients with recurrent glioblastoma, focusing on survival and safety. METHODS Patients undergoing GKRS for recurrent glioblastoma between September 2014 and April 2019 were included in this study. Relevant clinical and radiosurgical data, including GKRS-related complications, were recorded and analyzed. Overall survival (OS), local progression free survival (LPFS) and prognostic factors for outcome were thoroughly evaluated. RESULTS Fifty-three patients were analyzed (24 female, 29 male). The median age was 50 years (range, 19-78 years). The median GKRS treatment volume was 35.01 cm3 (range, 2.38-115.57 cm3). Twenty patients (38%) were treated with single fraction GKRS, while 33 (62%) were treated with GKRS-based hypofractionated stereotactic radiotherapy (HSRT). The median prescription dose for single fraction GKRS, 3-fractions HSRT and 5-fractions HSRT were 16 Gy (range, 10-20 Gy), 27 Gy (range, 18-33 Gy) and 25 Gy (range, 25-30 Gy), respectively. The median LPFS and OS times were 8.1 months and 11.4 months after GKRS, respectively. HSRT and Bevacizumab were associated with improved LPFS, while HSRT alone was associated with longer OS. CONCLUSION Our findings suggested that HRST would likely improve LPFS and OS in definite settings; the addition of Bevacizumab to GKRS was associated with increased rates of local control. No major complications were reported. Further prospective studies are warranted to confirm our findings.
Collapse
Affiliation(s)
- Mustafa Aziz Hatiboglu
- Department of Neurosurgery, Bezmialem Vakif University Medical School, Vatan Street, Fatih, Istanbul, Turkey; Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıkoy Mahallesi, Beykoz, Istanbul, Turkey.
| | - Kerime Akdur
- Department of Neurosurgery, Bezmialem Vakif University Medical School, Vatan Street, Fatih, Istanbul, Turkey
| | - Ayten Sakarcan
- Department of Neurosurgery, Bezmialem Vakif University Medical School, Vatan Street, Fatih, Istanbul, Turkey
| | - Mehmet Hakan Seyithanoglu
- Department of Neurosurgery, Bezmialem Vakif University Medical School, Vatan Street, Fatih, Istanbul, Turkey
| | - Haci Mehmet Turk
- Department of Medical Oncology Bezmialem Vakif University Medical School, Vatan Street, Fatih, Istanbul, Turkey
| | - Georges Sinclair
- Department of Neurosurgery, Bezmialem Vakif University Medical School, Vatan Street, Fatih, Istanbul, Turkey; Department of Radiation Oncology, University Hospital Southampton, UK
| | - Mustafa Namik Oztanir
- Department of Neurosurgery, Bezmialem Vakif University Medical School, Vatan Street, Fatih, Istanbul, Turkey
| |
Collapse
|
12
|
Mohamed AA, Alshaibi R, Faragalla S, Mohamed Y, Lucke-Wold B. Updates on management of gliomas in the molecular age. World J Clin Oncol 2024; 15:178-194. [PMID: 38455131 PMCID: PMC10915945 DOI: 10.5306/wjco.v15.i2.178] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/06/2024] [Accepted: 01/25/2024] [Indexed: 02/20/2024] Open
Abstract
Gliomas are primary brain tumors derived from glial cells of the central nervous system, afflicting both adults and children with distinct characteristics and therapeutic challenges. Recent developments have ushered in novel clinical and molecular prognostic factors, reshaping treatment paradigms based on classification and grading, determined by histological attributes and cellular lineage. This review article delves into the diverse treatment modalities tailored to the specific grades and molecular classifications of gliomas that are currently being discussed and used clinically in the year 2023. For adults, the therapeutic triad typically consists of surgical resection, chemotherapy, and radiotherapy. In contrast, pediatric gliomas, due to their diversity, require a more tailored approach. Although complete tumor excision can be curative based on the location and grade of the glioma, certain non-resectable cases demand a chemotherapy approach usually involving, vincristine and carboplatin. Additionally, if surgery or chemotherapy strategies are unsuccessful, Vinblastine can be used. Despite recent advancements in treatment methodologies, there remains a need of exploration in the literature, particularly concerning the efficacy of treatment regimens for isocitrate dehydrogenase type mutant astrocytomas and fine-tuned therapeutic approaches tailored for pediatric cohorts. This review article explores into the therapeutic modalities employed for both adult and pediatric gliomas in the context of their molecular classification.
Collapse
Affiliation(s)
- Ali Ahmed Mohamed
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, United States
| | - Rakan Alshaibi
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, United States
| | - Steven Faragalla
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, United States
| | - Youssef Mohamed
- College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, United States
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32611, United States
| |
Collapse
|
13
|
Álvarez-Torres MDM, Balaña C, Fuster-García E, Puig J, García-Gómez JM. Unlocking Bevacizumab's Potential: rCBV max as a Predictive Biomarker for Enhanced Survival in Glioblastoma IDH-Wildtype Patients. Cancers (Basel) 2023; 16:161. [PMID: 38201588 PMCID: PMC10778147 DOI: 10.3390/cancers16010161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Aberrant vascular architecture and angiogenesis are hallmarks of glioblastoma IDH-wildtype, suggesting that these tumors are suitable for antiangiogenic therapy. Bevacizumab was FDA-approved in 2009 following promising results in two clinical trials. However, its use for recurrent glioblastomas remains a subject of debate, as it does not universally improve patient survival. PURPOSES In this study, we aimed to analyze the influence of tumor vascularity on the benefit provided by BVZ and propose preoperative rCBVmax at the high angiogenic tumor habitat as a predictive biomarker to select patients who can benefit the most. METHODS Clinical and MRI data from 106 patients with glioblastoma IDH-wildtype have been analyzed. Thirty-nine of them received BVZ, and the remaining sixty-seven did not receive a second-line treatment. The ONCOhabitats method was used to automatically calculate rCBV. RESULTS We found a median survival from progression of 305 days longer for patients with moderate vascular tumors who received BVZ than those who did not receive any second-line treatment. This contrasts with patients with high-vascular tumors who only presented a median survival of 173 days longer when receiving BVZ. Furthermore, better responses to BVZ were found for the moderate-vascular group with a higher proportion of patients alive at 6, 12, 18, and 24 months after progression. CONCLUSIONS We propose rCBVmax as a potential biomarker to select patients who can benefit more from BVZ after tumor progression. In addition, we propose a threshold of 7.5 to stratify patients into moderate- and high-vascular groups to select the optimal second-line treatment.
Collapse
Affiliation(s)
- María del Mar Álvarez-Torres
- Instituto Universitario de Tecnologías de la Información y Comunicaciones, Universitat Politècnica de Valencia, 46022 Valencia, Spain; (E.F.-G.); (J.M.G.-G.)
| | - Carmen Balaña
- Applied Research Group in Oncology (B-ARGO Group), Institut Catala d’Oncologia (ICO), Institut Investigació Germans Trias i Pujol (IGTP), 08916 Badalona, Spain;
| | - Elies Fuster-García
- Instituto Universitario de Tecnologías de la Información y Comunicaciones, Universitat Politècnica de Valencia, 46022 Valencia, Spain; (E.F.-G.); (J.M.G.-G.)
| | - Josep Puig
- Radiology Department CDI, Hospital Clinic of Barcelona, 08036 Barcelona, Spain;
| | - Juan Miguel García-Gómez
- Instituto Universitario de Tecnologías de la Información y Comunicaciones, Universitat Politècnica de Valencia, 46022 Valencia, Spain; (E.F.-G.); (J.M.G.-G.)
| |
Collapse
|
14
|
Chaudhuri A, Pash G, Hormuth DA, Lorenzo G, Kapteyn M, Wu C, Lima EABF, Yankeelov TE, Willcox K. Predictive digital twin for optimizing patient-specific radiotherapy regimens under uncertainty in high-grade gliomas. Front Artif Intell 2023; 6:1222612. [PMID: 37886348 PMCID: PMC10598726 DOI: 10.3389/frai.2023.1222612] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 09/07/2023] [Indexed: 10/28/2023] Open
Abstract
We develop a methodology to create data-driven predictive digital twins for optimal risk-aware clinical decision-making. We illustrate the methodology as an enabler for an anticipatory personalized treatment that accounts for uncertainties in the underlying tumor biology in high-grade gliomas, where heterogeneity in the response to standard-of-care (SOC) radiotherapy contributes to sub-optimal patient outcomes. The digital twin is initialized through prior distributions derived from population-level clinical data in the literature for a mechanistic model's parameters. Then the digital twin is personalized using Bayesian model calibration for assimilating patient-specific magnetic resonance imaging data. The calibrated digital twin is used to propose optimal radiotherapy treatment regimens by solving a multi-objective risk-based optimization under uncertainty problem. The solution leads to a suite of patient-specific optimal radiotherapy treatment regimens exhibiting varying levels of trade-off between the two competing clinical objectives: (i) maximizing tumor control (characterized by minimizing the risk of tumor volume growth) and (ii) minimizing the toxicity from radiotherapy. The proposed digital twin framework is illustrated by generating an in silico cohort of 100 patients with high-grade glioma growth and response properties typically observed in the literature. For the same total radiation dose as the SOC, the personalized treatment regimens lead to median increase in tumor time to progression of around six days. Alternatively, for the same level of tumor control as the SOC, the digital twin provides optimal treatment options that lead to a median reduction in radiation dose by 16.7% (10 Gy) compared to SOC total dose of 60 Gy. The range of optimal solutions also provide options with increased doses for patients with aggressive cancer, where SOC does not lead to sufficient tumor control.
Collapse
Affiliation(s)
- Anirban Chaudhuri
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, United States
| | - Graham Pash
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, United States
| | - David A. Hormuth
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, United States
- Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX, United States
| | - Guillermo Lorenzo
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, United States
- Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
| | - Michael Kapteyn
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, United States
| | - Chengyue Wu
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, United States
| | - Ernesto A. B. F. Lima
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, United States
- Texas Advanced Computing Center, The University of Texas at Austin, Austin, TX, United States
| | - Thomas E. Yankeelov
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, United States
- Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX, United States
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
- Department of Diagnostic Medicine, The University of Texas at Austin, Austin, TX, United States
- Department of Oncology, The University of Texas at Austin, Austin, TX, United States
- Department of Imaging Physics, MD Anderson Cancer Center, Houston, TX, United States
| | - Karen Willcox
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
15
|
Duan W, Xia S, Tang M, Lin M, Liu W, Wang Q. Targeting of endothelial cells in brain tumours. Clin Transl Med 2023; 13:e1433. [PMID: 37830128 PMCID: PMC10570772 DOI: 10.1002/ctm2.1433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/11/2023] [Accepted: 09/30/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND Aggressive brain tumours, whether primary gliomas or secondary metastases, are characterised by hypervascularisation and are fatal. Recent research has emphasised the crucial involvement of endothelial cells (ECs) in all brain tumour genesis and development events, with various patterns and underlying mechanisms identified. MAIN BODY Here, we highlight recent advances in knowledge about the contributions of ECs to brain tumour development, providing a comprehensive summary including descriptions of interactions between ECs and tumour cells, the heterogeneity of ECs and new models for research on ECs in brain malignancies. We also discuss prospects for EC targeting in novel therapeutic approaches. CONCLUSION Interventions targeting ECs, as an adjunct to other therapies (e.g. immunotherapies, molecular-targeted therapies), have shown promising clinical efficacy due to the high degree of vascularisation in brain tumours. Developing precise strategies to target tumour-associated vessels based on the heterogeneity of ECs is expected to improve anti-vascular efficacy.
