1
|
Nigam R, Field M, Harris G, Barton M, Carolan M, Metcalfe P, Holloway L. Automated detection, delineation and quantification of whole-body bone metastasis using FDG-PET/CT images. Phys Eng Sci Med 2023; 46:851-863. [PMID: 37126152 DOI: 10.1007/s13246-023-01258-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/11/2023] [Indexed: 05/02/2023]
Abstract
Non-small cell lung cancer (NSCLC) patients with the metastatic spread of disease to the bone have high morbidity and mortality. Stereotactic ablative body radiotherapy increases the progression free survival and overall survival of these patients with oligometastases. FDG-PET/CT, a functional imaging technique combining positron emission tomography (PET) with 18 F-fluorodeoxyglucose (FDG) and computer tomography (CT) provides improved staging and identification of treatment response. It is also associated with reduction in size of the radiotherapy tumour volume delineation compared with CT based contouring in radiotherapy, thus allowing for dose escalation to the target volume with lower doses to the surrounding organs at risk. FDG-PET/CT is increasingly being used for the clinical management of NSCLC patients undergoing radiotherapy and has shown high sensitivity and specificity for the detection of bone metastases in these patients. Here, we present a software tool for detection, delineation and quantification of bone metastases using FDG-PET/CT images. The tool extracts standardised uptake values (SUV) from FDG-PET images for auto-segmentation of bone lesions and calculates volume of each lesion and associated mean and maximum SUV. The tool also allows automatic statistical validation of the auto-segmented bone lesions against the manual contours of a radiation oncologist. A retrospective review of FDG-PET/CT scans of more than 30 candidate NSCLC patients was performed and nine patients with one or more metastatic bone lesions were selected for the present study. The SUV threshold prediction model was designed by splitting the cohort of patients into a subset of 'development' and 'validation' cohorts. The development cohort yielded an optimum SUV threshold of 3.0 for automatic detection of bone metastases using FDG-PET/CT images. The validity of the derived optimum SUV threshold on the validation cohort demonstrated that auto-segmented and manually contoured bone lesions showed strong concordance for volume of bone lesion (r = 0.993) and number of detected lesions (r = 0.996). The tool has various applications in radiotherapy, including but not limited to studies determining optimum SUV threshold for accurate and standardised delineation of bone lesions and in scientific studies utilising large patient populations for instance for investigation of the number of metastatic lesions that can be treated safety with an ablative dose of radiotherapy without exceeding the normal tissue toxicity.
Collapse
Affiliation(s)
- R Nigam
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, 2522, Australia.
- Ingham Institute for Applied Medical Research, Liverpool, NSW, 2170, Australia.
- Illawarra Cancer Care Centre, Wollongong Hospital, Wollongong, NSW, 2500, Australia.
| | - M Field
- Ingham Institute for Applied Medical Research, Liverpool, NSW, 2170, Australia
- Liverpool and Macarthur Cancer Therapy Centre, Liverpool, NSW, 2170, Australia
- South Western Sydney Clinical Campus, School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| | - G Harris
- Chris O'Brien Lifehouse, Camperdown, NSW, 2050, Australia
| | - M Barton
- Ingham Institute for Applied Medical Research, Liverpool, NSW, 2170, Australia
- Liverpool and Macarthur Cancer Therapy Centre, Liverpool, NSW, 2170, Australia
- South Western Sydney Clinical Campus, School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| | - M Carolan
- Illawarra Cancer Care Centre, Wollongong Hospital, Wollongong, NSW, 2500, Australia
| | - P Metcalfe
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, 2522, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW, 2170, Australia
| | - L Holloway
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, 2522, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW, 2170, Australia
- Liverpool and Macarthur Cancer Therapy Centre, Liverpool, NSW, 2170, Australia
- South Western Sydney Clinical Campus, School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
- Institute of Medical Physics, University of Sydney, Camperdown, NSW, 2505, Australia
| |
Collapse
|
2
|
Lee TH, Ryoo HG, Lee R, Paeng JC, Chung H, Kim HJ. Comparison of endoscopically determined gross tumor volume and metabolic tumor volume in esophageal cancer. Medicine (Baltimore) 2021; 100:e26338. [PMID: 34128879 PMCID: PMC8213324 DOI: 10.1097/md.0000000000026338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/24/2021] [Indexed: 01/04/2023] Open
Abstract
The purpose of this study is to compare the longitudinal location of endoscopically-defined gross tumor volume (GTV) and positron emission tomography-based metabolic tumor volume (MTV) of esophageal cancer.A retrospective review of medical records was performed of the nine patients who underwent endoscopic placement of fiducial markers for radiotherapy of esophageal squamous cell carcinoma. Endoscopic hemoclips were used as the fiducial markers, and GTV was newly delineated solely based on the locations of the fiducial markers. The standardized uptake value (SUV) threshold corresponding to the superior and inferior borders of GTV was defined as the highest threshold that made MTV reach each border of GTV.The median fixed relative and absolute thresholds were 32% and 3.8, respectively. The coefficient of variation of the threshold values was 0.781 for the fixed relative threshold method and 0.400 for the fixed absolute threshold method, indicating more consistent results from the fixed absolute threshold method. All but two GTV borders were included in MTV with a SUV threshold of 2.5. Esophageal tumors with a maximum SUV > 20 tended to have closer threshold values corresponding to the GTV borders to 2.5 (median 2.8 vs 3.6, P = .069).The fixed absolute threshold method was suitable for determining the MTV threshold for esophageal lesions. A SUV of 2.5 was appropriate for esophageal tumors with a maximum SUV > 20. Endoscopic hemoclips were stable enough for using as the fiducial marker.
Collapse
Affiliation(s)
| | - Hyun Gee Ryoo
- Department of Nuclear Medicine, Seoul National University College of Medicine and Hospital
| | - Reeree Lee
- Department of Nuclear Medicine, Chung-Ang University Hospital
| | - Jin Chul Paeng
- Department of Nuclear Medicine, Seoul National University College of Medicine and Hospital
| | - Hyunsoo Chung
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine and Hospital
| | - Hak Jae Kim
- Department of Radiation Oncology
- Cancer Research Institute, Seoul National University, Seoul
- Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul, Korea (Republic of)
| |
Collapse
|
3
|
Hendriks AM, Brouwers AH, Giannopoulos P, Lefrandt JD, Timens W, Groen HJM, de Bock GH, Jalving M. 18F-FDG PET/CT Scans Can Identify Sub-Groups of NSCLC Patients with High Glucose Uptake in the Majority of Their Tumor Lesions. J Cancer 2021; 12:562-570. [PMID: 33391452 PMCID: PMC7738988 DOI: 10.7150/jca.45899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/09/2020] [Indexed: 12/16/2022] Open
Abstract
Background: Reprogrammed glucose metabolism is a hallmark of cancer making it an attractive therapeutic target, especially in cancers with high glucose uptake such as non-small cell lung cancer (NSCLC). Tools to select patients with high glucose uptake in the majority of tumor lesions are essential in the development of anti-cancer drugs targeting glucose metabolism. Type 2 diabetes mellitus (T2DM) patients may have tumors highly dependent on glucose uptake. Surprisingly, this has not been systematically studied. Therefore, we aimed to determine which patient and tumor characteristics, including concurrent T2DM, are related to high glucose uptake in the majority of tumor lesions in NSCLC patients as measured by 2-deoxy-2-[fluorine-18]fluoro-D-glucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) scans. Methods: Routine primary diagnostic 18F-FDG PET/CT scans of consecutive NSCLC patients were included. Mean standardized uptake value (SUVmean) of 18F-FDG was determined for all evaluable tumor lesions and corrected for serum glucose levels according to the European Association of Nuclear Medicine Research Ltd guidelines. Patient characteristics potentially determining degree of tumor lesion glucose uptake in the majority of tumor lesions per patient were investigated. Results: The cohort consisted of 102 patients, 28 with T2DM and 74 without T2DM. The median SUVmean per patient ranged from 0.8 to 35.2 (median 4.2). T2DM patients had higher median glucose uptake in individual tumor lesions and per patient compared to non-diabetic NSCLC patients (SUVmean 4.3 vs 2.8, P < 0.001 and SUVmean 5.4 vs 3.7, P = 0.009, respectively). However, in multivariable analysis, high tumor lesion glucose uptake was only independently determined by number of tumor lesions ≥1 mL per patient (odds ratio 0.8, 95% confidence interval 0.7-0.9). Conclusions:18F-FDG PET/CT scans can identify sub-groups of NSCLC patients with high glucose uptake in the majority of their tumor lesions. T2DM patients had higher tumor lesion glucose uptake than non-diabetic patients. However, this was not independent of other factors such as the histological subtype and number of tumor lesions per patient.
Collapse
Affiliation(s)
- Anne M Hendriks
- University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands. Department of Medical Oncology
| | - Adrienne H Brouwers
- University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands. Department of Nuclear Medicine and Molecular Imaging
| | - Panagiotis Giannopoulos
- University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands. Department of Medical Oncology
| | - Joop D Lefrandt
- University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands. Department of Internal Medicine
| | - Wim Timens
- University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands. Department of Pathology
| | - Harry J M Groen
- University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands. Department of Pulmonary Diseases
| | - Geertruida H de Bock
- University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands. Department of Epidemiology
| | - Mathilde Jalving
- University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands. Department of Medical Oncology
| |
Collapse
|
4
|
Jun S, Park JG, Seo Y. Accurate FDG PET tumor segmentation using the peritumoral halo layer method: a study in patients with esophageal squamous cell carcinoma. Cancer Imaging 2018; 18:35. [PMID: 30257714 PMCID: PMC6158888 DOI: 10.1186/s40644-018-0169-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/20/2018] [Indexed: 02/06/2023] Open
Abstract
Background In a previous study, FDG PET tumor segmentation (SegPHL) using the peritumoral halo layer (PHL) was more reliable than fixed threshold methods in patients with thyroid cancer. We performed this study to validate the reliability and accuracy of the PHL method in patients with esophageal squamous cell carcinomas (ESCCs), which can be larger and more heterogeneous than thyroid cancers. Methods A total of 121 ESCC patients (FDG avid = 85 (70.2%); FDG non-avid = 36 (29.8%)) were enrolled in this study. In FDG avid ESCCs, metabolic tumor length (ML) using SegPHL (MLPHL), fixed SUV 2.5 threshold (ML2.5), and fixed 40% of maximum SUV (SUVmax) (ML40%) were measured. Regression and Bland-Altman analyses were performed to evaluate associations between ML, endoscopic tumor length (EL), and pathologic tumor length (PL). A comparison test was performed to evaluate the absolute difference between ML and PL. Correlation with tumor threshold determined by the PHL method (PHL tumor threshold) and SUVmax was evaluated. Results MLPHL, ML2.5, and ML40% correlated well with EL (R2 = 0.6464, 0.5789, 0.3321, respectively; p < 0.001) and PL (R2 = 0.8778, 0.8365, 0.6266, respectively; p < 0.001). However, ML2.5 and ML40% showed significant proportional error with regard to PL; there was no significant error between MLPHL and PL. MLPHL showed the smallest standard deviation on Bland-Altman analyses. The absolute differences between ML and PL were significantly smaller for MLPHL and ML40% than for ML2.5 (p < 0.0001). The PHL tumor threshold showed an inverse correlation with SUVmax (σ = − 0.923, p < 0.0001). Conclusions SegPHL was more accurate than fixed threshold methods in ESCC. The PHL tumor threshold was adjusted according to SUVmax of ESCC.
