1
|
Hu X, Zhou P, Peng X, Ouyang Y, Li D, Wu X, Yang L. PXD101 inhibits malignant progression and radioresistance of glioblastoma by upregulating GADD45A. J Transl Med 2024; 22:1047. [PMID: 39568000 PMCID: PMC11577825 DOI: 10.1186/s12967-024-05874-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024] Open
Abstract
Histone deacetylase inhibitors (HDACis) have shown a significant antitumor effect in clinical studies, and PXD101 is a novel HDACi which can cross the blood-brain barrier. In this study, we showed that PXD101 could significantly inhibit the proliferation and invasion of glioblastoma (GBM) cells, while promoting their apoptosis and radiosensitivity. Furthermore, it was found that PXD101 exerted its antitumor function by upregulating the expression of the growth arrest and DNA damage inducible protein α (GADD45A). Mechanistically, PXD101 promoted the transcription of GADD45A by directly acetylating the histones H3 and H4, and GADD45A enhanced apoptosis and radiosensitivity through the activation of P38 in the GBM cells. In vivo experiments also showed that PXD101 combined with radiotherapy could significantly inhibit the growth of GBM. This study provides experimental evidence for application of the novel HDACi PXD101 in the treatment of GBM, as well as new molecular markers and potential intervention targets that may be used in preventing GBM malignant progression and radioresistance.
Collapse
Affiliation(s)
- Xiaohong Hu
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 110, Changsha, 410078, China
- Cancer Research Institute, School of Basic Medicine Science, Central South University, Changsha, 410078, China
- Institute of Molecular Medicine and Oncology, College of Biology, Hunan University, Changsha, 410012, China
| | - Peijun Zhou
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 110, Changsha, 410078, China
- Cancer Research Institute, School of Basic Medicine Science, Central South University, Changsha, 410078, China
| | - Xingzhi Peng
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 110, Changsha, 410078, China
- Cancer Research Institute, School of Basic Medicine Science, Central South University, Changsha, 410078, China
| | - Yiting Ouyang
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 110, Changsha, 410078, China
- Cancer Research Institute, School of Basic Medicine Science, Central South University, Changsha, 410078, China
| | - Dan Li
- Institute of Molecular Medicine and Oncology, College of Biology, Hunan University, Changsha, 410012, China
| | - Xia Wu
- Cancer Research Institute, School of Basic Medicine Science, Central South University, Changsha, 410078, China.
- Department of Pathology, The Second Xiangya Hospital, Central South University, Renmin Middle Road 174, Changsha, 410011, China.
| | - Lifang Yang
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 110, Changsha, 410078, China.
- Cancer Research Institute, School of Basic Medicine Science, Central South University, Changsha, 410078, China.
| |
Collapse
|
2
|
Wang X, Zhao J. Targeted Cancer Therapy Based on Acetylation and Deacetylation of Key Proteins Involved in Double-Strand Break Repair. Cancer Manag Res 2022; 14:259-271. [PMID: 35115826 PMCID: PMC8800007 DOI: 10.2147/cmar.s346052] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/13/2022] [Indexed: 12/22/2022] Open
Abstract
DNA double-strand breaks (DSBs) play an important role in promoting genomic instability and cell death. The precise repair of DSBs is essential for maintaining genome integrity during cancer progression, and inducing genomic instability or blocking DNA repair is an important mechanism through which chemo/radiotherapies exert killing effects on cancer cells. The two main pathways that facilitate the repair of DSBs in cancer cells are homologous recombination (HR) and non-homologous end-joining (NHEJ). Accumulating data suggest that the acetylation and deacetylation of DSB repair proteins regulate the initiation and progression of the cellular response to DNA DSBs, which may further affect the chemosensitivity or radiosensitivity of cancer cells. Here, we focus on the role of acetylation/deacetylation in the regulation of ataxia-telangiectasia mutated, Rad51, and 53BP1 in the HR pathway, as well as the relevant roles of PARP1 and Ku70 in NHEJ. Notably, several histone deacetylase (HDAC) inhibitors targeting HR or NHEJ have been demonstrated to enhance chemo/radiosensitivity in preclinical studies. This review highlights the essential role of acetylation/deacetylation in the regulation of DSB repair proteins, suggesting that HDAC inhibitors targeting the HR or NHEJ pathways that downregulate DNA DSB repair genes may be worthwhile cancer therapeutic agents.