Collapse
Affiliation(s)
- Wenzhe Duan
- Department of Respiratory MedicineThe Second HospitalDalian Medical UniversityDalianChina
| | - Shengkai Xia
- Department of Respiratory MedicineThe Second HospitalDalian Medical UniversityDalianChina
| | - Mengyi Tang
- Department of Respiratory MedicineThe Second HospitalDalian Medical UniversityDalianChina
| | - Manqing Lin
- Department of Respiratory MedicineThe Second HospitalDalian Medical UniversityDalianChina
| | - Wenwen Liu
- Cancer Translational Medicine Research CenterThe Second HospitalDalian Medical UniversityDalianChina
| | - Qi Wang
- Department of Respiratory MedicineThe Second HospitalDalian Medical UniversityDalianChina
- Cancer Translational Medicine Research CenterThe Second HospitalDalian Medical UniversityDalianChina
| |
Collapse
|
16
|
De Pietro R, Zaccaro L, Marampon F, Tini P, De Felice F, Minniti G. The evolving role of reirradiation in the management of recurrent brain tumors. J Neurooncol 2023; 164:271-286. [PMID: 37624529 PMCID: PMC10522742 DOI: 10.1007/s11060-023-04407-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023]
Abstract
Despite aggressive management consisting of surgery, radiation therapy (RT), and systemic therapy given alone or in combination, a significant proportion of patients with brain tumors will experience tumor recurrence. For these patients, no standard of care exists and management of either primary or metastatic recurrent tumors remains challenging.Advances in imaging and RT technology have enabled more precise tumor localization and dose delivery, leading to a reduction in the volume of health brain tissue exposed to high radiation doses. Radiation techniques have evolved from three-dimensional (3-D) conformal RT to the development of sophisticated techniques, including intensity modulated radiation therapy (IMRT), volumetric arc therapy (VMAT), and stereotactic techniques, either stereotactic radiosurgery (SRS) or stereotactic radiotherapy (SRT). Several studies have suggested that a second course of RT is a feasible treatment option in patients with a recurrent tumor; however, survival benefit and treatment related toxicity of reirradiation, given alone or in combination with other focal or systemic therapies, remain a controversial issue.We provide a critical overview of the current clinical status and technical challenges of reirradiation in patients with both recurrent primary brain tumors, such as gliomas, ependymomas, medulloblastomas, and meningiomas, and brain metastases. Relevant clinical questions such as the appropriate radiation technique and patient selection, the optimal radiation dose and fractionation, tolerance of the brain to a second course of RT, and the risk of adverse radiation effects have been critically discussed.
Collapse
Affiliation(s)
- Raffaella De Pietro
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Lucy Zaccaro
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Francesco Marampon
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Paolo Tini
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Francesca De Felice
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Giuseppe Minniti
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy.
- IRCCS Neuromed, Pozzilli (IS), Isernia, Italy.
| |
Collapse
|
17
|
Mantica M, Drappatz J, Lieberman F, Hadjipanayis CG, Lunsford LD, Niranjan A. Phase II study of border zone stereotactic radiosurgery with bevacizumab in patients with recurrent or progressive glioblastoma multiforme. J Neurooncol 2023; 164:179-190. [PMID: 37515669 DOI: 10.1007/s11060-023-04398-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023]
Abstract
PURPOSE Recurrent glioblastoma is universally fatal with limited effective treatment options. The aim of this phase 2 study of Border Zone SRS plus bevacizumab was to evaluate OS in patients with recurrent GBM. METHODS Patients with histologically confirmed GBM with recurrent disease who had received prior first-line treatment with fractionated radiotherapy and chemotherapy and eligible for SRS were enrolled. Bevacizumab 10 mg/kg was given day -1, day 14, and then every 14 days until disease progression. 1-14 days before BZ-SRS procedure, patients underwent brain MRI /MRS. MRS with measurement of choline-to-N-acetyl aspartate index (CNI) area ≥ 3 was targeted for SRS. RESULTS From 2015-2017, sixteen of planned 40 patients were enrolled. The median age was 62 (range, 48-74Y). 3/16 (0.188) participants experienced grade 2 toxicity. No AREs were reported. The mOS was 11.73 months compared to 8.74 months (P = 0.324) from date of SRS for the BZ-SRS and institutional historical controls, respectively. PFS-6 and OS-6 were 31.2% (p = 0.00294) and 81.2%(p = 0.058), respectively. Of 13 evaluable for best response: 1 CR (p = 0.077), 4 PR (p = 0.308), 7 SD (p = 0.538), and 1 PD (p = 0.077). 11/16 participants had MRS scans with an estimated probability that MRS changes a treatment plan of 0 (0, 0.285). CONCLUSION BZ-SRS with bevacizumab was feasible and well tolerated. There is no significant survival benefit using BZ-SRS with bevacizumab compared to institutional historical controls. Secondary analysis revealed a trend toward improved PFS-6, but not OS-6 after BZ-SRS. MRS scans did not result in changes to SRS treatment plans.
Collapse
Affiliation(s)
- Megan Mantica
- University of Pittsburgh Medical Center, 5150 Centre Avenue, Pittsburgh, PA, 15232, USA.
| | - Jan Drappatz
- University of Pittsburgh Medical Center, 5150 Centre Avenue, Pittsburgh, PA, 15232, USA
| | - Frank Lieberman
- University of Pittsburgh Medical Center, 5150 Centre Avenue, Pittsburgh, PA, 15232, USA
| | | | - L Dade Lunsford
- University of Pittsburgh Medical Center, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Ajay Niranjan
- University of Pittsburgh Medical Center, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| |
Collapse
|
18
|
Seidel C, Nicolay NH. [Re-irradiation and Bevacizumab - active combination for treatment of recurrent glioblastoma]. Strahlenther Onkol 2023; 199:604-606. [PMID: 37079088 DOI: 10.1007/s00066-023-02084-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2023] [Indexed: 04/21/2023]
Affiliation(s)
- Clemens Seidel
- Klinik und Poliklinik für Strahlentherapie, Universitätsklinikum Leipzig, Stephanstraße 9a, 04103, Leipzig, Deutschland.
| | - Nils H Nicolay
- Klinik und Poliklinik für Strahlentherapie, Universitätsklinikum Leipzig, Stephanstraße 9a, 04103, Leipzig, Deutschland
| |
Collapse
|
19
|
Awada H, Paris F, Pecqueur C. Exploiting radiation immunostimulatory effects to improve glioblastoma outcome. Neuro Oncol 2023; 25:433-446. [PMID: 36239313 PMCID: PMC10013704 DOI: 10.1093/neuonc/noac239] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Indexed: 11/14/2022] Open
Abstract
Cancer treatment protocols depend on tumor type, localization, grade, and patient. Despite aggressive treatments, median survival of patients with Glioblastoma (GBM), the most common primary brain tumor in adults, does not exceed 18 months, and all patients eventually relapse. Thus, novel therapeutic approaches are urgently needed. Radiotherapy (RT) induces a multitude of alterations within the tumor ecosystem, ultimately modifying the degree of tumor immunogenicity at GBM relapse. The present manuscript reviews the diverse effects of RT radiotherapy on tumors, with a special focus on its immunomodulatory impact to finally discuss how RT could be exploited in GBM treatment through immunotherapy targeting. Indeed, while further experimental and clinical studies are definitively required to successfully translate preclinical results in clinical trials, current studies highlight the therapeutic potential of immunotherapy to uncover novel avenues to fight GBM.
Collapse
Affiliation(s)
- Hala Awada
- Nantes Université, CRCI2NA, INSERM, CNRS, F-44000 Nantes, France.,Anti-Tumor Therapeutic Targeting Laboratory, Faculty of Sciences, Lebanese University, Hadath, Beirut, Lebanon
| | - François Paris
- Nantes Université, CRCI2NA, INSERM, CNRS, F-44000 Nantes, France.,Institut de Cancérologie de l'Ouest, Saint-Herblain, France
| | - Claire Pecqueur
- Nantes Université, CRCI2NA, INSERM, CNRS, F-44000 Nantes, France
| |
Collapse
|
20
|
Tsien CI, Pugh SL, Dicker AP, Raizer JJ, Matuszak MM, Lallana EC, Huang J, Algan O, Deb N, Portelance L, Villano JL, Hamm JT, Oh KS, Ali AN, Kim MM, Lindhorst SM, Mehta MP. NRG Oncology/RTOG1205: A Randomized Phase II Trial of Concurrent Bevacizumab and Reirradiation Versus Bevacizumab Alone as Treatment for Recurrent Glioblastoma. J Clin Oncol 2023; 41:1285-1295. [PMID: 36260832 PMCID: PMC9940937 DOI: 10.1200/jco.22.00164] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/07/2022] [Accepted: 08/16/2022] [Indexed: 11/20/2022] Open
Abstract
PURPOSE To assess whether reirradiation (re-RT) and concurrent bevacizumab (BEV) improve overall survival (OS) and/or progression-free survival (PFS), compared with BEV alone in recurrent glioblastoma (GBM). The primary objective was OS, and secondary objectives included PFS, response rate, and treatment adverse events (AEs) including delayed CNS toxicities. METHODS NRG Oncology/RTOG1205 is a prospective, phase II, randomized trial of re-RT and BEV versus BEV alone. Stratification factors included age, resection, and Karnofsky performance status (KPS). Patients with recurrent GBM with imaging evidence of tumor progression ≥ 6 months from completion of prior chemo-RT were eligible. Patients were randomly assigned 1:1 to re-RT, 35 Gy in 10 fractions, with concurrent BEV IV 10 mg/kg once in every 2 weeks or BEV alone until progression. RESULTS From December 2012 to April 2016, 182 patients were randomly assigned, of whom 170 were eligible. Patient characteristics were well balanced between arms. The median follow-up for censored patients was 12.8 months. There was no improvement in OS for BEV + RT, hazard ratio, 0.98; 80% CI, 0.79 to 1.23; P = .46; the median survival time was 10.1 versus 9.7 months for BEV + RT versus BEV alone. The median PFS for BEV + RT was 7.1 versus 3.8 months for BEV, hazard ratio, 0.73; 95% CI, 0.53 to 1.0; P = .05. The 6-month PFS rate improved from 29.1% (95% CI, 19.1 to 39.1) for BEV to 54.3% (95% CI, 43.5 to 65.1) for BEV + RT, P = .001. Treatment was well tolerated. There were a 5% rate of acute grade 3+ treatment-related AEs and no delayed high-grade AEs. Most patients died of recurrent GBM. CONCLUSION To our knowledge, NRG Oncology/RTOG1205 is the first prospective, randomized multi-institutional study to evaluate the safety and efficacy of re-RT in recurrent GBM using modern RT techniques. Overall, re-RT was shown to be safe and well tolerated. BEV + RT demonstrated a clinically meaningful improvement in PFS, specifically the 6-month PFS rate but no difference in OS.
Collapse
Affiliation(s)
| | - Stephanie L. Pugh
- NRG Oncology Statistics and Data Management Center, Philadelphia, PA
| | | | | | | | | | - Jiayi Huang
- Washington University School of Medicine in St Louis-Siteman Cancer Center, St. Louis, MO
| | - Ozer Algan
- University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Nimisha Deb
- St Luke's University Hospital & Health Network accruals Thomas Jefferson University Hospital, Bethlehem, PA
| | - Lorraine Portelance
- University of Miami Miller School of Medicine-Sylvester Comprehensive Cancer Center, Miami, FL
| | | | - John T. Hamm
- Norton Hospital Pavilion and Medical Campus, Louisville, KY
| | - Kevin S. Oh
- Dana-Farber/Harvard Cancer Center, Boston, MA
| | - Arif N. Ali
- The Hope Center accruals Emory University/Winship Cancer Institute, Dalton, GA
| | - Michelle M. Kim
- University of Michigan Comprehensive Cancer Center, Ann Arbor, MI
| | - Scott M. Lindhorst
- Medical University of South Carolina Minority Underserved NCORP, Charleston, SC
| | | |
Collapse
|
21
|
Matsuda M, Kohzuki H, Tsurubuchi T, Ishikawa E. Timing of bevacizumab administration after biopsy for unresectable newly diagnosed glioblastoma. Surg Neurol Int 2022; 13:583. [PMID: 36600767 PMCID: PMC9805652 DOI: 10.25259/sni_959_2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Background Recent studies have revealed that bevacizumab (BEV) can improve the survival of patients with newly diagnosed unresectable glioblastoma (GBM) with poor performance status. For patients who develop early clinical deterioration, early initiation of BEV would be beneficial. However, the safety and feasibility of early initiation of BEV remain to be determined because of the lack of studies addressing adverse events associated with BEV initiation <28 days after surgery. The aim of this study was to analyze the risks and benefits of early BEV administration after biopsy in patients with newly diagnosed GBM. Methods Thirty-one consecutive patients with newly diagnosed GBM who underwent biopsy followed by BEV administration were investigated. The relationships between the timing of BEV administration and treatment response, survival outcome, and adverse events were analyzed. Results Response rates based on the RANO criteria and overall survival times were similar between the early and standard BEV groups. No wound dehiscence was observed in the early BEV group, and only one case was observed in the standard BEV group. Patients in the early BEV group were more likely to have undergone biopsy with a smaller skin incision than those in the standard BEV group. Equivalent treatment effects of BEV were achieved in patients who developed early clinical deterioration and those without clinical deterioration. Conclusion Early BEV administration is effective in controlling early clinical deterioration and does not increase the risk of wound-healing complications. Further studies with larger numbers of patients are needed to validate our results.