Collapse
Affiliation(s)
- Sungmin Jun
- Department of Nuclear Medicine, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, 49297, South Korea
| | - Jung Gu Park
- Department of Radiology, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, 49297, South Korea
| | - Youngduk Seo
- Department of Nuclear Medicine, Busan Seongso Hospital, Suyeong-ro, Nam-gu, Busan, 48453, Republic of Korea.
| |
Collapse
|
5
|
Bissonnette JP, Yap ML, Clarke K, Shessel A, Higgins J, Vines D, Atenafu EG, Becker N, Leavens C, Bezjak A, Jaffray DA, Sun A. Serial 4DCT/4DPET imaging to predict and monitor response for locally-advanced non-small cell lung cancer chemo-radiotherapy. Radiother Oncol 2018; 126:347-354. [DOI: 10.1016/j.radonc.2017.11.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 11/07/2017] [Accepted: 11/27/2017] [Indexed: 12/12/2022]
|
6
|
Zhang Y, Li J, Duan Y, Wang W, Li F, Shao Q, Xu M. Comparison of biological target volume metrics based on FDG PET-CT and 4DCT for primary non-small-cell lung cancer. Oncotarget 2017; 8:79629-79635. [PMID: 29108342 PMCID: PMC5668075 DOI: 10.18632/oncotarget.18917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 06/02/2017] [Indexed: 11/25/2022] Open
Abstract
Fluorodeoxyglucose positron emission tomography-computed tomography (PET-CT) and four-dimensional CT (4DCT) are used in several methods for defining the biological target volume (BTV) in primary non-small cell lung cancer (NSCLC). Disagreements between the assessments using these methodologies make the use of BTV for radiotherapy planning controversial. In this study, we compared existing methods with our proposed internal biological target volume (IBTV) metric, derived by combining internal target volume (ITV) and BTV metrics. We defined the IBTV from ITV (IBTVi) or BTV (IBTVb) based on ITV or BTV with symmetrical margin expansion. We detected large differences between IBTV, IBTVi and IBTVb (p < 0.001), but no difference between ITV and BTV. A margin expansion of about 13 mm was necessary for ITV or BTV to encompass > 95% IBTV. The conformity index correlated negatively with IBTV/ITV, IBTV/BTV, IBTVi/ITV, and IBTVb/BTV volume ratios (p < 0.05). VR also increased the margins of IBTVi and IBTVb. Indeed, IBTV was much smaller than IBTVi or IBTVb, suggesting that using IBTV for radiotherapy planning could improve treatment by minimizing the radiation exposure of healthy tissue and organs surrounding tumors.
Collapse
Affiliation(s)
- Yingjie Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China.,Shandong Academy of Medical Sciences, Jinan, China
| | - Jianbin Li
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China.,Shandong Academy of Medical Sciences, Jinan, China
| | - Yili Duan
- Changqing People's Hospital, Jinan, China
| | - Wei Wang
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China.,Shandong Academy of Medical Sciences, Jinan, China
| | - Fengxiang Li
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China.,Shandong Academy of Medical Sciences, Jinan, China
| | - Qian Shao
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China.,Shandong Academy of Medical Sciences, Jinan, China
| | - Min Xu
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China.,Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
7
|
Im HJ, Bradshaw T, Solaiyappan M, Cho SY. Current Methods to Define Metabolic Tumor Volume in Positron Emission Tomography: Which One is Better? Nucl Med Mol Imaging 2017; 52:5-15. [PMID: 29391907 DOI: 10.1007/s13139-017-0493-6] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 08/17/2017] [Accepted: 08/28/2017] [Indexed: 12/22/2022] Open
Abstract
Numerous methods to segment tumors using 18F-fluorodeoxyglucose positron emission tomography (FDG PET) have been introduced. Metabolic tumor volume (MTV) refers to the metabolically active volume of the tumor segmented using FDG PET, and has been shown to be useful in predicting patient outcome and in assessing treatment response. Also, tumor segmentation using FDG PET has useful applications in radiotherapy treatment planning. Despite extensive research on MTV showing promising results, MTV is not used in standard clinical practice yet, mainly because there is no consensus on the optimal method to segment tumors in FDG PET images. In this review, we discuss currently available methods to measure MTV using FDG PET, and assess the advantages and disadvantages of the methods.
Collapse
Affiliation(s)
- Hyung-Jun Im
- 1Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI USA.,2Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Tyler Bradshaw
- 1Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI USA
| | - Meiyappan Solaiyappan
- 3Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Steve Y Cho
- 1Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI USA.,3Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD USA.,4University of Wisconsin Carbone Cancer Center, Madison, WI USA
| |
Collapse
|
8
|
Apolle R, Rehm M, Bortfeld T, Baumann M, Troost EGC. The clinical target volume in lung, head-and-neck, and esophageal cancer: Lessons from pathological measurement and recurrence analysis. Clin Transl Radiat Oncol 2017; 3:1-8. [PMID: 29658006 PMCID: PMC5893525 DOI: 10.1016/j.ctro.2017.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/19/2017] [Accepted: 01/19/2017] [Indexed: 12/25/2022] Open
Abstract
Radiotherapy research has achieved remarkable progress in target volume definition. Advances in medical imaging facilitate more precise localization of the gross tumor volume, alongside a more detailed understanding of the geometric uncertainties associated with treatment delivery that has enabled robust safety margins to be customized to the specific treatment scenario at hand. By contrast, the clinical target volume, meant to encompass gross tumor, as well as, adjacent sub-clinical disease, has evolved very little. It is more often defined by clinician experience and institutional convention than on a patient-specific basis. This disparity arises from the inherent invisibility of sub-clinical disease in current medical imaging. Its incidence and expanse can only be ascertained via indirect means. This article reviews two such strategies: histopathological measurements on resection specimen and analyses of locoregional recurrences after radiotherapy.
Collapse
Affiliation(s)
- Rudi Apolle
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany.,OncoRay - National Center for Radiation Research in Oncology, Dresden, Germany
| | - Maximilian Rehm
- OncoRay - National Center for Radiation Research in Oncology, Dresden, Germany.,Department of Radiation Oncology, University Hospital and Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
| | - Thomas Bortfeld
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael Baumann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany.,OncoRay - National Center for Radiation Research in Oncology, Dresden, Germany.,Department of Radiation Oncology, University Hospital and Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Esther G C Troost
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany.,OncoRay - National Center for Radiation Research in Oncology, Dresden, Germany.,Department of Radiation Oncology, University Hospital and Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
| |
Collapse
|
9
|
Effect of different segmentation algorithms on metabolic tumor volume measured on 18F-FDG PET/CT of cervical primary squamous cell carcinoma. Nucl Med Commun 2017; 38:259-265. [PMID: 28118260 PMCID: PMC5318156 DOI: 10.1097/mnm.0000000000000641] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background and purpose It is known that fluorine-18 fluorodeoxyglucose PET/computed tomography (CT) segmentation algorithms have an impact on the metabolic tumor volume (MTV). This leads to some uncertainties in PET/CT guidance of tumor radiotherapy. The aim of this study was to investigate the effect of segmentation algorithms on the PET/CT-based MTV and their correlations with the gross tumor volumes (GTVs) of cervical primary squamous cell carcinoma. Materials and methods Fifty-five patients with International Federation of Gynecology and Obstetrics stage Ia∼IIb and histologically proven cervical squamous cell carcinoma were enrolled. A fluorine-18 fluorodeoxyglucose PET/CT scan was performed before definitive surgery. GTV was measured on surgical specimens. MTVs were estimated on PET/CT scans using different segmentation algorithms, including a fixed percentage of the maximum standardized uptake value (20∼60% SUVmax) threshold and iterative adaptive algorithm. We divided all patients into four different groups according to the SUVmax within target volume. The comparisons of absolute values and percentage differences between MTVs by segmentation and GTV were performed in different SUVmax subgroups. The optimal threshold percentage was determined from MTV20%∼MTV60%, and was correlated with SUVmax. The correlation of MTViterative adaptive with GTV was also investigated. Results MTV50% and MTV60% were similar to GTV in the SUVmax up to 5 (P>0.05). MTV30%∼MTV60% were similar to GTV (P>0.05) in the 5<SUVmax≤10 group. MTV20%∼MTV60% were similar to GTV (P>0.05) in the 10<SUVmax≤15 group. MTV20% and MTV30% were similar to GTV (P>0.05) in the SUVmax of at least 15 group. MTViterative adaptive was similar to GTV in both total and different SUVmax groups (P>0.05). Significant differences were observed among the fixed percentage method and the optimal threshold percentage was inversely correlated with SUVmax. The iterative adaptive segmentation algorithm led to the highest accuracy (6.66±50.83%). A significantly positive correlation was also observed between MTViterative adaptive and GTV (Pearson’s correlation r=0.87, P<0.0001). Conclusion MTViterative adaptive is independent of SUVmax, more accurate, and correlated with GTV. Iterative adaptive algorithm segmentation may be more suitable than the fixed percentage threshold method to estimate the tumor volume of cervical primary squamous cell carcinoma.
Collapse
|
10
|
Dong X, Sun X, Zhao X, Zhu W, Sun L, Huang Y, Li W, Wan H, Xing L, Yu J. The impact of intratumoral metabolic heterogeneity on postoperative recurrence and survival in resectable esophageal squamous cell carcinoma. Oncotarget 2017; 8:14969-14977. [PMID: 28122340 PMCID: PMC5362458 DOI: 10.18632/oncotarget.14743] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 01/10/2017] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVE To evaluate the impact of intratumoral metabolic heterogeneity measured by 18F-FDG PET imaging on postoperative recurrence and survival for patients with esophageal squamous cell carcinoma (ESCC). RESULTS AUC-CSH, metabolic tumor volume and pN-stage were significant prognostic factors for RFS. Additionally, tumor recurrence of the low AUC-CSH group (≤ 0.478) was 3 times higher than high group (P = 0.015). The median OS of patients with advanced AJCC stage or low AUC-CSH was also significantly shorter than that of patients with stage I & II or high AUC-CSH (P = 0.021, 0.009). Multivariate analysis identified the AUC-CSH to be the only significant risk factor for postoperative recurrence and overall survival in whole-group and stage III patients. MATERIALS AND METHODS 116 ESCC patients who underwent staging 18F-FDG PET-CT scan and surgical resection were reviewed. The metabolic parameters were assessed as follows: maximum standardized uptake value (SUVmax), metabolic tumor volume, and the area under the curve of the cumulative SUV-volume histogram (AUC-CSH), which is known to reflect the intratumoral metabolic heterogeneity. Regression analyses were used to identify clinicopathological and imaging variables associated with relapse-free survival (RFS) and overall survival (OS). CONCLUSIONS Intratumoral metabolic heterogeneity characterized by AUC-CSH can predict postoperative recurrence and survival in patients with resectable ESCC.