Collapse
Affiliation(s)
- Xiwen Wang
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People’s Republic of China
| | - Jungang Zhao
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People’s Republic of China
- Correspondence: Jungang Zhao, Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People’s Republic of China, Tel/Fax +86 13889311066, Email
| |
Collapse
|
3
|
Xiang XS, Li PC, Wang WQ, Liu L. Histone deacetylases: A novel class of therapeutic targets for pancreatic cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188676. [PMID: 35016922 DOI: 10.1016/j.bbcan.2022.188676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 12/24/2022]
Abstract
Pancreatic cancer is the seventh leading cause of cancer death worldwide, with a low 5-year survival rate. Novel agents are urgently necessary to treat the main pathological type, known as pancreatic ductal carcinoma (PDAC). The dysregulation of histone deacetylases (HDACs) has been identified in association with PDAC, which can be more easily targeted by small molecular inhibitors than gene mutations and may represent a therapeutic breakthrough for PDAC. However, the contributions of HDACs to PDAC remain controversial, and pharmacokinetic challenges have limited the application of HDAC inhibitors (HDACis) in PDAC. This review summarizes the mechanisms associated with success and failure of HDACis in PDAC and discusses the recent progress made in HDACi development and application, such as combination therapies designed to enhance efficacy. More precise strategies involving HDACis might eventually improve the outcomes of PDAC treatment.
Collapse
Affiliation(s)
- Xue-Song Xiang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peng-Cheng Li
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wen-Quan Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Park M, Kwon J, Shin HJ, Moon SM, Kim SB, Shin US, Han YH, Kim Y. Butyrate enhances the efficacy of radiotherapy via FOXO3A in colorectal cancer patient‑derived organoids. Int J Oncol 2020; 57:1307-1318. [PMID: 33173975 PMCID: PMC7646587 DOI: 10.3892/ijo.2020.5132] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022] Open
Abstract
Enhancing the radioresponsiveness of colorectal cancer (CRC) is essential for local control and prognosis. However, consequent damage to surrounding healthy cells can lead to treatment failure. We hypothesized that short‑chain fatty acids (SCFAs) could act as radiosensitizers for cancer cells, allowing the administration of a lower and safer dose of radiation. To test this hypothesis, the responses of three‑dimensional‑cultured organoids, derived from CRC patients, to radiotherapy, as well as the effects of combined radiotherapy with the SCFAs butyrate, propionate and acetate as candidate radiosensitizers, were evaluated via reverse transcription‑quantitative polymerase chain reaction, immunohistochemistry and organoid viability assay. Of the three SCFAs tested, only butyrate suppressed the proliferation of the organoids. Moreover, butyrate significantly enhanced radiation‑induced cell death and enhanced treatment effects compared with administration of radiation alone. The radiation‑butyrate combination reduced the proportion of Ki‑67 (proliferation marker)‑positive cells and decreased the number of S phase cells via FOXO3A. Meanwhile, 3/8 CRC organoids were found to be non‑responsive to butyrate with lower expression levels of FOXO3A compared with the responsive cases. Notably, butyrate did not increase radiation‑induced cell death and improved regeneration capacity after irradiation in normal organoids. These results suggest that butyrate could enhance the efficacy of radiotherapy while protecting the normal mucosa, thus highlighting a potential strategy for minimizing the associated toxicity of radiotherapy.