Collapse
Affiliation(s)
- Masahide Matsuda
- Corresponding author: Masahide Matsuda, Department of Neurosurgery, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | | | | | | |
Collapse
|
22
|
Ciammella P, Cozzi S, Botti A, Giaccherini L, Sghedoni R, Orlandi M, Napoli M, Pascarella R, Pisanello A, Russo M, Cavallieri F, Ruggieri MP, Cavuto S, Savoldi L, Iotti C, Iori M. Safety of Inhomogeneous Dose Distribution IMRT for High-Grade Glioma Reirradiation: A Prospective Phase I/II Trial (GLIORAD TRIAL). Cancers (Basel) 2022; 14:cancers14194604. [PMID: 36230525 PMCID: PMC9562035 DOI: 10.3390/cancers14194604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Glioblastoma multiforme (GBM) is the most frequent primary malignant brain tumor, and despite advances in imaging techniques and treatment options, the outcome remains poor and recurrence is inevitable. Salvage therapy presents a challenge, and re-irradiation can be a therapeutic option in recurrent GBM. The decision-making process for re-irradiation is a challenge for radiation oncologists due to the expected toxicity of a second course of radiotherapy and the limited radiation tolerance of normal tissue; nevertheless, it is being increasingly used, as several studies have demonstrated its feasibility. The current study aimed to investigate the safety of moderate–high-voxel-based dose escalation radiotherapy in recurrent GBM patients after conventional concurrent chemoradiation. Twelve patients were enrolled in this prospective single-center study. Retreatment consisted of re-irradiation with a total dose range of 30–50 Gy over 5 days using the IMRT (arc VMAT) technique using dose painting planning. The treatment was well tolerated. No toxicities greater than 3 were recorded; only one patient had severe G3 acute toxicity, characterized by muscle weakness and fatigue. Median overall survival (OS2) and progression-free survival (PFS2) from the time of re-irradiation were 10.4 months and 5.7 months, respectively. Our phase I study demonstrated an acceptable tolerance profile of this approach, and the future prospective phase II study will analyze the efficacy in terms of PFS and OS. Abstract Glioblastoma multiforme (GBM) is the most aggressive astrocytic primary brain tumor, and concurrent temozolomide (TMZ) and radiotherapy (RT) followed by maintenance of adjuvant TMZ is the current standard of care. Despite advances in imaging techniques and multi-modal treatment options, the median overall survival (OS) remains poor. As an alternative to surgery, re-irradiation (re-RT) can be a therapeutic option in recurrent GBM. Re-irradiation for brain tumors is increasingly used today, and several studies have demonstrated its feasibility. Besides differing techniques, the published data include a wide range of doses, emphasizing that no standard approach exists. The current study aimed to investigate the safety of moderate–high-voxel-based dose escalation in recurrent GBM. From 2016 to 2019, 12 patients met the inclusion criteria and were enrolled in this prospective single-center study. Retreatment consisted of re-irradiation with a total dose of 30 Gy (up to 50 Gy) over 5 days using the IMRT (arc VMAT) technique. A dose painting by numbers (DPBN)/dose escalation plan were performed, and a continuous relation between the voxel intensity of the functional image set and the risk of recurrence in that voxel were used to define target and dose distribution. Re-irradiation was well tolerated in all treated patients. No toxicities greater than G3 were recorded; only one patient had severe G3 acute toxicity, characterized by muscle weakness and fatigue. Median overall survival (OS2) and progression-free survival (PFS2) from the time of re-irradiation were 10.4 months and 5.7 months, respectively; 3-, 6-, and 12-month OS2 were 92%, 75%, and 42%, respectively; and 3-, 6-, and 12-month PFS2 were 83%, 42%, and 8%, respectively. Our work demonstrated a tolerable tolerance profile of this approach, and the future prospective phase II study will analyze the efficacy in terms of PFS and OS.
Collapse
Affiliation(s)
- Patrizia Ciammella
- Radiation Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Salvatore Cozzi
- Radiation Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
- Correspondence: ; Tel.: +39-3297317608
| | - Andrea Botti
- Medical Physics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Lucia Giaccherini
- Radiation Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Roberto Sghedoni
- Medical Physics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Matteo Orlandi
- Medical Physics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Manuela Napoli
- Neuroradiology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Rosario Pascarella
- Neuroradiology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Anna Pisanello
- Neurology Unit, Neuromotor and Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Marco Russo
- Neurology Unit, Neuromotor and Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Francesco Cavallieri
- Neurology Unit, Neuromotor and Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Maria Paola Ruggieri
- Radiation Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Silvio Cavuto
- Clinical Trials and Statistics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Luisa Savoldi
- Clinical Trials and Statistics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Cinzia Iotti
- Radiation Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Mauro Iori
- Medical Physics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| |
Collapse
|
23
|
She L, Su L, Liu C. Bevacizumab combined with re-irradiation in recurrent glioblastoma. Front Oncol 2022; 12:961014. [PMID: 36046037 PMCID: PMC9423039 DOI: 10.3389/fonc.2022.961014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022] Open
Abstract
Background Glioblastoma is characterized by rich vasculature and abnormal vascular structure and function. Currently, there is no standard treatment for recurrent glioblastoma (rGBM). Bevacizumab (BEV) has established role of inhibiting neovascularization, alleviating hypoxia in the tumor area and activating the immune microenvironment. BEV may exert synergistic effects with re-irradiation (re-RT) to improve the tumor microenvironment for rGBM. Purpose The purpose of this study was to evaluate the safety, tolerability, and efficacy of a combination of BEV and re-RT for rGBM treatment. Methods In this retrospective study, a total of 26 rGBM patients with surgical pathologically confirmed glioblastoma and at least one event of recurrence were enrolled. All patients were treated with re-RT in combination with BEV. BEV was administered until progression or serious adverse events. Results Median follow-up was 21.9 months for all patients, whereas median progression-free survival (PFS) was 8.0 months (95% confidence interval [CI]: 6.5–9.5 months). In addition, the 6-month and 1-year PFS rates were 65.4% and 28.2%, respectively. The median overall survival (OS), 6-month OS rate, and 1-year OS rate were 13.6 months (95% CI: 10.2–17.0 months), 92.3%, and 67.5%, respectively. The patient showed good tolerance during the treatment with no grade > 3 grade side event and radiation necrosis occurrence rate of 0%. Combined treatment of gross total resection (GTR) before re-RT and concurrent temozolomide during re-RT was an independent prognostic factor that affected both OS and PFS in the whole cohort (OS: 0.067, 95% CI: 0.009–0.521, p = 0.010; PFS: 0.238, 95% CI: 0.076–0.744, p = 0.038). Conclusion In this study, re-RT combined with concurrent and maintenance BEV treatment was safe, tolerable, and effective in rGBM patients. Moreover, GTR before re-RT and selective concurrent temozolomide could further improve patient PFS and OS.
Collapse
Affiliation(s)
- Lei She
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, China.,Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Su
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Chao Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
24
|
Gregucci F, Surgo A, Carbonara R, Laera L, Ciliberti MP, Gentile MA, Caliandro M, Sasso N, Bonaparte I, Fanelli V, Tortora R, Paulicelli E, Surico G, Lombardi G, Signorelli F, Fiorentino A. Radiosurgery and Stereotactic Brain Radiotherapy with Systemic Therapy in Recurrent High-Grade Gliomas: Is It Feasible? Therapeutic Strategies in Recurrent High-Grade Gliomas. J Pers Med 2022; 12:1336. [PMID: 36013284 PMCID: PMC9410141 DOI: 10.3390/jpm12081336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 12/14/2022] Open
Abstract
PURPOSE For recurrent high-grade gliomas (HGG), no standard therapeutic approach has been reported; thus, surgery, chemotherapy, and re-irradiation (re-RT) may all be proposed. The aim of the study was to evaluate safety and efficacy of re-RT by radiosurgery or fractionated stereotactic radiotherapy (SRS/FSRT) in association to chemotherapy in patients with recurrent HGG. MATERIAL/METHODS All patients with histological diagnosis of HGG that suffered by recurrent disease diagnosed by magnetic resonance imaging (MRI), according to Response Assessment in Neuro-Oncology (RANO) criteria, after primary/adjuvant chemo-radiotherapy treatment and underwent to re-RT by SRS/FSRT were included in the analysis. Second-line chemotherapy was administered. Outcomes were evaluated by neurological examination and brain MRI performed 1 month after re-RT and then every 2-3 months. RESULTS From November 2019 to September 2021, 30 patients presenting recurrent HGG underwent re-RT. Median dose was 24 Gy (range 15-36 Gy), and median fractions was 5 (range 1-6). Twenty-one patients (70%) had RPA class ≤ IV. One patient had a histological diagnosis of anaplastic oligodendroglioma, 24 patients (80%) were affected by glioblastoma (GBM) including 3 cases of multifocal form, and 5 patients (17%) by anaplastic astrocytoma. Median time between primary/adjuvant RT and disease recurrence was 8 months. In six cases (20%) re-operation was performed, and in most cases (87%), a second line of systemic therapy was administrated. At a median follow-up time from recurrence of 13 months (range 6-56 months), 10 patients (33%) were alive: 2 patients with partial response disease, 7 patients with stable disease, and 1 patient with out-field progression disease. Of the 20 patients who died (67%), 15 (75%) died for progression disease and 5 (25%) for other causes (3 due to septic event, 1 due to thrombo-embolic event, and 1 due to car accident). Median OS and PFS after recurrence were 12.1 and 11.2 months. Six-month and one-year OS were, respectively, 81% and 51%. No acute or late neurological side effects grade ≥ 2 and no case of radio-necrosis were reported. One patient experienced, after reintervention and during Regorafenib treatment (administered 40 days after surgery), dehiscence of the surgical wound. In three cases, grade 2 distal paresthesia was reported. Grade 3-4 hematologic toxicity occurred in seven cases. Three case of grade 5 toxicities during chemotherapy were reported: three septic events and one thrombo-embolic event. CONCLUSION Re-RT with SRT/FSRT in association with second-line systemic therapy is a safe and feasible treatment for patients with HGG recurrence. Validation of these results by prospective studies is needed.
Collapse
Affiliation(s)
- Fabiana Gregucci
- Department of Radiation Oncology, Miulli General Regional Hospital, 70021 Acquaviva delle Fonti (BA), Italy
| | - Alessia Surgo
- Department of Radiation Oncology, Miulli General Regional Hospital, 70021 Acquaviva delle Fonti (BA), Italy
| | - Roberta Carbonara
- Department of Radiation Oncology, Miulli General Regional Hospital, 70021 Acquaviva delle Fonti (BA), Italy
| | - Letizia Laera
- Department of Medical Oncology, Miulli General Regional Hospital, 70021 Acquaviva delle Fonti (BA), Italy
| | - Maria Paola Ciliberti
- Department of Radiation Oncology, Miulli General Regional Hospital, 70021 Acquaviva delle Fonti (BA), Italy
| | - Maria Annunziata Gentile
- Department of Radiology, Miulli General Regional Hospital, 70021 Acquaviva delle Fonti (BA), Italy
| | - Morena Caliandro
- Department of Radiation Oncology, Miulli General Regional Hospital, 70021 Acquaviva delle Fonti (BA), Italy
| | - Nicola Sasso
- Department of Medical Oncology, Miulli General Regional Hospital, 70021 Acquaviva delle Fonti (BA), Italy
| | - Ilaria Bonaparte
- Department of Radiation Oncology, Miulli General Regional Hospital, 70021 Acquaviva delle Fonti (BA), Italy
| | - Vincenzo Fanelli
- Department of Neurosurgery, Miulli General Regional Hospital, 70021 Acquaviva delle Fonti (BA), Italy
| | - Romina Tortora
- Centro Orientamento Oncologico, Miulli General Regional Hospital, 70021 Acquaviva delle Fonti (BA), Italy
| | - Eleonora Paulicelli
- Department of Radiation Oncology, Miulli General Regional Hospital, 70021 Acquaviva delle Fonti (BA), Italy
| | - Giammarco Surico
- Department of Medical Oncology, Miulli General Regional Hospital, 70021 Acquaviva delle Fonti (BA), Italy
| | - Giuseppe Lombardi
- Department of Medical Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| | - Francesco Signorelli
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Division of Neurosurgery, University “Aldo Moro”, 70124 Bari, Italy
| | - Alba Fiorentino
- Department of Radiation Oncology, Miulli General Regional Hospital, 70021 Acquaviva delle Fonti (BA), Italy
| |
Collapse
|
25
|
Bendavid J, Modesto A. Radiation therapy and antiangiogenic therapy: Opportunities and challenges. Cancer Radiother 2022; 26:962-967. [PMID: 35989153 DOI: 10.1016/j.canrad.2022.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/21/2022] [Indexed: 10/15/2022]
Abstract
The importance of tumoral vascularization as a therapeutic target was first described in 1971 by Folkman. Anarchic vascularization in response to tumour hypoxia, especially mediated by vascular endothelial growth factor, represents a major target in the management of many cancers. The contribution of systemic anti-angiogenic treatments including humanized anti-VEGF monoclonal antibodies (bevacizumab) and tyrosine kinase inhibitors, whose effect on vascular normalization and correction of tumour hypoxia has been shown in preclinical studies to be enhancing the effect of radiotherapy. Early trials combining radiotherapy and antiangiogenics with a small number of patients have contradictory results and tend to put into perspective the opportunity that this synergistic association represents. The efficiency found must be tempered by some toxicity described, especially in association with high doses per fraction. The aim of this article is to present the main studies reporting the efficiency and safety of the combination of antiangiogenic drugs and radiotherapy, as well as the expected opportunities.