Collapse
Affiliation(s)
- Xinzhe Dong
- Department of Radiation Oncology, Shandong Cancer Hospital, Shandong University, Jinan, Shandong, China
- Key Laboratory of Radiation Oncology of Shandong Province, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaorong Sun
- Department of Radiology, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
| | - Xianguang Zhao
- Department of Radiation Oncology, Shandong Cancer Hospital, Shandong University, Jinan, Shandong, China
| | - Wanqi Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital, Shandong University, Jinan, Shandong, China
| | - Lu Sun
- Jinan University, Jinan, Shandong, China
| | - Yong Huang
- Department of Radiology, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
| | - Wenwu Li
- Department of Radiology, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
| | - Honglin Wan
- College of Physics and Electronic Science, Shandong Normal University, Jinan, Shandong, China
| | - Ligang Xing
- Department of Radiation Oncology, Shandong Cancer Hospital, Shandong University, Jinan, Shandong, China
- Key Laboratory of Radiation Oncology of Shandong Province, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital, Shandong University, Jinan, Shandong, China
- Key Laboratory of Radiation Oncology of Shandong Province, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
11
|
Nielsen MS, Carl J. Validating PET segmentation of thoracic lesions—is 4D PET necessary? Biomed Phys Eng Express 2017. [DOI: 10.1088/2057-1976/aa5ba9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
Leseur J, Roman-Jimenez G, Devillers A, Ospina-Arango JD, Williaume D, Castelli J, Terve P, Lavoue V, Garin E, Lejeune F, Acosta O, De Crevoisier R. Pre- and per-treatment 18F-FDG PET/CT parameters to predict recurrence and survival in cervical cancer. Radiother Oncol 2016; 120:512-518. [DOI: 10.1016/j.radonc.2016.08.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/03/2016] [Accepted: 08/03/2016] [Indexed: 11/29/2022]
|
13
|
Berberoğlu K. Use of Positron Emission Tomography/Computed Tomography in Radiation Treatment Planning for Lung Cancer. Mol Imaging Radionucl Ther 2016; 25:50-62. [PMID: 27277321 PMCID: PMC5096621 DOI: 10.4274/mirt.19870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Radiotherapy (RT) plays an important role in the treatment of lung cancer. Accurate diagnosis and staging are crucial in the delivery of RT with curative intent. Target miss can be prevented by accurate determination of tumor contours during RT planning. Currently, tumor contours are determined manually by computed tomography (CT) during RT planning. This method leads to differences in delineation of tumor volume between users. Given the change in RT tools and methods due to rapidly developing technology, it is now more significant to accurately delineate the tumor tissue. F18 fluorodeoxyglucose positron emission tomography/CT (F18 FDG PET/CT) has been established as an accurate method in correctly staging and detecting tumor dissemination in lung cancer. Since it provides both anatomic and biologic information, F18 FDG PET decreases inter-user variability in tumor delineation. For instance, tumor volumes may be decreased as atelectasis and malignant tissue can be more accurately differentiated, as well as better evaluation of benign and malignant lymph nodes given the difference in FDG uptake. Using F18 FDG PET/CT, the radiation dose can be escalated without serious adverse effects in lung cancer. In this study, we evaluated the contribution of F18 FDG PET/CT for RT planning in lung cancer.
Collapse
Affiliation(s)
- Kezban Berberoğlu
- Anadolu Medical Center, Clinic of Nuclear Medicine, İstanbul, Turkey, Phone: +90 532 584 62 56 E-mail:
| |
Collapse
|
14
|
Dong X, Sun X, Sun L, Maxim PG, Xing L, Huang Y, Li W, Wan H, Zhao X, Xing L, Yu J. Early Change in Metabolic Tumor Heterogeneity during Chemoradiotherapy and Its Prognostic Value for Patients with Locally Advanced Non-Small Cell Lung Cancer. PLoS One 2016; 11:e0157836. [PMID: 27322376 PMCID: PMC4913903 DOI: 10.1371/journal.pone.0157836] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/06/2016] [Indexed: 12/25/2022] Open
Abstract
Introduction To observe the early change of metabolic tumor heterogeneity during chemoradiotherapy and to determine its prognostic value for patients with locally advanced non-small cell lung cancer (NSCLC). Methods From January 2007 to March 2010, 58 patients with NSCLC were included who were received 18F-fluorodeoxyglucose (18F-FDG) PET/CT before and following 40 Gy radiotherapy with the concurrent cisplatin-based chemotherapy (CCRT). Primary tumor FDG uptake heterogeneity was determined using global and local scale textural features extracted from standardized uptake value (SUV) histogram analysis (coefficient of variation [COV], skewness, kurtosis, area under the curve of the cumulative SUV histogram [AUC-CSH]) and normalized gray-level co-occurrence matrix (contrast, dissimilarity, entropy, homogeneity). SUVmax and metabolic tumor volume (MTV) were also evaluated. Correlations were analyzed between parameters on baseline or during treatments with tumor response, progression-free survival (PFS), and overall survival (OS). Results Compared with non-responders, responders showed significantly greater pre-treatment COV, contrast and MTV (AUC = 0.781, 0.804, 0.686, respectively). Receiver-operating-characteristic curve analysis showed that early change of tumor textural analysis serves as a response predictor with higher sensitivity (73.2%~92.1%) and specificity (80.0%~83.6%) than baseline parameters. Change in AUC-CSH and dissimilarity during CCRT could also predict response with optimal cut-off values (33.0% and 28.7%, respectively). The patients with greater changes in contrast and AUC-CSH had significantly higher 5-year OS (P = 0.008, P = 0.034) and PFS (P = 0.007, P = 0.039). In multivariate analysis, only change in contrast was found as the independent prognostic factor of PFS (HR 0.476, P = 0.021) and OS (HR 0.519, P = 0.015). Conclusions The metabolic tumor heterogeneity change during CCRT characterized by global and local scale textural features may be valuable for predicting treatment response and survival for patients with locally advanced NSCLC.
Collapse
Affiliation(s)
- Xinzhe Dong
- Department of Radiation Oncology, Shandong Cancer Hospital, Shandong University, Jinan, Shandong, China
- Key Laboratory of Radiation Oncology of Shandong Province, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
| | - Xiaorong Sun
- Department of Radiology, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
| | - Lu Sun
- Jinan University, Jinan, Shandong, China
| | - Peter G. Maxim
- Department of Radiation Oncology and Cancer Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Lei Xing
- Department of Radiation Oncology and Cancer Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Yong Huang
- Department of Radiology, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
| | - Wenwu Li
- Department of Radiology, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
| | - Honglin Wan
- College of Physics and Electronic Science, Shandong Normal University, Jinan, Shandong, China
| | - Xianguang Zhao
- Department of Radiation Oncology, Shandong Cancer Hospital, Shandong University, Jinan, Shandong, China
- Key Laboratory of Radiation Oncology of Shandong Province, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
- * E-mail: (XZ); (LX)
| | - Ligang Xing
- Department of Radiation Oncology, Shandong Cancer Hospital, Shandong University, Jinan, Shandong, China
- Key Laboratory of Radiation Oncology of Shandong Province, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
- * E-mail: (XZ); (LX)
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital, Shandong University, Jinan, Shandong, China
- Key Laboratory of Radiation Oncology of Shandong Province, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
| |
Collapse
|
15
|
Pak K, Kim SJ. What Do We Measure in Oncology PET? Nucl Med Mol Imaging 2016; 51:212-216. [PMID: 28878846 DOI: 10.1007/s13139-016-0416-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/08/2016] [Accepted: 04/01/2016] [Indexed: 12/13/2022] Open
Abstract
Positron emission tomography (PET) has come to the practice of oncology. It is known that 18F-fluorodeoxyglucose (FDG) PET is more sensitive for the assessment of treatment response than conventional imaging. In addition, PET has an advantage in the use of quantitative analysis of the study. Nowadays, various PET parameters are adopted in clinical settings. In addition, a wide range of factors has been known to be associated with FDG uptake. Therefore, there has been a need for standardization and harmonization of protocols and PET parameters. We will introduce PET parameters and discuss major issues in this review.
Collapse
Affiliation(s)
- Kyoungjune Pak
- Department of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Seong-Jang Kim
- Department of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Korea.,Department of Nuclear Medicine and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Pusan National University, Yangsan, Korea
| |
Collapse
|
16
|
Quantification of metabolic tumor activity and burden in patients with non-small-cell lung cancer: Is manual adjustment of semiautomatic gradient-based measurements necessary? Nucl Med Commun 2016; 36:782-9. [PMID: 25888358 DOI: 10.1097/mnm.0000000000000317] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE Metabolic tumor burden (MTB) measurements including metabolic tumor volume and total lesion glycolysis have been shown to have prognostic value in non-small-cell lung cancer (NSCLC). The calculation of MTB typically utilizes software to semiautomatically draw volumes of interest around the tumor, which are subsequently manually adjusted by the radiologist to include the entire tumor. The manual adjustment step can be time-consuming and observer-dependent. We compared the agreement of MTB values obtained using the semiautomatic method with and without manual adjustment in NSCLC patients. METHODS This IRB-approved prospective study included 134 patients with histologically proven NSCLC who underwent fluorine-18 fluorodeoxyglucose PET/computed tomography. The MTB of the primary tumor was measured with a semiautomatic gradient-based method without manual adjustment (the semiautomatic gradient method) and with manual adjustment (the manually adjusted semiautomatic gradient method) by two radiologists using the MIM PETedge tool. The paired t-test, Wilcoxon signed-rank test, and concordance correlation coefficient (CCC) were calculated to evaluate the agreement between MTB measures obtained with these two methods, as well as agreement between the two radiologists for each method. RESULTS Maximum standardized uptake value was identical between the two methods. No statistically significant difference was present for peak standardized uptake value, metabolic tumor volume, and total lesion glycolysis values between the two methods (P=0.23, 0.45, and 0.37, respectively). Excellent agreement between the two methods was found in terms of CCC (CCC>0.98 for all measures). Interobserver reliability was excellent for all measures (CCC>0.90). CONCLUSION The semiautomatic gradient-based tumor-segmentation method can be used without the additional manual adjustment step for MTB quantification of primary NSCLC tumors.