Collapse
Affiliation(s)
- Misun Park
- Department of Radiological and Clinical Research, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Junhye Kwon
- Department of Radiological and Clinical Research, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Hye-Jin Shin
- Department of Radiological and Clinical Research, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Sun Mi Moon
- Department of Surgery, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Sang Bum Kim
- Department of Radiological and Clinical Research, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Ui Sup Shin
- Department of Radiological and Clinical Research, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Young-Hoon Han
- Department of Radiological and Medico‑Oncological Sciences, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Younjoo Kim
- Department of Radiological and Clinical Research, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| |
Collapse
|
5
|
Shirbhate E, Patel P, Patel VK, Veerasamy R, Sharma PC, Rajak H. The combination of histone deacetylase inhibitors and radiotherapy: a promising novel approach for cancer treatment. Future Oncol 2020; 16:2457-2469. [PMID: 32815411 DOI: 10.2217/fon-2020-0385] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
HDAC inhibitors (HDACi) play an essential role in various cellular processes, such as differentiation and transcriptional regulation of key genes and cytostatic factors, cell cycle arrest and apoptosis that facilitates the targeting of epigenome of eukaryotic cells. In the majority of cancers, only a handful of patients receive optimal benefit from chemotherapeutics. Additionally, there is emerging interest in the use of HDACi to modulate the effects of ionizing radiations. The use of HDACi with radiotherapy, with the goal of reaching dissimilar, often distinct pathways or multiple biological targets, with the expectation of synergistic effects, reduced toxicity and diminished intrinsic and acquired resistance, conveys an approach of increasing interest. In this review, the clinical potential of HDACi in combination with radiotherapy is described as an efficient synergy for cancer treatment will be overviewed.
Collapse
Affiliation(s)
- Ekta Shirbhate
- Institute of Pharmaceutical Sciences, Guru Ghasidas University, Bilaspur-495 009, Chhattisgarh, India
| | - Preeti Patel
- Institute of Pharmaceutical Sciences, Guru Ghasidas University, Bilaspur-495 009, Chhattisgarh, India
| | - Vijay K Patel
- Institute of Pharmaceutical Sciences, Guru Ghasidas University, Bilaspur-495 009, Chhattisgarh, India
| | - Ravichandran Veerasamy
- Faculty of Pharmacy, AIMST University, Semeling, 08100 Bedong, Kedah Darul Aman, Malaysia
| | - Prabodh C Sharma
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra-136 119, Haryana, India
| | - Harish Rajak
- Institute of Pharmaceutical Sciences, Guru Ghasidas University, Bilaspur-495 009, Chhattisgarh, India
| |
Collapse
|
6
|
Clifford R, Govindarajah N, Parsons JL, Gollins S, West NP, Vimalachandran D. Systematic review of treatment intensification using novel agents for chemoradiotherapy in rectal cancer. Br J Surg 2018; 105:1553-1572. [PMID: 30311641 PMCID: PMC6282533 DOI: 10.1002/bjs.10993] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 08/07/2018] [Accepted: 08/07/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND With the well established shift to neoadjuvant treatment for locally advanced rectal cancer, there is increasing focus on the use of radiosensitizers to improve the efficacy and tolerability of radiotherapy. There currently exist few randomized data exploring novel radiosensitizers to improve response and it is unclear what the clinical endpoints of such trials should be. METHODS A qualitative systematic review was performed according to the PRISMA guidelines using preset search criteria across the PubMed, Cochrane and Scopus databases from 1990 to 2017. Additional results were generated from the reference lists of included papers. RESULTS A total of 123 papers were identified, of which 37 were included; a further 60 articles were obtained from additional referencing to give a total of 97 articles. Neoadjuvant radiosensitization for locally advanced rectal cancer using fluoropyrimidine-based chemotherapy remains the standard of treatment. The oral derivative capecitabine has practical advantages over 5-fluorouracil, with equal efficacy, but the addition of a second chemotherapeutic agent has yet to show a consistent significant efficacy benefit in randomized clinical assessment. Preclinical and early-phase trials are progressing with promising novel agents, such as small molecular inhibitors and nanoparticles. CONCLUSION Despite extensive research and promising preclinical studies, a definite further agent in addition to fluoropyrimidines that consistently improves response rate has yet to be found.