Collapse
Affiliation(s)
- J Bendavid
- Département de radiothérapie, Gustave-Roussy, 114, rue Édouard-Vaillant, 94805 Villejuif, France.
| | - A Modesto
- Département de radiothérapie, IUCT Oncopole, 1, avenue Irène-Jolio-Curie, 31100 Toulouse, France
| |
Collapse
|
26
|
Helis CA, Prim SN, Cramer CK, Strowd R, Lesser GJ, White JJ, Tatter SB, Laxton AW, Whitlow C, Lo HW, Debinski W, Ververs JD, Black PJ, Chan MD. Clinical Outcomes of Dose Escalated Re-Irradiation in Patients with Recurrent High Grade Glioma. Neurooncol Pract 2022; 9:390-401. [PMID: 36134018 PMCID: PMC9476990 DOI: 10.1093/nop/npac032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Background
Reirradiation for recurrent gliomas is a controversial treatment option with no clear standard dose or concurrent systemic therapy.
Methods
This series represents a single institution retrospective review of patients treated with re-irradiation for recurrent high grade glioma. After 2012, patients were commonly offered concurrent bevacizumab as a cytoprotective agent against radiation necrosis. Kaplan Meier method was used to estimate overall and progression-free survival. Cox proportional hazards regression was used to identify factors associated with overall and progression-free survival.
Results
Between 2001 and 2021, 52 patients underwent re-irradiation for a diagnosis of recurrent high grade glioma. 36 patients (69.2%) had a histologic diagnosis of glioblastoma at time of re-irradiation. The median BED10 (biologic equivalent dose 10 Gy) of re-irradiation was 53.1 Gy . Twenty-one patients (40.4%) received concurrent bevacizumab with re-irradiation. Median survival for the entire cohort and for glioblastoma at time of recurrence patients was 6.7 months and 6.0 months , respectively. For patients with glioblastoma at time of recurrence, completing re-irradiation (HR 0.03, p < 0.001), use of concurrent bevacizumab (HR 0.3, p=0.009), and the BED10 (HR 0.9, p=0.005) were predictive of overall survival. Nine patients developed Grade 3-5 toxicity; of these, 2 received concurrent bevacizumab and 7 did not (p=0.15).
Conclusion
High dose re-irradiation with concurrent bevacizumab is feasible in patients with recurrent gliomas. Concurrent bevacizumab and increasing radiation dose may improve survival in recurrent glioblastoma patients.
Collapse
Affiliation(s)
- Corbin A Helis
- Department of Radiation Oncology, Fort Belvoir Community Hospital, Fort Belvoir, VA
| | - Shih-Ni Prim
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Christina K Cramer
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Roy Strowd
- Department of Neurology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Glenn J Lesser
- Department of Medicine (Hematology & Oncology), Wake Forest School of Medicine, Winston-Salem, NC
| | - Jaclyn J White
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, NC
| | - Stephen B Tatter
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, NC
| | - Adrian W Laxton
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, NC
| | | | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Waldemar Debinski
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC
| | - James D Ververs
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Paul J Black
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Michael D Chan
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC
| |
Collapse
|
27
|
Safety and Efficacy of Hypofractionated Stereotactic Radiotherapy with Anlotinib Targeted Therapy for Glioblastoma at the First Recurrence: A Preliminary Report. Brain Sci 2022; 12:brainsci12040471. [PMID: 35448002 PMCID: PMC9032064 DOI: 10.3390/brainsci12040471] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 02/05/2023] Open
Abstract
(1) Background: Hypofractionated stereotactic radiotherapy (HSRT) and anti-vascular endothelial growth factor (VEGF) antibodies have been reported to have a promising survival benefit in recent studies. Anlotinib is a new oral VEGF receptor inhibitor. This report describes our experience using HSRT and anlotinib for recurrent glioblastoma (rGBM). (2) Methods: Between December 2019 and June 2020, rGBM patients were retrospectively analysed. Anlotinib was prescribed at 12 mg daily during HSRT. Adjuvant anlotinib was administered d1-14 every 3 weeks. The primary endpoint was the objective response rate (ORR). Secondary endpoints included overall survival (OS), progression-free survival (PFS) after salvage treatment, and toxicity. (3) Results: Five patients were enrolled. The prescribed dose was 25.0 Gy in 5 fractions. The median number of cycles of anlotinib was 21 (14–33). The ORR was 100%. Three (60%) patients had the best outcome of a partial response (PR), and 2 (40%) achieved a complete response (CR). One patient died of tumour progression at the last follow-up. Two patients had grade 2 hand-foot syndrome. (4) Conclusions: Salvage HSRT combined with anlotinib showed a favourable outcome and acceptable toxicity for rGBM. A prospective phase II study (NCT04197492) is ongoing to further investigate the regimen.
Collapse
|
28
|
Bodensohn R, Forbrig R, Quach S, Reis J, Boulesteix AL, Mansmann U, Hadi I, Fleischmann D, Mücke J, Holzgreve A, Albert N, Ruf V, Dorostkar M, Corradini S, Herms J, Belka C, Thon N, Niyazi M. MRI-based contrast clearance analysis shows high differentiation accuracy between radiation-induced reactions and progressive disease after cranial radiotherapy. ESMO Open 2022; 7:100424. [PMID: 35248822 PMCID: PMC9058918 DOI: 10.1016/j.esmoop.2022.100424] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 11/26/2022] Open
Abstract
Background Pseudoprogression (PsP) or radiation necrosis (RN) may frequently occur after cranial radiotherapy and show a similar imaging pattern compared with progressive disease (PD). We aimed to evaluate the diagnostic accuracy of magnetic resonance imaging-based contrast clearance analysis (CCA) in this clinical setting. Patients and methods Patients with equivocal imaging findings after cranial radiotherapy were consecutively included into this monocentric prospective study. CCA was carried out by software-based automated subtraction of imaging features in late versus early T1-weighted sequences after contrast agent application. Two experienced neuroradiologists evaluated CCA with respect to PsP/RN and PD being blinded for histological findings. The radiological assessment was compared with the histopathological results, and its accuracy was calculated statistically. Results A total of 33 patients were included; 16 (48.5%) were treated because of a primary brain tumor (BT), and 17 (51.1%) because of a secondary BT. In one patient, CCA was technically infeasible. The accuracy of CCA in predicting the histological result was 0.84 [95% confidence interval (CI) 0.67-0.95; one-sided P = 0.051; n = 32]. Sensitivity and specificity of CCA were 0.93 (95% CI 0.66-1.00) and 0.78 (95% CI 0.52-0.94), respectively. The accuracy in patients with secondary BTs was 0.94 (95% CI 0.71-1.00) and nonsignificantly higher compared with patients with primary BT with an accuracy of 0.73 (95% CI 0.45-0.92), P = 0.16. Conclusions In this study, CCA was a highly accurate, easy, and helpful method for distinguishing PsP or RN from PD after cranial radiotherapy, especially in patients with secondary tumors after radiosurgical treatment. CCA is accurate in distinguishing treatment reactions from true PD. CCA was more accurate for irradiated metastases than primary BTs. CCA is not feasible for lesions with no contrast media uptake.
Collapse
|
29
|
Patel A, Foreman M, Tabarestani A, Sheth S, Mumtaz M, Reddy A, Sharaf R, Lucke-Wold B. Endovascular Chemotherapy: Selective Targeting for Brain Cancer. INTERNATIONAL JOURNAL OF MEDICAL AND PHARMACEUTICAL RESEARCH 2022; 4:50-63. [PMID: 36713939 PMCID: PMC9879286 DOI: 10.5281/zenodo.7512303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Establishing an effective and robust management option for brain cancers has proven to bean elusive challenge for the fields of neurosurgery and neuro-oncology. Despite decades of research efforts to improve treatment outcomes and increase patient survivability, brain cancer remains among the most fatal of all cancer classes. A significant barrier to this endeavor is the blood-brain barrier, a major protective border for brain tissue that primarily precludes the optimal delivery of chemotherapeutic drugs to the patient's brain circulation through tight junction formations and selective transporter proteins. This issue is often compounded by tumor location, particularly in inoperable regions near functional brain parenchyma. These obstacles necessitate the development of selectively targeted delivery of chemotherapeutic agents, such as endovascular super-selective intra-arterial injections. Recent experimental studies demonstrate the effectiveness of focused ultrasound to unseal the blood-brain barrier selectively and reversibly. Together, these new technologies can be leveraged to circumvent the limited permeability of the blood-brain barrier, thus improving drug delivery to tumoral locations and potentially enabling a more effective treatment alternative to surgical resection. This review attempts to place into context the necessity of these newer selective chemotherapeutic modalities by briefly highlighting commonly encountered brain cancers and explaining the prominent challenges that face chemotherapy delivery, as well as describing the current preclinical and clinical progress in the development of facilitatory focused ultrasound with selective endovascular chemotherapy.
Collapse
Affiliation(s)
- Aashay Patel
- College of Medicine, University of Florida, Gainesville, FL
| | - Marco Foreman
- College of Medicine, University of Florida, Gainesville, FL
| | | | - Sohum Sheth
- College of Medicine, University of Florida, Gainesville, FL
| | | | - Akshay Reddy
- College of Medicine, University of Florida, Gainesville, FL
| | - Ramy Sharaf
- College of Medicine, University of Florida, Gainesville, FL
| | | |
Collapse
|
30
|
High grade gliomas. PROGRESS IN BRAIN RESEARCH 2022; 268:259-270. [DOI: 10.1016/bs.pbr.2021.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
31
|
Bai X, Liu X, Wen J. Efficacy of Bevacizumab in High-Grade Meningiomas: A Retrospective Clinical Study. Neuropsychiatr Dis Treat 2022; 18:1619-1627. [PMID: 35968510 PMCID: PMC9364983 DOI: 10.2147/ndt.s368740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE We investigated the role of bevacizumab (BV) in high-grade meningiomas (HGMs) by retrospective analysis. METHODS We retrospectively analyzed the clinical data of 139 patients with HGMs. The chi-square test was used to compare progression-free survival (PFS) and overall survival (OS) between patients who received BV and those who did not. According to whether they received BV treatment, we divided the patients into the BV group and non-BV group, and the effect of BV on PFS and OS was compared. In addition, we compared Karnofsky performance status (KPS) and steroid doses between the BV and non-BV groups. RESULTS There were statistically differences in PFS and OS between the BV and non-BV groups at 12 and 36 months after surgery (P<0.05). However, there was no significant difference in PFS and OS between the two groups at 60 months postoperatively (P>0.05). Using survival curves drawn by the Kaplan Meier method, we found that the PFS and OS of the BV group were greater than those of the non-BV group, and the difference was statistically significant (P<0.05). CONCLUSION BV could improve PFS and OS at 12 and 36 months after surgery in patients with HGMs. In addition, BV was associated with lower preoperative steroid use.