Collapse
|
17
|
Jun S, Kim H, Nam HY. A new method for segmentation of FDG PET metabolic tumour volume using the peritumoural halo layer and a 10-step colour scale. A study in patients with papillary thyroid carcinoma. Nuklearmedizin 2015; 54:272-85. [PMID: 26429587 DOI: 10.3413/nukmed-0749-15-06] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/22/2015] [Indexed: 12/15/2022]
Abstract
AIM We observed a layer between tumour activity and background on FDG PET/CT with the 10-step colour scale and the window level set properly. We named the layer peritumoral halo layer (PHL). We performed this study to establish the reliability of metabolic tumor volume (MTV) segmentation using PHL (MTV(PHL)) in patients with papillary thyroid carcinoma. PATIENTS, METHODS Of a total of 140 papillary thyroid carcinoma (PTC) patients, 70 (50.0%) had FDG-avid PTC. In these patients, MTV(PHL), MTV segmented according to fixed 50% SUVmax (MTV(50%)), and fixed SUV with 2.5 to 4.0 (MTV(2.5) to MTV(4.0)) were compared with pathologic tumour volume (PTV). The absolute percentage difference between MTV(PHL) and PTV was compared in micropapillary carcinoma (MPTC) and non-micropapillary carcinoma (non-MPTC) subgroups. The % SUVmax and SUV thresholds of MTV(PHL) were compared with tumour SUVmax. RESULTS Among the MTVs, MTV(50%) was not correlated with PTV (r = -0.16, p = 0.182) and was not reliable according to the Bland-Altman plot. Although MTV(2.5), MTV(3.0), MTV(3.5), and MTV(4.0) correlated with PTV (r = 0.85, 0.86, 0.87, and 0.87, respectively; p < 0.001), these MTVs were not reliable on Bland-Altman analyses. MTV(PHL) was significantly correlated with PTV (r = 0.80, p < 0.001), and the Bland-Altman plot did not show systemic error. The MTV(PHL) was more accurate in non-MPTC than in MPTC (p < 0.001), and the absolute % difference was smaller as PTV became larger (σ = -0.65, p < 0.001). The MTV(PHL) thresholds had correlations with SUVmax (% SUVmax threshold: σ = -0.87, p < 0.001; SUV threshold: r = 0.88, p < 0.001). CONCLUSIONS MTV(PHL) was more reliable than MTV(%SUVmax) or MTV(SUV). The reliability of MTV(PHL) improved with larger PTVs. The threshold of the MTV(PHL) was naturally altered by PHL according to SUVmax.
Collapse
Affiliation(s)
| | | | - H-Y Nam
- Hyun-Yeol Nam, M.D., Samsung Changwon Hospital, 158, Paryong-ro, Masan Hoewon-gu, Changwon-si, Korea, 630-723, Tel. +82/55/290-65 93; Fax -55 98,
| |
Collapse
|
18
|
Abstract
PET imaging has contributed substantially in oncology by allowing improved clinical staging and guiding appropriate cancer management. Integration with radiotherapy planning via PET/computed tomography (CT) simulation enables improved target delineation, which is paramount for conformal radiotherapy techniques. This article reviews the present literature regarding implications of PET/CT for radiotherapy planning and management.
Collapse
Affiliation(s)
- Beant S Gill
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, 5230 Centre Avenue, Pittsburgh, PA 15232, USA
| | - Sarah S Pai
- Department of Radiology, University of Pittsburgh Medical Center, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Stacey McKenzie
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, 5230 Centre Avenue, Pittsburgh, PA 15232, USA
| | - Sushil Beriwal
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, 5230 Centre Avenue, Pittsburgh, PA 15232, USA.
| |
Collapse
|
19
|
Chu KKW, Cheung TT. Update in management of hepatocellular carcinoma in Eastern population. World J Hepatol 2015; 7:1562-1571. [PMID: 26085915 PMCID: PMC4462694 DOI: 10.4254/wjh.v7.i11.1562] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/10/2015] [Accepted: 04/14/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the commonest malignant tumours in the East. Although the management of HCC in the West is mainly based on the Barcelona Clinic for Liver Cancer staging, it is considered too conservative by Asian countries where the number of HCC patients is huge. Scientific and clinical advances were made in aspects of diagnosis, staging, and treatment of HCC. HCC is well known to be associated with cirrhosis and the treatment of HCC must take into account the presence and stage of chronic liver disease. The major treatment modalities of HCC include: (1) surgical resection; (2) liver transplantation; (3) local ablation therapy; (4) transarterial locoregional treatment; and (5) systemic treatment. Among these, resection, liver transplantation and ablation therapy for small HCC are considered as curative treatment. Portal vein embolisation and the associating liver partition with portal vein ligation for staged hepatectomy may reduce dropout in patients with marginally resectable disease but the midterm and long-term results are still to be confirmed. Patient selection for the best treatment modality is the key to success of treatment of HCC. The purpose of current review is to provide a description of the current advances in diagnosis, staging, pre-operative liver function assessment and treatment options for patients with HCC in the east.
Collapse
|
20
|
Formula corrected maximal standardized uptake value in FDG-PET for partial volume effect and motion artifact is not a prognostic factor in stage I non-small cell lung cancer treated with stereotactic body radiotherapy. Ann Nucl Med 2015; 29:666-73. [DOI: 10.1007/s12149-015-0991-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/19/2015] [Indexed: 10/23/2022]
|
21
|
|
22
|
Duan Y, Li J, Zhang Y, Wang W, Sun X, Fan T, Shao Q, Xu M, Guo Y, Shang D. Comparison of primary tumour volumes delineated on four-dimensional computed tomography maximum intensity projection and (18) F-fluorodeoxyglucose positron emission tomography computed tomography images of non-small cell lung cancer. J Med Imaging Radiat Oncol 2015; 59:623-30. [PMID: 25754243 DOI: 10.1111/1754-9485.12295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 01/28/2015] [Indexed: 11/27/2022]
Abstract
INTRODUCTION The study aims to compare the positional and volumetric differences of tumour volumes based on the maximum intensity projection (MIP) of four-dimensional CT (4DCT) and (18) F-fluorodexyglucose ((18) F-FDG) positron emission tomography CT (PET/CT) images for the primary tumour of non-small cell lung cancer (NSCLC). METHODS Ten patients with NSCLC underwent 4DCT and (18) F-FDG PET/CT scans of the thorax on the same day. Internal gross target volumes (IGTVs) of the primary tumours were contoured on the MIP images of 4DCT to generate IGTVMIP . Gross target volumes (GTVs) based on PET (GTVPET ) were determined with nine different threshold methods using the auto-contouring function. The differences in the volume, position, matching index (MI) and degree of inclusion (DI) of the GTVPET and IGTVMIP were investigated. RESULTS In volume terms, GTVPET 2.0 and GTVPET 20% approximated closely to IGTVMIP with mean volume ratio of 0.93 ± 0.45 and 1.06 ± 0.43, respectively. The best MI was between IGTVMIP and GTVPET 20% (0.45 ± 0.23). The best DI of IGTVMIP in GTVPET was IGTVMIP in GTVPET 20% (0.61 ± 0.26). CONCLUSIONS In 3D PET images, the GTVPET contoured by standardised uptake value (SUV) 2.0 or 20% of maximal SUV (SUVmax ) approximate closely to the IGTVMIP in target size, while the spatial mismatch is apparent between them. Therefore, neither of them could replace IGTVMIP in spatial position and form. The advent of 4D PET/CT may improve the accuracy of contouring the perimeter for moving targets.
Collapse
Affiliation(s)
- Yili Duan
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, China
| | - Jianbin Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, China
| | - Yingjie Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, China
| | - Wei Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, China
| | - Xiaorong Sun
- PET/CT Room, Shandong Cancer Hospital and Institute, Jinan, China
| | - Tingyong Fan
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, China
| | - Qian Shao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, China
| | - Min Xu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, China
| | - Yanluan Guo
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, China
| | - Dongping Shang
- Big Bore CT Room, Shandong Cancer Hospital and Institute, Jinan, China
| |
Collapse
|
23
|
Jelercic S, Rajer M. The role of PET-CT in radiotherapy planning of solid tumours. Radiol Oncol 2015; 49:1-9. [PMID: 25810695 PMCID: PMC4362600 DOI: 10.2478/raon-2013-0071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 05/05/2013] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND PET-CT is becoming more and more important in various aspects of oncology. Until recently it was used mainly as part of diagnostic procedures and for evaluation of treatment results. With development of personalized radiotherapy, volumetric and radiobiological characteristics of individual tumour have become integrated in the multistep radiotherapy (RT) planning process. Standard anatomical imaging used to select and delineate RT target volumes can be enriched by the information on tumour biology gained by PET-CT. In this review we explore the current and possible future role of PET-CT in radiotherapy treatment planning. After general explanation, we assess its role in radiotherapy of those solid tumours for which PET-CT is being used most. CONCLUSIONS In the nearby future PET-CT will be an integral part of the most radiotherapy treatment planning procedures in an every-day clinical practice. Apart from a clear role in radiation planning of lung cancer, with forthcoming clinical trials, we will get more evidence of the optimal use of PET-CT in radiotherapy planning of other solid tumours.
Collapse
Affiliation(s)
- Stasa Jelercic
- Department of Radiotherapy, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Mirjana Rajer
- Department of Radiotherapy, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
24
|
Dong X, Wu P, Sun X, Li W, Wan H, Yu J, Xing L. Intra-tumour 18F-FDG uptake heterogeneity decreases the reliability on target volume definition with positron emission tomography/computed tomography imaging. J Med Imaging Radiat Oncol 2015; 59:338-45. [PMID: 25708154 DOI: 10.1111/1754-9485.12289] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 12/23/2014] [Indexed: 12/12/2022]
Abstract
INTRODUCTION This study aims to explore whether the intra-tumour (18) F-fluorodeoxyglucose (FDG) uptake heterogeneity affects the reliability of target volume definition with FDG positron emission tomography/computed tomography (PET/CT) imaging for nonsmall cell lung cancer (NSCLC) and squamous cell oesophageal cancer (SCEC). METHODS Patients with NSCLC (n = 50) or SCEC (n = 50) who received (18)F-FDG PET/CT scanning before treatments were included in this retrospective study. Intra-tumour FDG uptake heterogeneity was assessed by visual scoring, the coefficient of variation (COV) of the standardised uptake value (SUV) and the image texture feature (entropy). Tumour volumes (gross tumour volume (GTV)) were delineated on the CT images (GTV(CT)), the fused PET/CT images (GTV(PET-CT)) and the PET images, using a threshold at 40% SUV(max) (GTV(PET40%)) or the SUV cut-off value of 2.5 (GTV(PET2.5)). The correlation between the FDG uptake heterogeneity parameters and the differences in tumour volumes among GTV(CT), GTV(PET-CT), GTV(PET40%) and GTV(PET2.5) was analysed. RESULTS For both NSCLC and SCEC, obvious correlations were found between uptake heterogeneity, SUV or tumour volumes. Three types of heterogeneity parameters were consistent and closely related to each other. Substantial differences between the four methods of GTV definition were found. The differences between the GTV correlated significantly with PET heterogeneity defined with the visual score, the COV or the textural feature-entropy for NSCLC and SCEC. CONCLUSIONS In tumours with a high FDG uptake heterogeneity, a larger GTV delineation difference was found. Advance image segmentation algorithms dealing with tracer uptake heterogeneity should be incorporated into the treatment planning system.