Collapse
Affiliation(s)
- R. Clifford
- Institute of Cancer Medicine, University of LiverpoolLiverpoolUK
| | - N. Govindarajah
- Institute of Cancer Medicine, University of LiverpoolLiverpoolUK
| | - J. L. Parsons
- Institute of Cancer Medicine, University of LiverpoolLiverpoolUK
| | - S. Gollins
- North Wales Cancer Treatment Centre, Glan Clwyd HospitalBodelwyddanUK
| | - N. P. West
- Leeds Institute of Cancer and Pathology, University of LeedsLeedsUK
| | - D. Vimalachandran
- Institute of Cancer Medicine, University of LiverpoolLiverpoolUK
- Department of Colorectal SurgeryCountess of Chester NHS Foundation TrustChesterUK
| |
Collapse
|
7
|
Abstract
Glioblastoma multiforme (GBM) is the most lethal primary brain tumor in adults despite contemporary gold-standard first-line treatment strategies. This type of tumor recurs in virtually all patients and no commonly accepted standard treatment exists for the recurrent disease. Therefore, advances in all scientific and clinical aspects of GBM are urgently needed. Epigenetic mechanisms are one of the major factors contributing to the pathogenesis of cancers, including glioblastoma. Epigenetic modulators that regulate gene expression by altering the epigenome and non-histone proteins are being exploited as therapeutic drug targets. Over the last decade, numerous preclinical and clinical studies on histone deacetylase (HDAC) inhibitors have shown promising results in various cancers. This article provides an overview of the anticancer mechanisms of HDAC inhibitors and the role of HDAC isoforms in GBM. We also summarize current knowledge on HDAC inhibitors on the basis of preclinical studies and emerging clinical data.
Collapse
|
8
|
Partolina M, Thoms HC, MacLeod KG, Rodriguez-Blanco G, Clarke MN, Venkatasubramani AV, Beesoo R, Larionov V, Neergheen-Bhujun VS, Serrels B, Kimura H, Carragher NO, Kagansky A. Global histone modification fingerprinting in human cells using epigenetic reverse phase protein array. Cell Death Discov 2017; 3:16077. [PMID: 28326191 PMCID: PMC5349387 DOI: 10.1038/cddiscovery.2016.77] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 08/23/2016] [Accepted: 09/01/2016] [Indexed: 12/15/2022] Open
Abstract
The balance between acetylation and deacetylation of histone proteins plays a critical role in the regulation of genomic functions. Aberrations in global levels of histone modifications are linked to carcinogenesis and are currently the focus of intense scrutiny and translational research investments to develop new therapies, which can modify complex disease pathophysiology through epigenetic control. However, despite significant progress in our understanding of the molecular mechanisms of epigenetic machinery in various genomic contexts and cell types, the links between epigenetic modifications and cellular phenotypes are far from being clear. For example, enzymes controlling histone modifications utilize key cellular metabolites associated with intra- and extracellular feedback loops, adding a further layer of complexity to this process. Meanwhile, it has become increasingly evident that new assay technologies which provide robust and precise measurement of global histone modifications are required, for at least two pressing reasons: firstly, many approved drugs are known to influence histone modifications and new cancer therapies are increasingly being developed towards targeting histone deacetylases (HDACs) and other epigenetic readers and writers. Therefore, robust assays for fingerprinting the global effects of such drugs on preclinical cell, organoid and in vivo models is required; and secondly, robust histone-fingerprinting assays applicable to patient samples may afford the development of next-generation diagnostic and prognostic tools. In our study, we have used a panel of monoclonal antibodies to determine the relative changes in the global abundance of post-translational modifications on histones purified from cancer cell lines treated with HDAC inhibitors using a novel technique, called epigenetic reverse phase protein array. We observed a robust increase in acetylation levels within 2–24 h after inhibition of HDACs in different cancer cell lines. Moreover, when these cells were treated with N-acetylated amino acids in addition to HDACs, we detected a further increase in histone acetylation, demonstrating that these molecules could be utilized as donors of the acetyl moiety for protein acetylation. Consequently, this study not only offers a novel assay for diagnostics and drug screening but also warrants further research of the novel class of inexpensive, non-toxic natural compounds that could potentiate the effects of HDAC inhibitors and is therefore of interest for cancer therapeutics.