Collapse
Affiliation(s)
- Xuexue Bai
- Neurosurgery, The First Affiliated Hospital, Jinan University, Guangzhou, People's Republic of China
| | - Xiaomin Liu
- Neurosurgery, Tianjin Huanhu Hospital, Tianjin, People's Republic of China
| | - Jun Wen
- Neurosurgery, The First Affiliated Hospital, Jinan University, Guangzhou, People's Republic of China
| |
Collapse
|
32
|
Lovo EE, Moreira A, Barahona KC, Ramirez J, Campos F, Tobar C, Caceros V, Sallabanda M, Sallabanda K. Stereotactic Radiosurgery for Recurrent Glioblastoma Multiforme: A Retrospective Multi-Institutional Experience. Cureus 2021; 13:e18480. [PMID: 34754642 PMCID: PMC8569687 DOI: 10.7759/cureus.18480] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
Introduction Glioblastoma multiforme (GBM) is the most common and lethal primary malignancy of the central nervous system. Despite standard therapy protocols, such as aggressive surgical resection, radiotherapy, and chemotherapy, GBM's aggressive nature produces low survival rates. Tumor recurrence and progression are nearly universal. Stereotactic radiosurgery (SRS) has been studied as an alternative treatment for recurrent GBM as a minimally invasive option that might prolong survival. The objective of this retrospective study was to evaluate the efficacy of SRS as a treatment modality considering overall survival (OS) in patients with GBM who had tumor recurrence and were treated with SRS in three different institutions. Materials and methods We retrospectively reviewed patients who received SRS for recurrent GBM between 1992 and 2020. A total of 46 patients were included in this study. We recorded age at diagnosis, the extent of surgical resection, radiation treatment, chemotherapy regimen, Karnofsky Performance Status at the time of SRS and at last follow-up, use of adjuvant chemotherapy after SRS, and response evaluation criteria in solid tumors. Primary endpoints were OS after initial diagnosis and OS from the date of the SRS procedure. Results Patients received SRS at a median of 10 months (range, 1 to 94 months) after their initial diagnoses. Median follow-up was seven months from the time of SRS and 22.8 months since diagnosis. The estimated median OS for all patients was nine months (range, 1 to 42 months) after SRS and 23.8 months (range, 4 to 102 months) after diagnosis. Median OS after SRS was seven months for patients treated from 1992 to 2011 and nine months for those treated from 2012 to 2020 (p = 0.008; X2 = 7.008). Median OS for younger patients (i.e., those aged <50 years) was 37.1 months compared to 18.6 months for older patients (i.e., those aged >50 years; p = 0.04; X2 = 3.870). Patients who received SRS after 10 months since diagnosis had a median OS of 36.2 months versus those who received SRS sooner than 10 months, who had an OS of 15 months (p = 0.004; X2 = 8.145). Radiosurgery doses larger than 15 Gy correlated with a median survival of nine months versus seven months in those treated with doses <15 Gy (p = 0.01; X2 = 6.756). Lastly, patients who received adjuvant bevacizumab (BEV) and or chemotherapy after SRS had a median survival of 12 months versus seven months for patients who did not receive any additional therapy after SRS (p = 0.04; X2 = 4.196). Conclusion SRS focal recurrent GBM in selected patients may improve OS, especially when combined with adjuvant therapy such as BEV and chemotherapy. Other prognostic variables proved relevant such as patients' age, the dose delivered, and surgery-to-SRS time that translates to the time of recurrence. Our results were consistent with the published literature and added to the accumulating evidence regarding SRS in recurrent GBM; however, extensive, multi-center studies are required to make definitive recommendations on this treatment approach.
Collapse
Affiliation(s)
- Eduardo E Lovo
- Radiosurgery/Neurosurgery, International Cancer Center, Diagnostic Hospital, San Salvador, SLV
| | - Alejandra Moreira
- Neurosurgery, International Cancer Center, Diagnostic Hospital, San Salvador, SLV
| | - Kaory C Barahona
- Radiation Oncology, International Cancer Center, Diagnostic Hospital, San Salvador, SLV
| | | | - Fidel Campos
- Radiosurgery, International Cancer Center, Diagnostic Hospital, San Salvador, SLV
| | - Carlos Tobar
- Radiation Oncology, International Cancer Center, Diagnostic Hospital, San Salvador, SLV
| | - Victor Caceros
- Radiosurgery, International Cancer Center, Diagnostic Hospital, San Salvador, SLV
| | | | - Kita Sallabanda
- Radiosurgery/Neurosurgery, Hospital Clinico Universitario San Carlos, Madrid, ESP
| |
Collapse
|
33
|
Krivoshapkin A, Gaytan A, Abdullaev O, Salim N, Sergeev G, Marmazeev I, Cesnulis E, Killeen T, Tyuryn V, Kiselev R, Syomin P, Spallone A. Prospective comparative study of intraoperative balloon electronic brachytherapy versus resection with multidisciplinary adjuvant therapy for recurrent glioblastoma. Surg Neurol Int 2021; 12:517. [PMID: 34754567 PMCID: PMC8571379 DOI: 10.25259/sni_494_2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/30/2021] [Indexed: 12/16/2022] Open
Abstract
Background Intraoperative balloon electronic brachytherapy (IBEB) may provide potential benefit for local control of recurrent cerebral glioblastomas (GBMs). Methods This is a preliminary report of an open-label, prospective, comparative cohort study conducted in two neurosurgical centers with ongoing follow-up. At recurrence, patients at one center (n = 15) underwent reresection with IBEB while, at the second center (n = 15), control subjects underwent re-resection with various accepted second-line adjuvant chemoradiotherapy options. A comparative analysis of overall survival (OS) and local progression-free survival (LPFS) following re-resection was performed. Exploratory subgroup analysis based on postoperative residual contrast-enhanced volume status was also done. Results In the IBEB group, median LPFS after re-resection was significantly longer than in the control group (8.0 vs. 6.0 months; log rank χ2 = 4.93, P = 0.026, P < 0.05). In addition, the median OS after second resection in the IBEB group was also significantly longer than in the control group (11.0 vs. 8.0 months; log rank χ2 = 4.23, P = 0.04, P < 0.05). Conclusion These hypothesis-generating results from a small cohort of subjects suggest putative clinical benefit in OS and LPFS associated with maximal safe re-resection of recurrent GBM with IBEB versus re-resection and standard adjuvant therapy, a hypothesis that deserves further testing in an appropriately powered clinical trial.
Collapse
Affiliation(s)
- Aleksey Krivoshapkin
- Department of Neurosurgery, Novosibirsk State Medical University, Novosibirsk, Russian Federation
| | - Aleksey Gaytan
- Department of Neurosurgery, Peoples' Friendship University of Russia, Moscow, Russian Federation
| | - Orkhan Abdullaev
- Department of Neurosurgery, European Medical Center, Moscow, Russian Federation
| | - Nidal Salim
- Department of Neurosurgery, European Medical Center, Moscow, Russian Federation
| | - Gleb Sergeev
- Department of Neurosurgery, European Medical Center, Moscow, Russian Federation
| | - Ilya Marmazeev
- Department of Neurosurgery, European Medical Center, Moscow, Russian Federation
| | - Evaldas Cesnulis
- Department of Neurosurgery, Klinik Hirslanden, Zürich, Switzerland
| | - Tim Killeen
- Department of Neurosurgery, Klinik Hirslanden, Zürich, Switzerland
| | - Vladimir Tyuryn
- Department of Neurosurgery, Novosibirsk State Medical University, Novosibirsk, Russian Federation
| | - Roman Kiselev
- Department of Neurosurgery, Meshalkin National Medical Research Center, Novosibirsk, Russian Federation
| | - Pavel Syomin
- Department of Neurosurgery, Meshalkin National Medical Research Center, Novosibirsk, Russian Federation
| | - Aldo Spallone
- Department of Neurosurgery, European Medical Center, Moscow, Russian Federation
| |
Collapse
|
34
|
A multi-center prospective study of re-irradiation with bevacizumab and temozolomide in patients with bevacizumab refractory recurrent high-grade gliomas. J Neurooncol 2021; 155:297-306. [PMID: 34689306 DOI: 10.1007/s11060-021-03875-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/11/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE Survival is dismal for bevacizumab refractory high-grade glioma patients. We prospectively investigated the efficacy of re-irradiation, bevacizumab, and temozolomide in bevacizumab-naïve and bevacizumab-exposed recurrent high-grade glioma, without volume limitations, in a single arm trial. METHODS Recurrent high-grade glioma patients were stratified based on WHO grade (4 vs. < 4) and prior exposure to bevacizumab (yes vs. no). Eligible patients received radiation using a simultaneous integrated boost technique (55 Gy to enhancing disease, 45 Gy to non-enhancing disease in 25 fractions) with bevacizumab 10 mg/kg every 2 weeks IV and temozolomide 75 mg/m2 daily followed by maintenance bevacizumab 10 mg/kg every 2 weeks and temozolomide 50 mg/m2 daily for 6 weeks then a 2 week holiday until progression. Primary endpoint was overall survival. Quality of life was studied using FACT-Br and FACT-fatigue scales. RESULTS Fifty-four patients were enrolled. The majority (n = 36, 67%) were bevacizumab pre-exposed GBM. Median OS for all patients was 8.5 months and 7.9 months for the bevacizumab pre-exposed GBM group. Patients ≥ 36 months from initial radiation had a median OS of 13.3 months compared to 7.5 months for those irradiated < 36 months earlier (p < 0.01). FACT-Br and FACT-Fatigue scores initially declined during radiation but returned to pretreatment baseline. Treatment was well tolerated with 5 patients experiencing > grade 3 lymphopenia and 2 with > grade 3 thrombocytopenia. No radiographic or clinical radiation necrosis occurred. CONCLUSIONS Re-irradiation with bevacizumab and temozolomide is a safe and feasible salvage treatment for patients with large volume bevacizumab-refractory high-grade glioma. Patients further from their initial radiotherapy may derive greater benefit with this regimen.
Collapse
|
35
|
García-Cabezas S, Rivin del Campo E, Solivera-Vela J, Palacios-Eito A. Re-irradiation for high-grade gliomas: Has anything changed? World J Clin Oncol 2021; 12:767-786. [PMID: 34631441 PMCID: PMC8479348 DOI: 10.5306/wjco.v12.i9.767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/21/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023] Open
Abstract
Optimal management after recurrence or progression of high-grade gliomas is still undefined and remains a challenge for neuro-oncology multidisciplinary teams. Improved radiation therapy techniques, new imaging methods, published experience, and a better radiobiological knowledge of brain tissue have positioned re-irradiation (re-RT) as an option for many of these patients. Decisions must be individualized, taking into account the pattern of relapse, previous treatment, and functional status, as well as the patient’s preferences and expected quality of life. Many questions remain unanswered with respect to re-RT: Who is the most appropriate candidate, which dose and fractionation are most effective, how to define the target volume, which imaging technique is best for planning, and what is the optimal timing? This review will focus on describing the most relevant studies that include re-RT as salvage therapy, with the aim of simplifying decision-making and designing the best available therapeutic strategy.
Collapse
Affiliation(s)
- Sonia García-Cabezas
- Department of Radiation Oncology, Reina Sofia University Hospital, Cordoba 14004, Spain
| | | | - Juan Solivera-Vela
- Department of Neurosurgery, Reina Sofia University Hospital, Cordoba 14004, Spain
| | - Amalia Palacios-Eito
- Department of Radiation Oncology, Reina Sofia University Hospital, Cordoba 14004, Spain
| |
Collapse
|
36
|
Fleischmann DF, Schön R, Corradini S, Bodensohn R, Hadi I, Hofmaier J, Forbrig R, Thon N, Dorostkar M, Belka C, Niyazi M. Multifocal high-grade glioma radiotherapy safety and efficacy. Radiat Oncol 2021; 16:165. [PMID: 34454558 PMCID: PMC8400399 DOI: 10.1186/s13014-021-01886-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/13/2021] [Indexed: 11/20/2022] Open
Abstract
Background Multifocal manifestation of high-grade glioma is a rare disease with very unfavourable prognosis. The pathogenesis of multifocal glioma and pathophysiological differences to unifocal glioma are not fully understood. The optimal treatment of patients suffering from multifocal high-grade glioma is not defined in the current guidelines, therefore individual case series may be helpful as guidance for clinical decision-making. Methods Patients with multifocal high-grade glioma treated with conventionally fractionated radiation therapy (RT) in our institution with or without concomitant chemotherapy between April 2011 and April 2019 were retrospectively analysed. Multifocality was neuroradiologically assessed and defined as at least two independent contrast-enhancing foci in the MRI T1 contrast-enhanced sequence. IDH mutational status and MGMT methylation status were assessed from histopathology records. GTV, PTV as well as the V30Gy, V45Gy and D2% volumes of the brain were analysed. Overall and progression-free survival were calculated from the diagnosis until death and from start of radiation therapy until diagnosis of progression of disease in MRI for all patients. Results 20 multifocal glioma cases (18 IDH wild-type glioblastoma cases, one diffuse astrocytic glioma, IDH wild-type case with molecular features of glioblastoma and one anaplastic astrocytoma, IDH wild-type case) were included into the analysis. Resection was performed in two cases and stereotactic biopsy only in 18 cases before the start of radiation therapy. At the start of radiation therapy patients were 61 years old in median (range 42–84 years). Histopathological examination showed IDH wild-type in all cases and MGMT promotor methylation in 11 cases (55%). Prescription schedules were 60 Gy (2 Gy × 30), 59.4 Gy (1.8 Gy × 33), 55 Gy (2.2 Gy × 25) and 50 Gy (2.5 Gy × 20) in 15, three, one and one cases, respectively. Concomitant temozolomide chemotherapy was applied in 16 cases, combined temozolomide/lomustine chemotherapy was applied in one case and concomitant bevacizumab therapy in one case. Median number of GTVs was three. Median volume of the sum of the GTVs was 26 cm3. Median volume of the PTV was 425.7 cm3 and median PTV to brain ratio 32.8 percent. Median D2% of the brain was 61.5 Gy (range 51.2–62.7) and median V30Gy and V45 of the brain were 59.9 percent (range 33–79.7) and 40.7 percent (range 14.9–64.1), respectively. Median survival was eight months (95% KI 3.6–12.4 months) and median progression free survival after initiation of RT five months (95% CI 2.8–7.2 months). Grade 2 toxicities were detected in eight cases and grade 3 toxicities in four cases consisting of increasing edema in three cases and one new-onset seizure. One grade 4 toxicity was detected, which was febrile neutropenia related to concomitant chemotherapy. Conclusion Conventionally fractionated RT with concomitant chemotherapy could safely be applied in multifocal high-grade glioma in this case series despite large irradiation treatment fields.