Collapse
Affiliation(s)
- Xinzhe Dong
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong University, Jinan, Shandong, China
| | - Peipei Wu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong University, Jinan, Shandong, China
| | - Xiaorong Sun
- Department of Radiology, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
| | - Wenwu Li
- Department of Radiology, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
| | - Honglin Wan
- College of Physics and Electronic Science, Shandong Normal University, Jinan, Shandong, China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong University, Jinan, Shandong, China
| | - Ligang Xing
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong University, Jinan, Shandong, China
| |
Collapse
|
25
|
Kawakami W, Takemura A, Yokoyama K, Nakajima K, Yokoyama S, Koshida K. The use of positron emission tomography/computed tomography imaging in radiation therapy: a phantom study for setting internal target volume of biological target volume. Radiat Oncol 2015; 10:1. [PMID: 25567003 PMCID: PMC4299814 DOI: 10.1186/s13014-014-0315-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 12/18/2014] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Fluorodeoxyglucose ((18)F-FDG) positron emission tomography/computed tomography (PET/CT) is an important method for detecting tumours, planning radiotherapy treatment, and evaluating treatment responses. However, using the standardized uptake value (SUV) threshold with PET imaging may be suitable not to determine gross tumour volume but to determine biological target volume (BTV). The aim of this study was to extract internal target volume of BTV from PET images. METHODS Three spherical densities of (18)F-FDG were employed in a phantom with an air or water background with repetitive motion amplitudes of 0-30 mm. The PET data were reconstructed with attenuation correction (AC) based on CT images obtained by slow CT scanning (SCS) or helical CT scanning (HCS). The errors in measured SUVmax and volumes calculated using SUV threshold values based on SUVmax (THmax) in experiments performed with varying extents of respiratory motion and AC were analysed. RESULTS A partial volume effect (PVE) was not observed in spheres with diameters of ≥ 28 mm. When calculating SUVmax and THmax, using SCS for AC yielded smaller variance than using HCS (p<0.05). For spheres of 37- and 28-mm diameters in the phantom with either an air or water background, significant differences were observed when mean THmax of 30-, 20-, or 10-mm amplitude were compared with the stationary conditions (p<0.05). The average THmax values for 37-mm and 28-mm spheres with an air background were 0.362 and 0.352 in non-motion, respectively, and the mean THmax values for 37-mm and 28-mm spheres with a water background were 0.404 and 0.387 in non-motion and 0.244 and 0.263 in motion, respectively. When the phantom background was air, regardless of sphere concentration or size, THmax was dependent only on motion amplitude. CONCLUSIONS We found that there was no PVE for spheres with ≥ 28-mm diameters, and differences between SUVmax and THmax were reduced by using SCS for AC. In the head-and-neck and the abdomen, the standard values of THmax were 0.25 and 0.40 with and without respiratory movement, respectively. In the lungs, the value of THmax became the approximate expression depending on motion amplitude.
Collapse
Affiliation(s)
- Wataru Kawakami
- Department of Radiological Technology, Public Central Hospital of Matto Ishikawa, 3-8, Kuramitsu, Hakusan City, Ishikawa Pref, 924-8588, Japan.
- Department of Quantum Medical Technology, Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, Ishikawa, Japan.
| | - Akihiro Takemura
- Department of Quantum Medical Technology, Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, Ishikawa, Japan.
| | - Kunihiko Yokoyama
- PET Imaging Center, Public Central Hospital of Matto Ishikawa, Ishikawa, Japan.
| | - Kenichi Nakajima
- Department of Nuclear Medicine, Kanazawa University Hospital, Ishikawa, Japan.
| | - Syoichi Yokoyama
- Department of Radiological Technology, Public Central Hospital of Matto Ishikawa, 3-8, Kuramitsu, Hakusan City, Ishikawa Pref, 924-8588, Japan.
| | - Kichiro Koshida
- Department of Quantum Medical Technology, Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, Ishikawa, Japan.
| |
Collapse
|
26
|
Chi A, Nguyen NP. The utility of positron emission tomography in the treatment planning of image-guided radiotherapy for non-small cell lung cancer. Front Oncol 2014; 4:273. [PMID: 25340040 PMCID: PMC4187610 DOI: 10.3389/fonc.2014.00273] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 09/20/2014] [Indexed: 11/17/2022] Open
Abstract
In the thorax, the extent of tumor may be more accurately defined with the addition of 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) to computed tomography (CT). This led to the increased utility of FDG-PET or PET/CT in the treatment planning of radiotherapy for non-small cell lung cancer (NSCLC). The inclusion of FDG-PET information in target volume delineation not only improves tumor localization but also decreases the amount of normal tissue included in the planning target volume (PTV) in selected patients. Therefore, it has a critical role in image-guided radiotherapy (IGRT) for NSCLC. In this review, the impact of FDG-PET on target volume delineation in radiotherapy for NSCLC, which may increase the possibility of safe dose escalation with IGRT, the commonly used methods for tumor target volume delineation FDG-PET for NSCLC, and its impact on clinical outcome will be discussed.
Collapse
Affiliation(s)
- Alexander Chi
- Department of Radiation Oncology, Mary Babb Randolph Cancer Center, West Virginia University , Morgantown, WV , USA
| | - Nam P Nguyen
- International Geriatric Radiotherapy Group , Tucson, AZ , USA
| |
Collapse
|
27
|
Shang C, Kasper M, Kathriarachchi V, Benda R, Kleinman J, Cole J, Williams T. Can an alternative backround-corrected [18F] fluorodeoxyglucose (FDG) standard uptake value (SUV) be used for monitoring tumor local control following lung cancer stereotactic body radiosurgery? INTERNATIONAL JOURNAL OF CANCER THERAPY AND ONCOLOGY 2014. [DOI: 10.14319/ijcto.0203.17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
28
|
|
29
|
Integrating respiratory-gated PET-based target volume delineation in liver SBRT planning, a pilot study. Radiat Oncol 2014; 9:127. [PMID: 24885897 PMCID: PMC4050417 DOI: 10.1186/1748-717x-9-127] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 05/18/2014] [Indexed: 12/25/2022] Open
Abstract
Background To assess the feasibility and benefit of integrating four-dimensional (4D) Positron Emission Tomography (PET) – computed tomography (CT) for liver stereotactic body radiation therapy (SBRT) planning. Methods 8 patients with 14 metastases were accrued in the study. They all underwent a non-gated PET and a 4D PET centered on the liver. The same CT scan was used for attenuation correction, registration, and considered the planning CT for SBRT planning. Six PET phases were reconstructed for each 4D PET. By applying an individualized threshold to the 4D PET, a Biological Internal Target Volume (BITV) was generated for each lesion. A gated Planning Target Volume (PTVg) was created by adding 3 mm to account for set-up margins. This volume was compared to a manual Planning Target Volume (PTV) delineated with the help of a semi-automatic Biological Target Volume (BTV) obtained from the non-gated exam. A 5 mm radial and a 10 mm craniocaudal margins were applied to account for tumor motion and set-up margins to create the PTV. Results One undiagnosed liver metastasis was discovered thanks to the 4D PET. The semi-automatic BTV were significantly smaller than the BITV (p = 0.0031). However, after applying adapted margins, 4D PET allowed a statistically significant decrease in the PTVg as compared to the PTV (p = 0.0052). Conclusions In comparison to non-gated PET, 4D PET may better define the respiratory movements of liver targets and improve SBRT planning for liver metastases. Furthermore, non respiratory-gated PET exams can both misdiagnose liver metastases and underestimate the real internal target volumes.
Collapse
|
30
|
Zhang S, Xin J, Guo Q, Ma J, Ma Q, Sun H. Comparison of tumor volume between PET and MRI in cervical cancer with hybrid PET/MR. Int J Gynecol Cancer 2014; 24:744-50. [PMID: 24552896 DOI: 10.1097/igc.0000000000000097] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE This study aimed to compare the tumor volume between magnetic resonance imaging-defined gross tumor volume (MR-GTV) and positron emission tomography-defined GTV (PET-GTV) in cervical cancer with hybrid PET/MR. MATERIALS AND METHODS Twenty-seven patients with cervical cancer underwent PET/MR pelvic examination before radiotherapy. The MR-GTV was manually outlined on T2-weighted MR images. The PET-GTV was autocontoured on PET images using a 40% maximum standardized uptake value threshold. Results were analyzed by Pearson analysis, Bland-Altman plot, and 1-way analysis of variance. RESULTS Magnetic resonance imaging-GTV significantly correlated with PET-GTV (r(2) = 0.797, P < 0.001). The Bland-Altman plot showed a bad agreement between MR-GTV and PET-GTV. The PET-GTV underestimated the MR-GTV in 23 of 27 tumors. Patients were divided into the following 3 groups according to MR-GTV: less than 14 mL (n = 6), 14 to 62 mL (n = 12), and 62 mL or more (n = 9). The mean (SD) MR-GTV, PET-GTV, ratio, and overlap between MR-GTV and PET-GTV for the less than 14 mL cohort were 9.6 (2.6) mL, 16.7 (10.1) mL, 0.77 (0.40), and 0.47 (0.20), respectively. The PET-GTV overestimated MR-GTV in 4 of the 6 lesions by a mean (SD) of 11.1 (9.4) mL. Among the 14 to 62 mL cohort, the mean (SD) MR-GTV, PET-GTV, ratio, and overlap were 38.6 (14.5) mL, 24.9 (8.6 mL), 1.54 (0.25), and 0.87 (0.08), respectively. The PET-GTV underestimated MR-GTV for 12 tumors by a mean (SD) of 13.7 (8.4) mL. In the 62 mL or more cohort, the mean (SD) MR-GTV, PET-GTV, ratio, and overlap were 85.9 (25.8) mL, 54.3 (14.1) mL, 1.61 (0.35), and 0.87 (0.09), respectively. The PET-GTV underestimated MR-GTV 9 tumors by a mean (SD) of 31.6 (19.5) mL. The ratio and overlap differences were statistically significant among groups (F = 14.619, P < 0.001; F = 25.134, P < 0.001). CONCLUSIONS Tumor volume discrepancies were observed between MR-GTV and PET-GTV for cervical cancer. With an increasing tumor volume, there was an increase in the difference between MR-GTV and PET-GTV. In addition, larger tumors had a higher degree of overlap compared with small tumors.