Collapse
Affiliation(s)
- Marina Partolina
- Synthetic Epigenetics Laboratory, MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh , Edinburgh, UK
| | - Hazel C Thoms
- Synthetic Epigenetics Laboratory, MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh , Edinburgh, UK
| | - Kenneth G MacLeod
- Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh , Edinburgh, UK
| | - Giovanny Rodriguez-Blanco
- Synthetic Epigenetics Laboratory, MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh , Edinburgh, UK
| | - Matthew N Clarke
- Synthetic Epigenetics Laboratory, MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh , Edinburgh, UK
| | - Anuroop V Venkatasubramani
- Synthetic Epigenetics Laboratory, MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK; Department of Biosciences, University of Helsinki, PO Box 65 (Viikinkaari 1), 00014, Helsinki, Finland
| | - Rima Beesoo
- Department of Health Sciences and ANDI Centre of Excellence for Biomedical and Biomaterials Research, Faculty of Science, University of Mauritius , Réduit, Republic of Mauritius
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute , Bethesda, MD 20892, USA
| | - Vidushi S Neergheen-Bhujun
- Department of Health Sciences and ANDI Centre of Excellence for Biomedical and Biomaterials Research, Faculty of Science, University of Mauritius , Réduit, Republic of Mauritius
| | - Bryan Serrels
- Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh , Edinburgh, UK
| | - Hiroshi Kimura
- Cell Biology Unit, Institute of Innovative Research, Tokyo Institute of Technology . 4259, Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Neil O Carragher
- Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh , Edinburgh, UK
| | - Alexander Kagansky
- Synthetic Epigenetics Laboratory, MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh , Edinburgh, UK
| |
Collapse
|
9
|
Rivera S, Leteur C, Mégnin F, Law F, Martins I, Kloos I, Depil S, Modjtahedi N, Perfettini JL, Hennequin C, Deutsch E. Time dependent modulation of tumor radiosensitivity by a pan HDAC inhibitor: abexinostat. Oncotarget 2017; 8:56210-56227. [PMID: 28915585 PMCID: PMC5593556 DOI: 10.18632/oncotarget.14813] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/30/2016] [Indexed: 02/06/2023] Open
Abstract
Despite prominent role of radiotherapy in lung cancer management, there is an urgent need for strategies increasing therapeutic efficacy. Reversible epigenetic changes are promising targets for combination strategies using HDAC inhibitors (HDACi). Here we evaluated on two NSCLC cell lines, the antitumor effect of abexinostat, a novel pan HDACi combined with irradiation in vitro in normoxia and hypoxia, by clonogenic assays, demonstrating that abexinostat enhances radiosensitivity in a time dependent way with mean SER10 between 1.6 and 2.5 for A549 and H460. We found, by immunofluorescence staining, flow cytometry assays and western blotting, in abexinostat treated cells, increasing radio-induced caspase dependent apoptosis and persistent DNA double-strand breaks associated with decreased DNA damage signalling and repair. Interestingly, we demonstrated on nude mice xenografts that abexinostat potentiates tumor growth delay in combined modality treatments associating not only abexinostat and irradiation but also when adding cisplatin. Altogether, our data demonstrate in vitro and in vivo anti-tumor effect potentiation by abexinostat combined with irradiation in NSCLC. Moreover, our work suggests for the first time to our knowledge promising triple combination opportunities with HDACi, irradiation and cisplatin which deserves further investigations and could be of major interest in the treatment of NSCLC.
Collapse
Affiliation(s)
- Sofia Rivera
- Department of Radiotherapy, Gustave-Roussy Cancer Campus, Villejuif, France.,INSERM 1030 Molecular Radiotherapy, Villejuif, France.,Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Céline Leteur
- Department of Radiotherapy, Gustave-Roussy Cancer Campus, Villejuif, France.,INSERM 1030 Molecular Radiotherapy, Villejuif, France
| | - Frédérique Mégnin
- INSERM U1196/UMR9187 CMIB, Institut Curie-Recherche, Université Paris Saclay, Le Kremlin-Bicêtre, France
| | - Frédéric Law
- Department of Radiotherapy, Gustave-Roussy Cancer Campus, Villejuif, France.,INSERM 1030 Molecular Radiotherapy, Villejuif, France
| | - Isabelle Martins
- Department of Radiotherapy, Gustave-Roussy Cancer Campus, Villejuif, France.,INSERM 1030 Molecular Radiotherapy, Villejuif, France
| | - Ioana Kloos
- IRIS: Institut de Recherches Internationales Servier, Suresnes, France
| | - Stéphane Depil
- IRIS: Institut de Recherches Internationales Servier, Suresnes, France
| | - Nazanine Modjtahedi
- Department of Radiotherapy, Gustave-Roussy Cancer Campus, Villejuif, France.,INSERM 1030 Molecular Radiotherapy, Villejuif, France
| | - Jean Luc Perfettini
- Department of Radiotherapy, Gustave-Roussy Cancer Campus, Villejuif, France.,INSERM 1030 Molecular Radiotherapy, Villejuif, France
| | | | - Eric Deutsch
- Department of Radiotherapy, Gustave-Roussy Cancer Campus, Villejuif, France.,INSERM 1030 Molecular Radiotherapy, Villejuif, France.,Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| |
Collapse
|
10
|