Collapse
Affiliation(s)
- Daniel Felix Fleischmann
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), partner site, Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rudolph Schön
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Raphael Bodensohn
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Indrawati Hadi
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Jan Hofmaier
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Robert Forbrig
- Institute of Neuroradiology, University Hospital, LMU Munich, Munich, Germany
| | - Niklas Thon
- Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany
| | - Mario Dorostkar
- Institute of Neuropathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), partner site, Munich, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany. .,German Cancer Consortium (DKTK), partner site, Munich, Germany.
| |
Collapse
|
37
|
Yonezawa H, Ohno M, Igaki H, Miyakita Y, Takahashi M, Tamura Y, Shima S, Matsushita Y, Ichimura K, Narita Y. Outcomes of salvage fractionated re-irradiation combined with bevacizumab for recurrent high-grade gliomas that progressed after bevacizumab treatment*. Jpn J Clin Oncol 2021; 51:1028-1035. [PMID: 33959771 DOI: 10.1093/jjco/hyab063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/15/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND There is no standard treatment for patients with recurrent high-grade gliomas who progress after bevacizumab treatment. We evaluated the outcomes of re-irradiation combined with bevacizumab for patients refractory to bevacizumab. METHODS Between January 2015 and September 2019, patients with progression after bevacizumab treatment were treated with re-irradiation combined with bevacizumab (25 Gy in five fractions). RESULTS Fourteen patients [glioblastoma, isocitrate dehydrogenase (IDH) wild type (N = 6), glioblastoma, IDH mutant (N = 4), anaplastic astrocytoma, IDH wild type (N = 1), anaplastic astrocytoma, IDH mutant (N = 1), glioblastoma, not otherwise specified (N = 1) and radiologically diagnosed brainstem glioma (N = 1)] were included in this study. The median survival and progression-free survival times after re-irradiation combined with bevacizumab were 6.1 and 3.8 months, respectively. The 6-month survival and progression-free survival rates were 54.5 and 15.7%, respectively. Patients with a Karnofsky performance status of ≥70 tended to have longer median survival time (9.3 vs. 5.4 months, respectively; P = 0.058) and had a significantly longer median progression-free survival time (4.2 vs. 3.7 months, respectively; P = 0.046) than those with a Karnofsky performance status of <70. Four patients (28.6%) achieved a complete or partial radiological response, and three patients (21.4%) had an improved Karnofsky performance status after re-irradiation combined with bevacizumab. Grade 3/4 toxicities included leukopenia in four patients (28.6%), hypertension in three (21.4%), proteinuria in one (7.1%) and gastrointestinal hemorrhage in one (7.1%). CONCLUSIONS Re-irradiation combined with bevacizumab for patients with recurrent high-grade gliomas who progress after bevacizumab treatment was feasible. Re-irradiation combined with bevacizumab is a potential treatment option, especially for patients with a Karnofsky performance status of ≥70.
Collapse
Affiliation(s)
- Hajime Yonezawa
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Makoto Ohno
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Hiroshi Igaki
- Department of Radiation Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yasuji Miyakita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Masamichi Takahashi
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yukie Tamura
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Satoshi Shima
- Department of Radiation Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yuko Matsushita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Koichi Ichimura
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
38
|
Radiotherapy versus combination radiotherapy-bevacizumab for the treatment of recurrent high-grade glioma: a systematic review. Acta Neurochir (Wien) 2021; 163:1921-1934. [PMID: 33796887 PMCID: PMC8195900 DOI: 10.1007/s00701-021-04794-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/25/2021] [Indexed: 02/07/2023]
Abstract
Background High-grade gliomas (HGG) comprise the most common primary adult brain cancers and universally recur. Combination of re-irradiation therapy (reRT) and bevacizumab (BVZ) therapy for recurrent HGG is common, but its reported efficacy is mixed. Objective To assess clinical outcomes after reRT ± BVZ in recurrent HGG patients receiving stereotactic radiosurgery (SRS), hypofractionated radiosurgery (HFSRT), or fully fractionated radiotherapy (FFRT). Methods We performed a systematic review of PubMed, Web of Science, Scopus, Embase, and Cochrane databases, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We identified studies reporting outcomes for patients with recurrent HGG treated via reRT ± BVZ. Cohorts were stratified by BVZ treatment status and re-irradiation modality (SRS, HFSRT, and FFRT). Outcome variables were overall survival (OS), progression-free survival (PFS), and radiation necrosis (RN). Results Data on 1399 patients was analyzed, with 954 patients receiving reRT alone and 445 patients receiving reRT + BVZ. All patients initially underwent standard-of-care therapy for their primary HGG. In a multivariate analysis that adjusted for median patient age, WHO grade, RT dosing, reRT fractionation regimen, time between primary and re-irradiation, and re-irradiation target volume, BVZ therapy was associated with significantly improved OS (2.51, 95% CI [0.11, 4.92] months, P = .041) but no significant improvement in PFS (1.40, 95% CI [− 0.36, 3.18] months, P = .099). Patients receiving BVZ also had significantly lower rates of RN (2.2% vs 6.5%, P < .001). Conclusions Combination of reRT + BVZ may improve OS and reduce RN rates in recurrent HGG, but further controlled studies are needed to confirm these effects. Supplementary Information The online version contains supplementary material available at 10.1007/s00701-021-04794-3.
Collapse
|
39
|
Sahebjam S, Forsyth PA, Tran ND, Arrington JA, Macaulay R, Etame AB, Walko CM, Boyle T, Peguero EN, Jaglal M, Mokhtari S, Enderling H, Raghunand N, Gatewood T, Long W, Dzierzeski JL, Evernden B, Robinson T, Wicklund MC, Kim S, Thompson ZJ, Chen DT, Chinnaiyan P, Yu HHM. Hypofractionated stereotactic re-irradiation with pembrolizumab and bevacizumab in patients with recurrent high-grade gliomas: results from a phase I study. Neuro Oncol 2021; 23:677-686. [PMID: 33173935 DOI: 10.1093/neuonc/noaa260] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Radiotherapy may synergize with programmed cell death 1 (PD1)/PD1 ligand (PD-L1) blockade. The purpose of this study was to determine the recommended phase II dose, safety/tolerability, and preliminary efficacy of combining pembrolizumab, an anti-PD1 monoclonal antibody, with hypofractionated stereotactic irradiation (HFSRT) and bevacizumab in patients with recurrent high-grade gliomas (HGGs). METHODS Eligible subjects with recurrent glioblastoma or anaplastic astrocytoma were treated with pembrolizumab (100 or 200 mg based on dose level Q3W) concurrently with HFSRT (30 Gy in 5 fractions) and bevacizumab 10 mg/kg Q2W. RESULTS Thirty-two patients were enrolled (bevacizumab-naïve, n = 24; bevacizumab-resistant, n = 8). The most common treatment-related adverse events (TRAEs) were proteinuria (40.6%), fatigue (25%), increased alanine aminotransferase (25%), and hypertension (25%). TRAEs leading to discontinuation occurred in 1 patient who experienced a grade 3 elevation of aspartate aminotransferase. In the bevacizumab-naïve cohort, 20 patients (83%) had a complete response or partial response. The median overall survival (OS) and progression-free survival (PFS) were 13.45 months (95% CI: 9.46-18.46) and 7.92 months (95% CI: 6.31-12.45), respectively. In the bevacizumab-resistant cohort, PR was achieved in 5 patients (62%). Median OS was 9.3 months (95% CI: 8.97-18.86) with a median PFS of 6.54 months (95% CI: 5.95-18.86). The majority of patients (n = 20/26; 77%) had tumor-cell/tumor-microenvironment PD-L1 expression <1%. CONCLUSIONS The combination of HFSRT with pembrolizumab and bevacizumab in patients with recurrent HGG is generally safe and well tolerated. These findings merit further investigation of HFSRT with immunotherapy in HGGs.
Collapse
Affiliation(s)
- Solmaz Sahebjam
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,University of South Florida, Tampa, Florida
| | - Peter A Forsyth
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,University of South Florida, Tampa, Florida
| | - Nam D Tran
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,University of South Florida, Tampa, Florida
| | - John A Arrington
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,University of South Florida, Tampa, Florida
| | - Robert Macaulay
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,University of South Florida, Tampa, Florida
| | - Arnold B Etame
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,University of South Florida, Tampa, Florida
| | - Christine M Walko
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,University of South Florida, Tampa, Florida
| | - Theresa Boyle
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,University of South Florida, Tampa, Florida
| | - Edwin N Peguero
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,University of South Florida, Tampa, Florida
| | - Michael Jaglal
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,University of South Florida, Tampa, Florida
| | - Sepideh Mokhtari
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,University of South Florida, Tampa, Florida
| | - Heiko Enderling
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,University of South Florida, Tampa, Florida
| | - Natarajan Raghunand
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,University of South Florida, Tampa, Florida
| | - Tyra Gatewood
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Wendy Long
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | | | | | - Timothy Robinson
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,University of South Florida, Tampa, Florida
| | | | - Sungjune Kim
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,University of South Florida, Tampa, Florida
| | | | - Dung-Tsa Chen
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Prakash Chinnaiyan
- Beaumont Health and Oakland University School of Medicine, Royal Oak, Michigan, USA
| | - Hsiang-Hsuan Michael Yu
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,University of South Florida, Tampa, Florida
| |
Collapse
|
40
|
Kawabata S, Suzuki M, Hirose K, Tanaka H, Kato T, Goto H, Narita Y, Miyatake SI. Accelerator-based BNCT for patients with recurrent glioblastoma: a multicenter phase II study. Neurooncol Adv 2021; 3:vdab067. [PMID: 34151269 PMCID: PMC8209606 DOI: 10.1093/noajnl/vdab067] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background Boron neutron capture therapy (BNCT) utilizes tumor-selective particle radiation. This study aimed to assess the safety and efficacy of accelerator-based BNCT (AB-BNCT) using a cyclotron-based neutron generator (BNCT 30) and 10B-boronophenylalanine (SPM-011) in patients with recurrent malignant glioma (MG) (primarily glioblastoma [GB]). Methods This multi-institutional, open-label, phase II clinical trial involved 27 recurrent MG cases, including 24 GB cases, who were enrolled from February 2016 to June 2018. The study was conducted using the abovementioned AB-BNCT system, with 500 mg/kg SPM-011 (study code: JG002). The patients were bevacizumab-naïve and had recurrent MG after standard treatment. The primary endpoint was the 1-year survival rate, and the secondary endpoints were overall survival (OS) and progression-free survival (PFS). Results were compared to those of a previous Japanese domestic bevacizumab trial for recurrent GB (JO22506). Results The 1-year survival rate and median OS of the recurrent GB cases in this trial were 79.2% (95% CI: 57.0–90.8) and 18.9 months (95% CI: 12.9–not estimable), respectively, whereas those of JO22506 were 34.5% (90% CI: 20.0–49.0) and 10.5 months (95% CI: 8.2–12.4), respectively. The median PFS was 0.9 months (95% CI: 0.8–1.0) by the RANO criteria. The most prominent adverse event was brain edema. Twenty-one of 27 cases were treated with bevacizumab following progressive disease. Conclusions AB-BNCT demonstrated acceptable safety and prolonged survival for recurrent MG. AB-BNCT may increase the risk of brain edema due to re-irradiation for recurrent MG; however, this appears to be controlled well with bevacizumab.