Collapse
Affiliation(s)
- Shaomin Zhang
- Departments of *Radiology, †Nuclear Medicine, and ‡Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | | | | | | | | | | |
Collapse
|
31
|
Dubray B, Thureau S, Nkhali L, Modzelewski R, Doyeux K, Ruan S, Vera P. FDG-PET imaging for radiotherapy target volume definition in lung cancer. Ing Rech Biomed 2014. [DOI: 10.1016/j.irbm.2013.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Zhang Y, Hu J, Lu HJ, Li JP, Wang N, Li WW, Zhou YC, Liu JY, Wang SJ, Wang J, Li X, Ma WL, Wei LC, Shi M. Determination of an optimal standardized uptake value of fluorodeoxyglucose for positron emission tomography imaging to assess pathological volumes of cervical cancer: a prospective study. PLoS One 2013; 8:e75159. [PMID: 24265671 PMCID: PMC3827047 DOI: 10.1371/journal.pone.0075159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 08/12/2013] [Indexed: 12/01/2022] Open
Abstract
Purpose To determine the optimal standardized uptake value (SUV) of 18F-fluorodeoxyglucose (18F-FDG) for positron emission tomography (PET) imaging, at which the PET-defined gross tumor volume (GTVPET) best matches with the pathological volume (GTVPATH) in the cervical cancer. Materials and Methods Ten patients with the cervical cancer who underwent surgery were enrolled in this study. The excised specimens were processed for whole-mount serial sections and H-E staining. The tumor borders were outlined in sections under a microscope, histopathological images were scanned and the GTVPATH calculated. The GTVPET was delineated automatically by using various percentages relative to the maximal SUV and absolute SUV. The optimal threshold SUV was further obtained as the value at which the GTVPET best matched with the GTVPATH. Results An average of 85±10% shrinkage of tissue was observed after the formalin fixation. The GTVPATH was 13.38±2.80 cm3 on average. The optimal threshold on percentile SUV and absolute SUV were 40.50%±3.16% and 7.45±1.10, respectively. The correlation analysis showed that the optimal percentile SUV threshold was inversely correlated with GTVPATH (p<0.05) and tumor diameter (p<0.05). The absolute SUV was also positively correlated with SUVmax (p<0.05). Conclusion The pathological volume could provide the more accurate tumor volume. The optimal SUV of FDG for PET imaging by use of GTVPATH as standard for cervical cancer target volume delineation was thus determined in this study, and more cases are being evaluated to substantiate this conclusion.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Radiation Oncology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jing Hu
- Department of Radiation Oncology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hong-Jun Lu
- Department of Radiation Oncology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jian-Ping Li
- Department of Radiation Oncology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ning Wang
- Department of Radiation Oncology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wei-Wei Li
- Department of Radiation Oncology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yong-Chun Zhou
- Department of Radiation Oncology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jun-Yue Liu
- Department of Radiation Oncology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Sheng-Jun Wang
- Department of Nuclear Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xia Li
- Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wan-Ling Ma
- Department of Radiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Li-Chun Wei
- Department of Radiation Oncology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
- * E-mail: (LCW); (MS)
| | - Mei Shi
- Department of Radiation Oncology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
- * E-mail: (LCW); (MS)
| |
Collapse
|
33
|
Jouin A, Pourel N. Marges dans le cancer pulmonaire : volume cible interne/volume cible anatomoclinique. Cancer Radiother 2013; 17:428-33. [DOI: 10.1016/j.canrad.2013.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 05/25/2013] [Indexed: 10/26/2022]
|
34
|
A partial volume effect correction tailored for 18F-FDG-PET oncological studies. BIOMED RESEARCH INTERNATIONAL 2013; 2013:780458. [PMID: 24163819 PMCID: PMC3791573 DOI: 10.1155/2013/780458] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/02/2013] [Accepted: 08/02/2013] [Indexed: 11/20/2022]
Abstract
We have developed, optimized, and validated a method for partial volume effect (PVE) correction of oncological lesions in positron emission tomography (PET) clinical studies, based on recovery coefficients (RC) and on PET measurements of lesion-to-background ratio (L/Bm) and of lesion metabolic volume. An operator-independent technique, based on an optimised threshold of the maximum lesion uptake, allows to define an isocontour around the lesion on PET images in order to measure both lesion radioactivity uptake and lesion metabolic volume. RC are experimentally derived from PET measurements of hot spheres in hot background, miming oncological lesions. RC were obtained as a function of PET measured sphere-to-background ratio and PET measured sphere metabolic volume, both resulting from the threshold-isocontour technique. PVE correction of lesions of a diameter ranging from 10 mm to 40 mm and for measured L/Bm from 2 to 30 was performed using measured RC curves tailored at answering the need to quantify a large variety of real oncological lesions by means of PET. Validation of the PVE correction method resulted to be accurate (>89%) in clinical realistic conditions for lesion diameter > 1 cm, recovering >76% of radioactivity for lesion diameter < 1 cm. Results from patient studies showed that the proposed PVE correction method is suitable and feasible and has an impact on a clinical environment.
Collapse
|
35
|
Mahasittiwat P, Yuan S, Xie C, Ritter T, Cao Y, Ten Haken RK, Kong FMS. Metabolic Tumor Volume on PET Reduced More than Gross Tumor Volume on CT during Radiotherapy in Patients with Non-Small Cell Lung Cancer Treated with 3DCRT or SBRT. ACTA ACUST UNITED AC 2013; 2:191-202. [PMID: 23795245 DOI: 10.1007/s13566-013-0091-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVE We have previously demonstrated that tumor reduces in activity and size during the course of radiotherapy (RT) in a limited number of patients with non-small cell lung cancer (NSCLC). This study aimed to quantify the metabolic tumor volume (MTV) on PET and compare its changes with those of gross tumor volume (GTV) on CT during-RT for 3D conformal radiotherapy (3DCRT) and stereotactic body radiotherapy (SBRT). METHODS Patients with stage I-III NSCLC treated with a definitive course of RT ± chemotherapy were eligible for this prospective study. FDG-PET/CT scans were acquired within 2 weeks before RT (pre-RT) and at about two thirds of total dose during-RT. PET-MTVs were delineated using a method combining the tumor/aorta ratio autosegmentation and CT anatomy based manual editing. Data is presented as mean (95% confident interval). RESULTS The MTV delineation methodology was first confirmed to be highly reproducible by comparing volumes defined by different physicians and using different systems (coefficiency >0.98). Fifty patients with 88 primary and nodal lesions were evaluated. The mean ratios of MTV/GTV were 0.70(-0.07~1.47) and 0.33(-0.30~0.95) for pre-RT and during-RT, respectively. PET-MTV reduced by 70% (62-77%), while CT-GTV by 41% (33-49%) (p< 0.001) during-RT. MTV reduction was 72.9% and 15.4% for 3DCRT and SBRT, respectively (p< 0.001). CONCLUSION PET-MTV reduced more than CT-GTV during-RT, while patients treated with 3DCRT reduced more than SBRT. RTOG1106 is using during-RT PET-MTV to adapt radiation therapy in 3DCRT.
Collapse
Affiliation(s)
- Pawinee Mahasittiwat
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI ; Division of Radiation Oncology, Department of Radiology, Faculty of Medicine Siriraj Hospital, Thailand
| | | | | | | | | | | | | |
Collapse
|
36
|
Three-dimensional positron emission tomography image texture analysis of esophageal squamous cell carcinoma. Nucl Med Commun 2013; 34:40-6. [DOI: 10.1097/mnm.0b013e32835ae50c] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Cheebsumon P, Boellaard R, de Ruysscher D, van Elmpt W, van Baardwijk A, Yaqub M, Hoekstra OS, Comans EF, Lammertsma AA, van Velden FH. Assessment of tumour size in PET/CT lung cancer studies: PET- and CT-based methods compared to pathology. EJNMMI Res 2012; 2:56. [PMID: 23034289 PMCID: PMC3502476 DOI: 10.1186/2191-219x-2-56] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 09/26/2012] [Indexed: 11/10/2022] Open
Abstract
UNLABELLED BACKGROUND Positron emission tomography (PET) may be useful for defining the gross tumour volume for radiation treatment planning and for response monitoring of non-small cell lung cancer (NSCLC) patients. The purpose of this study was to compare tumour sizes obtained from CT- and various more commonly available PET-based tumour delineation methods to pathology findings. METHODS Retrospective non-respiratory gated whole body [18F]-fluoro-2-deoxy-D-glucose PET/CT studies from 19 NSCLC patients were used. Several (semi-)automatic PET-based tumour delineation methods and manual CT-based delineation were used to assess the maximum tumour diameter. RESULTS 50%, adaptive 41% threshold-based and contrast-oriented delineation methods showed good agreement with pathology after removing two outliers (R2=0.82). An absolute SUV threshold of 2.5 also showed a good agreement with pathology after the removal of 5 outliers (R2: 0.79), but showed a significant overestimation in the maximum diameter (19.8 mm, p<0.05). Adaptive 50%, relative threshold level and gradient-based methods did not show any outliers, provided only small, non-significant differences in maximum tumour diameter (<4.7 mm, p>0.10), and showed fair correlation (R2>0.62) with pathology. Although adaptive 70% threshold-based methods showed underestimation compared to pathology (36%), it provided the best precision (SD: 14%) together with good correlation (R2=0.81). Good correlation between CT delineation and pathology was observed (R2=0.77). However, CT delineation showed a significant overestimation compared with pathology (3.8 mm, p<0.05). CONCLUSIONS PET-based tumour delineation methods provided tumour sizes in agreement with pathology and may therefore be useful to define the (metabolically most) active part of the tumour for radiotherapy and response monitoring purposes.