Kalanxhi E, Risberg K, Barua IS, Dueland S, Waagene S, Andersen SN, Pettersen SJ, Lindvall JM, Redalen KR, Flatmark K, Ree AH. Induction of Apoptosis in Intestinal Toxicity to a Histone Deacetylase Inhibitor in a Phase I Study with Pelvic Radiotherapy. Cancer Res Treat 2016; 49:374-386. [PMID: 27488871 PMCID: PMC5398387 DOI: 10.4143/crt.2016.080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 06/28/2016] [Indexed: 12/24/2022] Open
Abstract
Purpose When integrating molecularly targeted compounds in radiotherapy, synergistic effects of the systemic agent and radiation may extend the limits of patient tolerance, increasing the demand for understanding the pathophysiological mechanisms of treatment toxicity. In this Pelvic Radiation and Vorinostat (PRAVO) study, we investigated mechanisms of adverse effects in response to the histone deacetylase (HDAC) inhibitor vorinostat (suberoylanilide hydroxamic acid, SAHA) when administered as a potential radiosensitiser. Materials and Methods This phase I study for advanced gastrointestinal carcinoma was conducted in sequential patient cohorts exposed to escalating doses of vorinostat combined with standard-fractionated palliative radiotherapy to pelvic target volumes. Gene expression microarray analysis of the study patient peripheral blood mononuclear cells (PBMC) was followed by functional validation in cultured cell lines and mice treated with SAHA. Results PBMC transcriptional responses to vorinostat, including induction of apoptosis, were confined to the patient cohort reporting dose-limiting intestinal toxicities. At relevant SAHA concentrations, apoptotic features (annexin V staining and caspase 3/7 activation, but not poly-(ADP-ribose)-polymerase cleavage) were observed in cultured intestinal epithelial cells. Moreover, SAHA-treated mice displayed significant weight loss. Conclusion The PRAVO study design implemented a strategy to explore treatment toxicity caused by an HDAC inhibitor when combined with radiotherapy and enabled the identification of apoptosis as a potential mechanism responsible for the dose-limiting effects of vorinostat. To the best of our knowledge, this is the first report deciphering mechanisms of normal tissue adverse effects in response to an HDAC inhibitor within a combined-modality treatment regimen.
Collapse
Affiliation(s)
- Erta Kalanxhi
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway.,Institute of Clinical Molecular Biology, Akershus University Hospital, Lørenskog, Norway
| | - Karianne Risberg
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway.,Institute of Clinical Molecular Biology, Akershus University Hospital, Lørenskog, Norway
| | - Imon S Barua
- Institute of Clinical Molecular Biology, Akershus University Hospital, Lørenskog, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Svein Dueland
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Stein Waagene
- Department of Tumour Biology, Oslo University Hospital, Oslo, Norway
| | - Solveig Norheim Andersen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Pathology, Akershus University Hospital, Lørenskog, Norway
| | | | - Jessica M Lindvall
- Institute of Clinical Molecular Biology, Akershus University Hospital, Lørenskog, Norway
| | | | - Kjersti Flatmark
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Tumour Biology, Oslo University Hospital, Oslo, Norway.,Department of Gastroenterological Surgery, Oslo University Hospital, Oslo, Norway
| | - Anne Hansen Ree
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
11
|
Abdelfatah E, Kerner Z, Nanda N, Ahuja N. Epigenetic therapy in gastrointestinal cancer: the right combination. Therap Adv Gastroenterol 2016; 9:560-79. [PMID: 27366224 PMCID: PMC4913338 DOI: 10.1177/1756283x16644247] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Epigenetics is a relatively recent field of molecular biology that has arisen over the past 25 years. Cancer is now understood to be a disease of widespread epigenetic dysregulation that interacts extensively with underlying genetic mutations. The development of drugs targeting these processes has rapidly progressed; with several drugs already FDA approved as first-line therapy in hematological malignancies. Gastrointestinal (GI) cancers possess high degrees of epigenetic dysregulation, exemplified by subtypes such as CpG island methylator phenotype (CIMP), and the potential benefit of epigenetic therapy in these cancers is evident. The application of epigenetic drugs in solid tumors, including GI cancers, is just emerging, with increased understanding of the cancer epigenome. In this review, we provide a brief overview of cancer epigenetics and the epigenetic targets of therapy including deoxyribonucleic acid (DNA) methylation, histone modifications, and chromatin remodeling. We discuss the epigenetic drugs currently in use, with a focus on DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibitors, and explain the pharmacokinetic and mechanistic challenges in their application. We present the strategies employed in incorporating these drugs into the treatment of GI cancers, and explain the concept of the cancer stem cell in epigenetic reprogramming and reversal of chemo resistance. We discuss the most promising combination strategies in GI cancers including: (1) epigenetic sensitization to radiotherapy, (2) epigenetic sensitization to cytotoxic chemotherapy, and (3) epigenetic immune modulation and priming for immune therapy. Finally, we present preclinical and clinical trial data employing these strategies thus far in various GI cancers including colorectal, esophageal, gastric, and pancreatic cancer.