Collapse
Affiliation(s)
- Shinji Kawabata
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| | - Minoru Suzuki
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Osaka, Japan
| | - Katsumi Hirose
- Southern Tohoku BNCT Research Center, Koriyama, Fukushima, Japan
| | - Hiroki Tanaka
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Osaka, Japan
| | - Takahiro Kato
- Southern Tohoku BNCT Research Center, Koriyama, Fukushima, Japan
| | - Hiromi Goto
- Department of Neurosurgery, Southern Tohoku Research Institute for Neuroscience, Koriyama, Fukushima, Japan
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Shin-Ichi Miyatake
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| |
Collapse
|
41
|
Cs-131 brachytherapy for patients with recurrent glioblastoma combined with bevacizumab avoids radiation necrosis while maintaining local control. Brachytherapy 2021; 19:705-712. [PMID: 32928486 DOI: 10.1016/j.brachy.2020.06.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/01/2020] [Accepted: 06/16/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Re-irradiation of recurrent glioblastoma (GBM) may delay further recurrence but re-irradiation increases the risk of radionecrosis (RN). Salvage therapy should focus on balancing local control (LC) and toxicity. We report the results of using intraoperative Cesium-131 (Cs-131) brachytherapy for recurrent GBM in a population of patients who also received bevacizumab. METHODS AND MATERIALS Twenty patients with recurrent GBM underwent maximally safe neurosurgical resection with Cs-131 brachytherapy between 2010 and 2015. Eighty Gy was prescribed to 0.5 cm from the surface of the resection cavity. All patients previously received adjuvant radiotherapy and temozolomide, and received bevacizumab before or after salvage brachytherapy. Seven of 20 (35%) tumors were multiply recurrent and had been previously salvaged with external beam radiotherapy. Patients received MRI scans every 2 months monitored for recurrence, progression, and RN. RESULTS Median tumor diameter was 4.65 cm (range, 1.2-6.3 cm). Median number of seeds pace was 41 (range, 20-74) with total seed activity 96.8U (range, 41.08-201.3U). At a median followup of 19 months, crude LC was 85% and median overall survival was 9 months (range, 5-26 months). There were two postoperative wound infections (10%), three seizures (15%), and 0% incidence of RN. CONCLUSIONS Our study demonstrates that while LC and survival are similar to other studies of postoperative external beam radiotherapy, no RN occurred in any of these patients, including 7 multiply re-irradiated patients. Of interest, there were patients with multiple recurrences whose survival extended beyond 20 months. These findings suggest that the use of highly conformal Cs-131 brachytherapy is a promising treatment for patients with recurrent GBM with minimal risk of development of RN.
Collapse
|
42
|
Abstract
The standard of care treatment for glioblastoma is surgical resection followed by radiotherapy to 60 Gy with concurrent and adjuvant temozolomide with or without tumor-treating fields. Advanced imaging techniques are under evaluation to better guide radiotherapy target volume delineation and allow for dose escalation. Particle therapy, in the form of protons, carbon ions, and boron neutron capture therapy, are being assessed as strategies to improve the radiotherapeutic ratio. Stereotactic, hypofractionated, pulsed-reduced dose-rate, and particle radiotherapy are re-irradiation techniques each uniquely suited for different clinical scenarios. Novel radiotherapy approaches, such as FLASH, represent promising advancements in radiotherapy for glioblastoma.
Collapse
Affiliation(s)
- Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA; Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.
| | - Martin C Tom
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA; Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Minesh P Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA; Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| |
Collapse
|
43
|
De Maria L, Terzi di Bergamo L, Conti A, Hayashi K, Pinzi V, Murai T, Lanciano R, Burneikiene S, Buglione di Monale M, Magrini SM, Fontanella MM. CyberKnife for Recurrent Malignant Gliomas: A Systematic Review and Meta-Analysis. Front Oncol 2021; 11:652646. [PMID: 33854978 PMCID: PMC8039376 DOI: 10.3389/fonc.2021.652646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/15/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Possible treatment strategies for recurrent malignant gliomas include surgery, chemotherapy, radiotherapy, and combined treatments. Among different reirradiation modalities, the CyberKnife System has shown promising results. We conducted a systematic review of the literature and a meta-analysis to establish the efficacy and safety of CyberKnife treatment for recurrent malignant gliomas. METHODS We searched PubMed, MEDLINE, and EMBASE from 2000 to 2021 for studies evaluating the safety and efficacy of CyberKnife treatment for recurrent WHO grade III and grade IV gliomas of the brain. Two independent reviewers selected studies and abstracted data. Missing information was requested from the authors via email correspondence. The primary outcomes were median Overall Survival, median Time To Progression, and median Progression-Free Survival. We performed subgroup analyses regarding WHO grade and chemotherapy. Besides, we analyzed the relationship between median Time To Recurrence and median Overall Survival from CyberKnife treatment. The secondary outcomes were complications, local response, and recurrence. Data were analyzed using random-effects meta-analysis. RESULTS Thirteen studies reporting on 398 patients were included. Median Overall Survival from initial diagnosis and CyberKnife treatment was 22.6 months and 8.6 months. Median Time To Progression and median Progression-Free Survival from CyberKnife treatment were 6.7 months and 7.1 months. Median Overall Survival from CyberKnife treatment was 8.4 months for WHO grade IV gliomas, compared to 11 months for WHO grade III gliomas. Median Overall Survival from CyberKnife treatment was 4.4 months for patients who underwent CyberKnife treatment alone, compared to 9.5 months for patients who underwent CyberKnife treatment plus chemotherapy. We did not observe a correlation between median Time To Recurrence and median Overall Survival from CyberKnife. Rates of acute neurological and acute non-neurological side effects were 3.6% and 13%. Rates of corticosteroid dependency and radiation necrosis were 18.8% and 4.3%. CONCLUSIONS Reirradiation of recurrent malignant gliomas with the CyberKnife System provides encouraging survival rates. There is a better survival trend for WHO grade III gliomas and for patients who undergo combined treatment with CyberKnife plus chemotherapy. Rates of complications are low. Larger prospective studies are warranted to provide more accurate results.
Collapse
Affiliation(s)
- Lucio De Maria
- Unit of Neurosurgery, University of Brescia and ASST Spedali Civili, Brescia, Italy
| | | | - Alfredo Conti
- Unit of Neurosurgery, Alma Mater Studiorum University of Bologna and IRCCS Istituto delle Scienze Neurologiche, Bologna, Italy
| | - Kazuhiko Hayashi
- Unit of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Valentina Pinzi
- Unit of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Taro Murai
- Unit of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | | | | | | | - Stefano Maria Magrini
- Unit of Radiation Oncology, University of Brescia and ASST Spedali Civili, Brescia, Italy
| | | |
Collapse
|
44
|
Minniti G, Niyazi M, Alongi F, Navarria P, Belka C. Current status and recent advances in reirradiation of glioblastoma. Radiat Oncol 2021; 16:36. [PMID: 33602305 PMCID: PMC7890828 DOI: 10.1186/s13014-021-01767-9] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/11/2021] [Indexed: 12/12/2022] Open
Abstract
Despite aggressive management consisting of maximal safe surgical resection followed by external beam radiation therapy (60 Gy/30 fractions) with concomitant and adjuvant temozolomide, approximately 90% of WHO grade IV gliomas (glioblastomas, GBM) will recur locally within 2 years. For patients with recurrent GBM, no standard of care exists. Thanks to the continuous improvement in radiation science and technology, reirradiation has emerged as feasible approach for patients with brain tumors. Using stereotactic radiosurgery (SRS) or stereotactic radiotherapy (SRT), either hypofractionated or conventionally fractionated schedules, several studies have suggested survival benefits following reirradiation of patients with recurrent GBM; however, there are still questions to be answered about the efficacy and toxicity associated with a second course of radiation. We provide a clinical overview on current status and recent advances in reirradiation of GBM, addressing relevant clinical questions such as the appropriate patient selection and radiation technique, optimal dose fractionation, reirradiation tolerance of the brain and the risk of radiation necrosis.
Collapse
Affiliation(s)
- Giuseppe Minniti
- Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico le Scotte, 53100, Siena, Italy. .,IRCCS Neuromed, Pozzilli, IS, Italy.
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Filippo Alongi
- Advanced Radiation Oncology Department, Cancer Care Center, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, VR, Italy
| | - Piera Navarria
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Hospital-IRCCS, Rozzano, MI, Italy
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
45
|
Guan Y, Xiong J, Pan M, Shi W, Li J, Zhu H, Gong X, Li C, Mei G, Liu X, Pan L, Dai J, Wang Y, Wang E, Wang X. Safety and efficacy of Hypofractionated stereotactic radiosurgery for high-grade Gliomas at first recurrence: a single-center experience. BMC Cancer 2021; 21:123. [PMID: 33546642 PMCID: PMC7863415 DOI: 10.1186/s12885-021-07856-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/11/2021] [Indexed: 12/20/2022] Open
Abstract
Background The optimal treatment for recurrent high-grade gliomas (rHGGs) remains uncertain. This study aimed to investigate the efficacy and safety of hypofractionated stereotactic radiosurgery (HSRS) as a first-line salvage treatment for in-field recurrence of high-grade gliomas. Methods Between January 2016 and October 2019, 70 patients with rHGG who underwent HSRS were retrospectively analysed. The primary endpoint was overall survival (OS), and secondary endpoints included both progression-free survival (PFS) and adverse events, which were assessed according to Common Toxicity Criteria Adverse Events (CTCAE) version 5. The prognostic value of key clinical features (age, performance status, planning target volume, dose, use of bevacizumab) was evaluated. Results A total of 70 patients were included in the study. Forty patients were male and 30 were female. Forty-nine had an initial diagnosis of glioblastoma (GBM), and the rest (21) were confirmed to be WHO grade 3 gliomas. The median planning target volume (PTV) was 16.68 cm3 (0.81–121.96 cm3). The median prescribed dose was 24 Gy (12–30 Gy) in 4 fractions (2–6 fractions). The median baseline of Karnofsky Performance Status (KPS) was 70 (40–90). With a median follow-up of 12.1 months, the median overall survival after salvage treatment was 17.6 months (19.5 and 14.6 months for grade 3 and 4 gliomas, respectively; p = .039). No grade 3 or higher toxicities was recorded. Multivariate analysis showed that concurrent bevacizumab with radiosurgery and KPS > 70 were favourable prognostic factors for grade 4 patients with HGG. Conclusions Salvage HSRS showed a favourable outcome and acceptable toxicity for rHGG. A prospective phase II study (NCT04197492) is ongoing to further investigate the value of hypofractionated stereotactic radiosurgery (HSRS) in rHGG. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-07856-y.
Collapse
Affiliation(s)
- Yun Guan
- CyberKnife Center, Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road (M), Shanghai, 200040, China.,Neurosurgical Institute of Fudan University, 12 Wulumuqi Road (M), Shanghai, 200040, China.,Shanghai Clinical Medical Center of Neurosurgery, 12 Wulumuqi Road (M), Shanghai, 200040, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, 12 Wulumuqi Road (M), Shanghai, 200040, China
| | - Ji Xiong
- Department of pathology, Huashan Hospital, Fudan University, 12 Wulumuqi Road (M), Shanghai, 200040, China
| | - Mingyuan Pan
- CyberKnife Center, Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road (M), Shanghai, 200040, China.,Neurosurgical Institute of Fudan University, 12 Wulumuqi Road (M), Shanghai, 200040, China.,Shanghai Clinical Medical Center of Neurosurgery, 12 Wulumuqi Road (M), Shanghai, 200040, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, 12 Wulumuqi Road (M), Shanghai, 200040, China
| | - Wenyin Shi
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jing Li
- CyberKnife Center, Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road (M), Shanghai, 200040, China.,Neurosurgical Institute of Fudan University, 12 Wulumuqi Road (M), Shanghai, 200040, China.,Shanghai Clinical Medical Center of Neurosurgery, 12 Wulumuqi Road (M), Shanghai, 200040, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, 12 Wulumuqi Road (M), Shanghai, 200040, China
| | - Huaguang Zhu
- CyberKnife Center, Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road (M), Shanghai, 200040, China.,Neurosurgical Institute of Fudan University, 12 Wulumuqi Road (M), Shanghai, 200040, China.,Shanghai Clinical Medical Center of Neurosurgery, 12 Wulumuqi Road (M), Shanghai, 200040, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, 12 Wulumuqi Road (M), Shanghai, 200040, China
| | - Xiu Gong
- CyberKnife Center, Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road (M), Shanghai, 200040, China.,Neurosurgical Institute of Fudan University, 12 Wulumuqi Road (M), Shanghai, 200040, China.,Shanghai Clinical Medical Center of Neurosurgery, 12 Wulumuqi Road (M), Shanghai, 200040, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, 12 Wulumuqi Road (M), Shanghai, 200040, China
| | - Chao Li
- CyberKnife Center, Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road (M), Shanghai, 200040, China.,Neurosurgical Institute of Fudan University, 12 Wulumuqi Road (M), Shanghai, 200040, China.,Shanghai Clinical Medical Center of Neurosurgery, 12 Wulumuqi Road (M), Shanghai, 200040, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, 12 Wulumuqi Road (M), Shanghai, 200040, China
| | - Guanghai Mei
- CyberKnife Center, Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road (M), Shanghai, 200040, China.,Neurosurgical Institute of Fudan University, 12 Wulumuqi Road (M), Shanghai, 200040, China.,Shanghai Clinical Medical Center of Neurosurgery, 12 Wulumuqi Road (M), Shanghai, 200040, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, 12 Wulumuqi Road (M), Shanghai, 200040, China
| | - Xiaoxia Liu
- CyberKnife Center, Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road (M), Shanghai, 200040, China.,Neurosurgical Institute of Fudan University, 12 Wulumuqi Road (M), Shanghai, 200040, China.,Shanghai Clinical Medical Center of Neurosurgery, 12 Wulumuqi Road (M), Shanghai, 200040, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, 12 Wulumuqi Road (M), Shanghai, 200040, China
| | - Li Pan
- CyberKnife Center, Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road (M), Shanghai, 200040, China.,Neurosurgical Institute of Fudan University, 12 Wulumuqi Road (M), Shanghai, 200040, China.,Shanghai Clinical Medical Center of Neurosurgery, 12 Wulumuqi Road (M), Shanghai, 200040, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, 12 Wulumuqi Road (M), Shanghai, 200040, China
| | - Jiazhong Dai
- CyberKnife Center, Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road (M), Shanghai, 200040, China.,Neurosurgical Institute of Fudan University, 12 Wulumuqi Road (M), Shanghai, 200040, China.,Shanghai Clinical Medical Center of Neurosurgery, 12 Wulumuqi Road (M), Shanghai, 200040, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, 12 Wulumuqi Road (M), Shanghai, 200040, China
| | - Yang Wang
- CyberKnife Center, Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road (M), Shanghai, 200040, China.,Neurosurgical Institute of Fudan University, 12 Wulumuqi Road (M), Shanghai, 200040, China.,Shanghai Clinical Medical Center of Neurosurgery, 12 Wulumuqi Road (M), Shanghai, 200040, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, 12 Wulumuqi Road (M), Shanghai, 200040, China
| | - Enmin Wang
- CyberKnife Center, Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road (M), Shanghai, 200040, China. .,Neurosurgical Institute of Fudan University, 12 Wulumuqi Road (M), Shanghai, 200040, China. .,Shanghai Clinical Medical Center of Neurosurgery, 12 Wulumuqi Road (M), Shanghai, 200040, China. .,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, 12 Wulumuqi Road (M), Shanghai, 200040, China.