Collapse
Affiliation(s)
- Patsuree Cheebsumon
- Department of Radiology & Nuclear Medicine, VU University Medical Center, PO Box 7057, Amsterdam, 1007MB, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Wang YC, Hsieh TC, Yu CY, Yen KY, Chen SW, Yang SN, Chien CR, Hsu SM, Pan T, Kao CH, Liang JA. The clinical application of 4D 18F-FDG PET/CT on gross tumor volume delineation for radiotherapy planning in esophageal squamous cell cancer. JOURNAL OF RADIATION RESEARCH 2012; 53:594-600. [PMID: 22843625 PMCID: PMC3393356 DOI: 10.1093/jrr/rrs009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A combination of four-dimensional computed tomography with (18)F-fluorodeoxyglucose positron emission tomography (4D CT-FDG PET) was used to delineate gross tumor volume (GTV) in esophageal cancer (EC). Eighteen patients with EC were prospectively enrolled. Using 4D images taken during the respiratory cycle, the average CT image phase was fused with the average FDG PET phase in order to analyze the optimal standardized uptake values (SUV) or threshold. PET-based GTV (GTV(PET)) was determined with eight different threshold methods using the auto-contouring function on the PET workstation. The difference in volume ratio (VR) and conformality index (CI) between GTV(PET) and CT-based GTV (GTV(CT)) was investigated. The image sets via automatic co-registrations of 4D CT-FDG PET were available for 12 patients with 13 GTV(CT) values. The decision coefficient (R(2)) of tumor length difference at the threshold levels of SUV 2.5, SUV 20% and SUV 25% were 0.79, 0.65 and 0.54, respectively. The mean volume of GTV(CT) was 29.41 ± 19.14 ml. The mean VR ranged from 0.30 to 1.48. The optimal VR of 0.98, close to 1, was at SUV 20% or SUV 2.5. The mean CI ranged from 0.28 to 0.58. The best CI was at SUV 20% (0.58) or SUV 2.5 (0.57). The auto-contouring function of the SUV threshold has the potential to assist in contouring the GTV. The SUV threshold setting of SUV 20% or SUV 2.5 achieves the optimal correlation of tumor length, VR, and CI using 4D-PET/CT images.
Collapse
Affiliation(s)
- Yao-Ching Wang
- Department of Radiation Oncology, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
| | - Te-Chun Hsieh
- Department of Nuclear Medicine and PET Center, China Medical University Hospital, Taichung, Taiwan
- Department of Biomedical Imaging and Radiological Science, China Medical University Hospital, Taichung, Taiwan
| | - Chun-Yen Yu
- Department of Radiation Oncology, China Medical University Hospital, Taichung, Taiwan
- Department of Biomedical Imaging and Radiological Science, China Medical University Hospital, Taichung, Taiwan
| | - Kuo-Yang Yen
- Department of Nuclear Medicine and PET Center, China Medical University Hospital, Taichung, Taiwan
- Department of Biomedical Imaging and Radiological Science, China Medical University Hospital, Taichung, Taiwan
| | - Shang-Wen Chen
- Department of Radiation Oncology, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Shih-Neng Yang
- Department of Radiation Oncology, China Medical University Hospital, Taichung, Taiwan
- Department of Biomedical Imaging and Radiological Science, China Medical University Hospital, Taichung, Taiwan
| | - Chun-Ru Chien
- Department of Radiation Oncology, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Shih-Ming Hsu
- Department of Biomedical Imaging and Radiological Science, China Medical University Hospital, Taichung, Taiwan
| | - Tinsu Pan
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chia-Hung Kao
- Department of Nuclear Medicine and PET Center, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Ji-An Liang
- Department of Radiation Oncology, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
- Corresponding authors: Departments of Radiation Oncology and Nuclear Medicine, China Medical University Hospital, No. 2, Yuh-Der Road, Taichung 404, Taiwan; Tel: 886-4-22052121-7461; Fax: 886-4-22339372; ,
| |
Collapse
|
39
|
Zhang H, Wroblewski K, Pu Y. Prognostic value of tumor burden measurement using the number of tumors in non-surgical patients with non-small cell lung cancer. Acta Radiol 2012; 53:561-8. [PMID: 22661603 DOI: 10.1258/ar.2012.120080] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND No study to test the feasibility and prognostic value of the number of primary tumors, the number of positive lymph nodes, and the total number of tumors in the whole body as tumor burden measurements on FDG PET/CT imaging has been reported. PURPOSE To determine whether the number of tumors seen in 18F-FDG PET scans can be a prognostic factor in non-surgical patients with non-small cell lung cancer (NSCLC). MATERIAL AND METHODS One hundred and forty patients with histologically proven NSCLC and baseline 18F-FDG PET scan before therapy were identified in this retrospective analysis. The total number of tumors (TTn) in the whole body, the number of primary tumors (Tn), positive lymph nodes (Nn), and distant metastases (Mn), along with the maximum standardized uptake values (SUV(max)) of the tumors were measured. Inter-observer variability of the total number of tumors, counted by two radiologists, was assessed. Survival analyses were performed to determine the prognostic value of the number of tumors. RESULTS Concordance correlation coefficients for the TTn, Tn, Nn, and Mn were all greater than 0.85. TTn and Nn were strong prognostic factors of NSCLC patients' overall survival (OS). In univariate Cox regression models, gender, stage, TTn, Nn, and Mn were statistically significant factors (P = 0.016, 0.032, <0.001, <0.001, and 0.006, respectively). In multivariate Cox regression models, TTn and Nn remained as statistically significant predictors for survival with hazard ratios (HR) of 1.06 (P = 0.001) and 1.11 (P = 0.002), respectively, after adjusting for clinical stage based 7th edition of TNM staging system, age, gender, and SUV(max). Patients with a TTn ≤4 (cutpoint based on median value) had a median OS of 15.2 months compared with 9.0 months for those with TTn >4. CONCLUSION Measuring the number of tumors on FDG PET imaging is easy to perform with minimal inter-observer variability. The total number of tumors and number of nodal metastases, as metabolic tumor burden measurements in 18F-FDG PET/CT, are prognostic markers independent of clinical stage, age, gender, and SUV measurement in non-surgical patients with NSCLC.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Radiology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
- Department of Health Studies, University of Chicago, Chicago, Illinois, USA
| | | | - Yonglin Pu
- Department of Health Studies, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
40
|
Toya R, Murakami R, Tashiro K, Yoshida M, Sakamoto F, Kawanaka K, Shiraishi S, Nakaguchi Y, Tsujita N, Oya N, Tomiguchi S, Yamashita Y. FDG-PET/CT-based gross tumor volume contouring for radiation therapy planning: an experimental phantom study. JOURNAL OF RADIATION RESEARCH 2012; 53:338-341. [PMID: 22398846 DOI: 10.1269/jrr.10183] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
As there is continuing controversy over the role of F-18-fluorodeoxyglucose (FDG)-positron emission tomography (PET)/CT-fused imaging in radiation therapy (RT) planning, we performed a phantom study to assess the feasibility of FDG-PET/CT-based gross tumor volume (GTV) contouring. The phantom set, consisting of an elliptical bowl and 6 spheres measuring from 10-37 mm in diameter, were filled with FDG to obtain 3 source-to-background ratios (SBRs) of 4, 8, and 16. The ratio to maximum intensity at 5% intervals was applied as the threshold for contouring. The ratio between contoured- and actual volumes (volume ratio) was calculated, and the threshold ratio was selected to provide a volume ratio close to 100%. To consider the clinical application, we applied the threshold value (maximum intensity × threshold ratio) for the largest 37-mm sphere to the 6 spheres. The threshold ratio and the volume ratio in 6 spheres with 3 SBRs were compared using the Friedman test. Threshold ratios ranged from 25-80%; they were higher for smaller spheres (p = 0.003) and lower SBRs (p < 0.001). The volume ratios with the threshold value for the largest 37-mm sphere were lower in smaller spheres (p = 0.010). These results suggest that smaller lesions and higher background activities require a higher threshold ratio and smaller lesions a lower threshold value. FDG-PET/CT-fused imaging should not be used as a single modality but rather to obtain supplemental information in RT planning. The contoured GTV should be adjusted based on clinical data including conventional images.
Collapse
Affiliation(s)
- Ryo Toya
- Department of Radiation Oncology, Faculty of Life Sciences, Kumamoto University, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Hatt M, Boussion N, Cheze-Le Rest C, Visvikis D, Pradier O. [Metabolically active volumes automatic delineation methodologies in PET imaging: review and perspectives]. Cancer Radiother 2011; 16:70-81; quiz 82, 84. [PMID: 22041031 DOI: 10.1016/j.canrad.2011.07.243] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 05/31/2011] [Accepted: 07/04/2011] [Indexed: 12/26/2022]
Abstract
PET imaging is now considered a gold standard tool in clinical oncology, especially for diagnosis purposes. More recent applications such as therapy follow-up or tumor targeting in radiotherapy require a fast, accurate and robust metabolically active tumor volumes delineation on emission images, which cannot be obtained through manual contouring. This clinical need has sprung a large number of methodological developments regarding automatic methods to define tumor volumes on PET images. This paper reviews most of the methodologies that have been recently proposed and discusses their framework and methodological and/or clinical validation. Perspectives regarding the future work to be done are also suggested.
Collapse
Affiliation(s)
- M Hatt
- Inserm U650 LaTIM, CHU Morvan, 5, avenue Foch, 29609 Brest, France.
| | | | | | | | | |
Collapse
|
42
|
Hatt M, Cheze-le Rest C, van Baardwijk A, Lambin P, Pradier O, Visvikis D. Impact of tumor size and tracer uptake heterogeneity in (18)F-FDG PET and CT non-small cell lung cancer tumor delineation. J Nucl Med 2011; 52:1690-7. [PMID: 21990577 DOI: 10.2967/jnumed.111.092767] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED The objectives of this study were to investigate the relationship between CT- and (18)F-FDG PET-based tumor volumes in non-small cell lung cancer (NSCLC) and the impact of tumor size and uptake heterogeneity on various approaches to delineating uptake on PET images. METHODS Twenty-five NSCLC cancer patients with (18)F-FDG PET/CT were considered. Seventeen underwent surgical resection of their tumor, and the maximum diameter was measured. Two observers manually delineated the tumors on the CT images and the tumor uptake on the corresponding PET images, using a fixed threshold at 50% of the maximum (T(50)), an adaptive threshold methodology, and the fuzzy locally adaptive Bayesian (FLAB) algorithm. Maximum diameters of the delineated volumes were compared with the histopathology reference when available. The volumes of the tumors were compared, and correlations between the anatomic volume and PET uptake heterogeneity and the differences between delineations were investigated. RESULTS All maximum diameters measured on PET and CT images significantly correlated with the histopathology reference (r > 0.89, P < 0.0001). Significant differences were observed among the approaches: CT delineation resulted in large overestimation (+32% ± 37%), whereas all delineations on PET images resulted in underestimation (from -15% ± 17% for T(50) to -4% ± 8% for FLAB) except manual delineation (+8% ± 17%). Overall, CT volumes were significantly larger than PET volumes (55 ± 74 cm(3) for CT vs. from 18 ± 25 to 47 ± 76 cm(3) for PET). A significant correlation was found between anatomic tumor size and heterogeneity (larger lesions were more heterogeneous). Finally, the more heterogeneous the tumor uptake, the larger was the underestimation of PET volumes by threshold-based techniques. CONCLUSION Volumes based on CT images were larger than those based on PET images. Tumor size and tracer uptake heterogeneity have an impact on threshold-based methods, which should not be used for the delineation of cases of large heterogeneous NSCLC, as these methods tend to largely underestimate the spatial extent of the functional tumor in such cases. For an accurate delineation of PET volumes in NSCLC, advanced image segmentation algorithms able to deal with tracer uptake heterogeneity should be preferred.