| | - Xin Wang
- CyberKnife Center, Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road (M), Shanghai, 200040, China. .,Neurosurgical Institute of Fudan University, 12 Wulumuqi Road (M), Shanghai, 200040, China. .,Shanghai Clinical Medical Center of Neurosurgery, 12 Wulumuqi Road (M), Shanghai, 200040, China. .,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, 12 Wulumuqi Road (M), Shanghai, 200040, China.
| |
Collapse
|
46
|
Abstract
Glioblastoma (GBM) is infiltrative neoplasm with limited treatment options and poor overall survival. Stereotactic radiosurgery (SRS) allows spatially precise and conformal delivery of high doses of radiation. Salvage SRS for locally recurrent GBM was shown to improve patient survival and have more favorable safety profile than repeated surgical resection. Boost SRS after fractionated radiation therapy is sometimes attempted; however, Radiation Therapy Oncology Group 93-05 randomized clinical trial did not demonstrate benefits of upfront SRS that was administered before fractionated radiation. Administration of bevacizumab with SRS is associated with improved survival and can allow SRS dose escalation.
Collapse
Affiliation(s)
- Adomas Bunevicius
- Department of Neurosurgery, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Jason P Sheehan
- Department of Neurosurgery, University of Virginia Health System, Charlottesville, VA 22908, USA.
| |
Collapse
|
47
|
Thrall KD, Mahendra S, Jackson MK. A gottingen minipig model of radiation-induced coagulopathy. Int J Radiat Biol 2020; 97:S63-S72. [PMID: 32924712 DOI: 10.1080/09553002.2020.1820600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE Total body irradiation of the Gottingen minipig results in a characteristic hematopoietic response, including anemia, neutropenia, lymphocytopenia, and thrombocytopenia. Currently, there are no well-characterized large or small animal models for radiation-induced thrombocytopenia. The study described here using the Gottingen minipig was focused on understanding which aspects of the coagulation cascade leads to radiation-induced coagulopathy. In this study, multiple clinical pathology parameters were determined prior to and for 45-days following total body irradiation using a 6 MV photon linear accelerator. MATERIALS AND METHODS Following irradiation, frequent analyses of conventional hematology and coagulation parameters provided time-course information on the onset and recovery of thrombocytopenia. In addition, thromboelastography (TEG) was utilized to monitor coagulation dysfunction, namely clotting time, clot formation time, clot strength, and fibrinolysis. Coagulation factor activity levels were measured for factors II, V, VII, VIII, IX, X, XI, XII, XIII, Protein C, fibrin monomers, antiplasmin and D-dimer using a Siemen's coagulation analyzer to provide time course information of changes in activity post irradiation exposure. RESULTS These analyses revealed that in total body irradiated minipigs, TEG tracings demonstrate long R (time to initial clot formation) and K (time to achieve a certain clot strength) times, and low alpha-angle (rate of clot formation) and MA (overall stability of the clot) during onset of thrombocytopenia (typically post irradiation day 10-15). Low alpha-angle and MA directly correlated with decreased platelet counts. A long R time is suggestive of a deficiency in clotting factors and was compared to measured activity levels of individual coagulation factors. The data indicates that coagulation factors are significantly changed early after irradiation exposure prior to thrombocytopenia and factors VIII, XI, XII and XIII are markedly altered during the critical point of thrombocytopenia. CONCLUSION These data support the continued use of multiple approaches to evaluate the coagulation cascade in order to provide the most meaningful interpretation of the hematopoietic changes that occur post irradiation.
Collapse
|
48
|
Tan AC, Ashley DM, López GY, Malinzak M, Friedman HS, Khasraw M. Management of glioblastoma: State of the art and future directions. CA Cancer J Clin 2020; 70:299-312. [PMID: 32478924 DOI: 10.3322/caac.21613] [Citation(s) in RCA: 1181] [Impact Index Per Article: 236.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/05/2020] [Accepted: 04/17/2020] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma is the most common malignant primary brain tumor. Overall, the prognosis for patients with this disease is poor, with a median survival of <2 years. There is a slight predominance in males, and incidence increases with age. The standard approach to therapy in the newly diagnosed setting includes surgery followed by concurrent radiotherapy with temozolomide and further adjuvant temozolomide. Tumor-treating fields, delivering low-intensity alternating electric fields, can also be given concurrently with adjuvant temozolomide. At recurrence, there is no standard of care; however, surgery, radiotherapy, and systemic therapy with chemotherapy or bevacizumab are all potential options, depending on the patient's circumstances. Supportive and palliative care remain important considerations throughout the disease course in the multimodality approach to management. The recently revised classification of glioblastoma based on molecular profiling, notably isocitrate dehydrogenase (IDH) mutation status, is a result of enhanced understanding of the underlying pathogenesis of disease. There is a clear need for better therapeutic options, and there have been substantial efforts exploring immunotherapy and precision oncology approaches. In contrast to other solid tumors, however, biological factors, such as the blood-brain barrier and the unique tumor and immune microenvironment, represent significant challenges in the development of novel therapies. Innovative clinical trial designs with biomarker-enrichment strategies are needed to ultimately improve the outcome of patients with glioblastoma.
Collapse
Affiliation(s)
- Aaron C Tan
- Division of Medical Oncology, National Cancer Center Singapore, Singapore
| | - David M Ashley
- The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, North Carolina, USA
| | - Giselle Y López
- The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, North Carolina, USA
- Department of Pathology, Duke University, Durham, North Carolina, USA
| | - Michael Malinzak
- The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, North Carolina, USA
- Department of Radiology, Duke University, Durham, North Carolina, USA
| | - Henry S Friedman
- The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, North Carolina, USA
| | - Mustafa Khasraw
- The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, North Carolina, USA
| |
Collapse
|
49
|
Bovi JA, Prah MA, Retzlaff AA, Schmainda KM, Connelly JM, Rand SD, Marszalkowski CS, Mueller WM, Siker ML, Schultz CJ. Pulsed Reduced Dose Rate Radiotherapy in Conjunction With Bevacizumab or Bevacizumab Alone in Recurrent High-grade Glioma: Survival Outcomes. Int J Radiat Oncol Biol Phys 2020; 108:979-986. [PMID: 32599030 PMCID: PMC8655709 DOI: 10.1016/j.ijrobp.2020.06.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 04/07/2020] [Accepted: 06/08/2020] [Indexed: 11/26/2022]
Abstract
Purpose: Dismal prognosis and limited treatment options for recurrent high-grade glioma have provoked interest in various forms of reirradiation. Pulsed reduced dose rate radiation therapy (pRDR) is a promising technique that exploits low-dose hyper-radiosensitivity of proliferating tumor cells while sparing adjacent nonproliferating normal brain tissue. Large radiation treatment volumes can thus be used to target both contrast-enhancing and FLAIR abnormalities thought to harbor recurrent gross and microscopic disease, respectively. The aim of this retrospective study was to determine whether the addition of pRDR to bevacizumab improves survival over bevacizumab alone for recurrent high-grade glioma. Methods and Materials: Eighty patients with recurrent high-grade glioma were included in this study; 47 patients received bevacizumab monotherapy (BEV), and 33 patients received pRDR with bevacizumab (BEV/pRDR). Progression-free survival (PFS) and overall survival were compared between the BEV and BEV/pRDR groups. Regression analysis was performed to identify and control for confounding influences on survival analyses. Results: Significant (P <.05) advantages in PFS (12 vs 4 months; hazard ratio = 2.37) and OS (16 vs. 9 months; hazard ratio = 1.68) were observed with BEV/pRDR compared with BEV alone. Conclusions: This retrospective analysis suggests that treatment with pRDR in addition to bevacizumab could significantly prolong PFS and overall survival compared with bevacizumab alone for recurrent high-grade glioma.
Collapse
Affiliation(s)
- Joseph A Bovi
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin.
| | - Melissa A Prah
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Amber A Retzlaff
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Kathleen M Schmainda
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Scott D Rand
- Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Wade M Mueller
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Malika L Siker
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Christopher J Schultz
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
50
|
Cohen AL, Anker CJ, Johnson B, Burt LM, Shrieve DC, Salzman K, Jensen R, Boucher K, Colman H. Repeat radiation with bevacizumab and minocycline in bevacizumab-refractory high grade gliomas: a prospective phase 1 trial. J Neurooncol 2020; 148:577-585. [PMID: 32506371 PMCID: PMC7438283 DOI: 10.1007/s11060-020-03551-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/30/2020] [Indexed: 02/06/2023]
Abstract
Introduction There are no effective treatments for gliomas after progression on radiation, temozolomide, and bevacizumab. Microglia activation may be involved in radiation resistance and can be inhibited by the brain penetrating antibiotic minocycline. In this phase 1 trial, we examined the safety and effect on survival, symptom burden, and neurocognitive function of reirradiation, minocycline, and bevacizumab. Methods The trial used a 3 + 3 design for dose escalation followed by a ten person dose expansion. Patients received reirradiation with dosing based on radiation oncologist judgment, bevacizumab 10 mg/kg IV every two weeks, and oral minocycline twice a day. Symptom burden was measured using MDASI-BT. Neurocognitive function was measured using the COGSTATE battery. Results The maximum tolerated dose of minocycline was 400 mg twice a day with no unexpected toxicities. The PFS3 was 64.6%, and median overall survival was 6.4 months. Symptom burden and neurocognitive function did not decline in the interval between treatment completion and tumor progression. Conclusions Minocycline 400 mg orally twice a day with bevacizumab and reirradiation is well tolerated by physician and patient reported outcomes in people with gliomas that progress on bevacizumab.
Collapse
Affiliation(s)
- Adam L Cohen
- Division of Medical Oncology, University of Utah School of Medicine, Salt Lake City, UT, USA. .,Huntsman Cancer Institute, Salt Lake City, UT, USA.
| | - Christopher J Anker
- Division of Radiation Oncology, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | | | - Lindsay M Burt
- Huntsman Cancer Institute, Salt Lake City, UT, USA.,Department of Radiation Oncology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Dennis C Shrieve
- Huntsman Cancer Institute, Salt Lake City, UT, USA.,Department of Radiation Oncology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Karen Salzman
- Huntsman Cancer Institute, Salt Lake City, UT, USA.,Department of Radiology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Randy Jensen
- Huntsman Cancer Institute, Salt Lake City, UT, USA.,Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Ken Boucher
- Division of Medical Oncology, University of Utah School of Medicine, Salt Lake City, UT, USA.,Department of Epidemiology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Howard Colman
- Huntsman Cancer Institute, Salt Lake City, UT, USA.,Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|