Collapse
|
43
|
Intérêt de la TEP au FDG pour la radiothérapie des cancers bronchiques. Cancer Radiother 2011; 15:504-8. [DOI: 10.1016/j.canrad.2011.07.227] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 07/13/2011] [Indexed: 01/20/2023]
|
44
|
What is the best way to contour lung tumors on PET scans? Multiobserver validation of a gradient-based method using a NSCLC digital PET phantom. Int J Radiat Oncol Biol Phys 2011; 82:1164-71. [PMID: 21531085 DOI: 10.1016/j.ijrobp.2010.12.055] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 11/24/2010] [Accepted: 12/19/2010] [Indexed: 11/20/2022]
Abstract
PURPOSE To evaluate the accuracy and consistency of a gradient-based positron emission tomography (PET) segmentation method, GRADIENT, compared with manual (MANUAL) and constant threshold (THRESHOLD) methods. METHODS AND MATERIALS Contouring accuracy was evaluated with sphere phantoms and clinically realistic Monte Carlo PET phantoms of the thorax. The sphere phantoms were 10-37 mm in diameter and were acquired at five institutions emulating clinical conditions. One institution also acquired a sphere phantom with multiple source-to-background ratios of 2:1, 5:1, 10:1, 20:1, and 70:1. One observer segmented (contoured) each sphere with GRADIENT and THRESHOLD from 25% to 50% at 5% increments. Subsequently, seven physicians segmented 31 lesions (7-264 mL) from 25 digital thorax phantoms using GRADIENT, THRESHOLD, and MANUAL. RESULTS For spheres <20 mm in diameter, GRADIENT was the most accurate with a mean absolute % error in diameter of 8.15% (10.2% SD) compared with 49.2% (51.1% SD) for 45% THRESHOLD (p < 0.005). For larger spheres, the methods were statistically equivalent. For varying source-to-background ratios, GRADIENT was the most accurate for spheres >20 mm (p < 0.065) and <20 mm (p < 0.015). For digital thorax phantoms, GRADIENT was the most accurate (p < 0.01), with a mean absolute % error in volume of 10.99% (11.9% SD), followed by 25% THRESHOLD at 17.5% (29.4% SD), and MANUAL at 19.5% (17.2% SD). GRADIENT had the least systematic bias, with a mean % error in volume of -0.05% (16.2% SD) compared with 25% THRESHOLD at -2.1% (34.2% SD) and MANUAL at -16.3% (20.2% SD; p value <0.01). Interobserver variability was reduced using GRADIENT compared with both 25% THRESHOLD and MANUAL (p value <0.01, Levene's test). CONCLUSION GRADIENT was the most accurate and consistent technique for target volume contouring. GRADIENT was also the most robust for varying imaging conditions. GRADIENT has the potential to play an important role for tumor delineation in radiation therapy planning and response assessment.
Collapse
|
45
|
|
46
|
Clinical Applications of PET-Computed Tomography in Planning Radiotherapy: General Principles and an Overview. PET Clin 2011; 6:105-15. [DOI: 10.1016/j.cpet.2011.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Meng X, Sun X, Mu D, Xing L, Ma L, Zhang B, Zhao S, Yang G, Kong FMS, Yu J. Noninvasive evaluation of microscopic tumor extensions using standardized uptake value and metabolic tumor volume in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2011; 82:960-6. [PMID: 21440998 DOI: 10.1016/j.ijrobp.2010.10.064] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 10/10/2010] [Accepted: 10/21/2010] [Indexed: 11/29/2022]
Abstract
PURPOSE To prospectively evaluate whether maximal microscopic extensions (MEmax) correlate with maximal standardized uptake value (SUVmax) and metabolic tumor volume (MTV) at 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) images in non-small-cell lung cancer (NSCLC). METHODS AND MATERIALS Thirty-nine patients with Stage I-IIIA NSCLC underwent surgery after FDG-PET/CT scanning. SUVmax and MTV were calculated on the PET/CT images. The maximum linear distance from the tumor margin to the farthest extent of the tumor in every dimension was measured at the tumor section. The correlations among MEmax, SUVmax, MTV and other clinical pathologic parameters were analyzed. RESULTS MEmax for all patients had a significant correlation with SUVmax (r = 0.777, p = 0.008) and MTV (r = 0.724, p < 0.001). When expressed in terms of the probability of covering ME with respect to a given margin, we suggested that margins of 1.93 mm, 3.90 mm, and 9.60 mm for SUVmax ≤ 5, 5-10, and >10 added to the gross tumor volume would be adequate to cover 95% of ME. CONCLUSIONS This study demonstrated that tumors with high SUVmax and MTV have more MEmax and would therefore require more margin expansion from gross tumor volume to clinical target volume. FDG-PET/CT, especially for SUVmax, is promising and effective and merits additional study in noninvasive delimiting of the clinical target volume margin for NSCLC.
Collapse
Affiliation(s)
- Xue Meng
- Department of Radiation Oncology, Shandong Cancer Hospital & Institute, Shandong University, Jinan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Wanet M, Lee JA, Weynand B, De Bast M, Poncelet A, Lacroix V, Coche E, Grégoire V, Geets X. Gradient-based delineation of the primary GTV on FDG-PET in non-small cell lung cancer: a comparison with threshold-based approaches, CT and surgical specimens. Radiother Oncol 2010; 98:117-25. [PMID: 21074882 DOI: 10.1016/j.radonc.2010.10.006] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 10/01/2010] [Accepted: 10/03/2010] [Indexed: 11/30/2022]
Abstract
PURPOSE The aim of this study was to validate a gradient-based segmentation method for GTV delineation on FDG-PET in NSCLC through surgical specimen, in comparison with threshold-based approaches and CT. MATERIALS AND METHODS Ten patients with stage I-II NSCLC were prospectively enrolled. Before lobectomy, all patients underwent contrast enhanced CT and gated FDG-PET. Next, the surgical specimen was removed, inflated with gelatin, frozen and sliced. The digitized slices were used to reconstruct the 3D macroscopic specimen. GTVs were manually delineated on the macroscopic specimen and on CT images. GTVs were automatically segmented on PET images using a gradient-based method, a source to background ratio method and fixed threshold values at 40% and 50% of SUV(max). All images were finally registered. Analyses of raw volumes and logarithmic differences between GTVs and GTV(macro) were performed on all patients and on a subgroup excluding the poorly defined tumors. A matching analysis between the different GTVs was also conducted using Dice's similarity index. RESULTS Considering all patients, both lung and mediastinal windowed CT overestimated the macroscopy, while FDG-PET provided closer values. Among various PET segmentation methods, the gradient-based technique best estimated the true tumor volume. When analysis was restricted to well defined tumors without lung fibrosis or atelectasis, the mediastinal windowed CT accurately assessed the macroscopic specimen. Finally, the matching analysis did not reveal significant difference between the different imaging modalities. CONCLUSIONS FDG-PET improved the GTV definition in NSCLC including when the primary tumor was surrounded by modifications of the lung parenchyma. In this context, the gradient-based method outperformed the threshold-based ones in terms of accuracy and robustness. In other cases, the conventional mediastinal windowed CT remained appropriate.
Collapse
Affiliation(s)
- Marie Wanet
- Department of Radiation Oncology, Center of Molecular Imaging and Experimental Radiotherapy, Université Catholique de Louvain, Brussels, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Sun W, Leong CN, Zhang Z, Lu JJ. Proposing the lymphatic target volume for elective radiation therapy for pancreatic cancer: a pooled analysis of clinical evidence. Radiat Oncol 2010; 5:28. [PMID: 20398316 PMCID: PMC2859771 DOI: 10.1186/1748-717x-5-28] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 04/15/2010] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Radiation therapy is an important cancer treatment modality in both adjuvant and definitive setting, however, the use of radiation therapy for elective treatment of regional lymph nodes is controversial for pancreatic cancer. No consensus on proper selection and delineation of subclinical lymph nodal areas in adjuvant or definitive radiation therapy has been suggested either conclusively or proposed for further investigation. This analysis aims to study the pattern of lymph node metastasis through a pooled analysis of published results after radical tumor and lymph nodal resection with histological study in pancreatic cancer. METHODS Literature search using electronic databases including MEDLINE, EMBASE, and CANCERLIT from January 1970 to June 2009 was performed, supplemented by review of references. Eighteen original researches and a total of 5954 pancreatic cancer patients underwent radical surgical resection were included in this analysis. The probability of metastasis in regional lymph nodal stations (using Japan Pancreas Society [JPS] Classification) was calculated and analyzed based on the location and other characteristics of the primary disease. RESULTS Commonly involved nodal regions in patients with pancreatic head tumor include lymph nodes around the common hepatic artery (Group 8, 9.79%), posterior pancreaticoduodenal lymph nodes (Group 13, 32.31%), lymph nodes around the superior mesenteric artery (Group 14, 15.85%), paraaortic lymph nodes (Group 16, 10.92%), and anterior pancreaticoduodenal lymph nodes (Group 17, 19.78%); The probability of metastasis in other lymph nodal regions were <9%.Commonly involved nodal regions in patients with pancreatic body/tail tumor include lymph nodes around the common hepatic artery (Group 8, 15.07%), lymph nodes around the celiac trunk (Group 9, 9.59%), lymph nodes along the splenic artery (Group 11, 35.62%), lymph nodes around the superior mesenteric artery (Group 14, 9.59%), paraaortic lymph nodes (Group 16, 16.44%), and inferior body lymph nodes (Group 18, 24.66%). The probability of metastasis in other lymph nodal regions were <9%. CONCLUSIONS Pancreatic cancer has a high propensity of regional lymphatic metastases; however, clear patterns including the site and probability of metastasis can be identified and used as a guide of treatment in patients with resectable pancreatic cancer. Further clinical investigation is needed to study the efficacy of elective treatment to CTV defined based on these patterns using high-dose conformal or intensity-modulated radiation therapy.
Collapse
Affiliation(s)
- Wenjie Sun
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Cheng N Leong
- Department of Radiation Oncology, National University Cancer Institute, National University Health System, National University of Singapore, Singapore 119074, Republic of Singapore
| | - Zhen Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jiade J Lu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Radiation Oncology, National University Cancer Institute, National University Health System, National University of Singapore, Singapore 119074, Republic of Singapore
| |
Collapse
|