Collapse
Affiliation(s)
- Eihab Abdelfatah
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zachary Kerner
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nainika Nanda
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- West Virginia University School of Medicine, Morgantown, WV, USA
| | - Nita Ahuja
- Department of Surgery and Oncology, Johns Hopkins University, 1650 Orleans St. Room 342, Baltimore, MD 21231, USA
| |
Collapse
|
12
|
Coveler AL, Richard P, Apisarnthanarax S, Chiorean EG. Is There a Best Radiosensitizing Agent in the Treatment of Locally Advanced Rectal Cancer? CURRENT COLORECTAL CANCER REPORTS 2016. [DOI: 10.1007/s11888-016-0324-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
13
|
Radiosensitisation of human colorectal cancer cells by ruthenium(II) arene anticancer complexes. Sci Rep 2016; 6:20596. [PMID: 26867983 PMCID: PMC4751532 DOI: 10.1038/srep20596] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/07/2016] [Indexed: 01/14/2023] Open
Abstract
Some of the largest improvements in clinical outcomes for patients with solid cancers observed over the past 3 decades have been from concurrent treatment with chemotherapy and radiotherapy (RT). The lethal effects of RT on cancer cells arise primarily from damage to DNA. Ruthenium (Ru) is a transition metal of the platinum group, with potentially less toxicity than platinum drugs. We postulated that ruthenium-arene complexes are radiosensitisers when used in combination with RT. We screened 14 ruthenium-arene complexes and identified AH54 and AH63 as supra-additive radiosensitisers by clonogenic survival assays and isobologram analyses. Both complexes displayed facial chirality. At clinically relevant doses of RT, radiosensitisation of cancer cells by AH54 and AH63 was p53-dependent. Radiation enhancement ratios for 5–10 micromolar drug concentrations ranged from 1.19 to 1.82. In p53-wildtype cells, both drugs induced significant G2 cell cycle arrest and apoptosis. Colorectal cancer cells deficient in DNA damage repair proteins, EME1 and MUS81, were significantly more sensitive to both agents. Both drugs were active in cancer cell lines displaying acquired resistance to oxaliplatin or cisplatin. Our findings broaden the potential scope for these drugs for use in cancer therapy, including combination with radiotherapy to treat colorectal cancer.
Collapse
|
14
|
Blattmann C, Oertel S, Thiemann M, Dittmar A, Roth E, Kulozik AE, Ehemann V, Weichert W, Huber PE, Stenzinger A, Debus J. Histone deacetylase inhibition sensitizes osteosarcoma to heavy ion radiotherapy. Radiat Oncol 2015; 10:146. [PMID: 26178881 PMCID: PMC4504102 DOI: 10.1186/s13014-015-0455-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/06/2015] [Indexed: 01/20/2023] Open
Abstract
Background Minimal improvements in treatment or survival of patients with osteosarcoma have been achieved during the last three decades. Especially in the case of incomplete tumor resection, prognosis remains poor. Heavy ion radiotherapy (HIT) and modern anticancer drugs like histone deacetylase inhibitors (HDACi) have shown promising effects in osteosarcoma in vitro. In this study, we tested the effect of HIT and the combination of HIT and the HDACi suberoylanilide hydroxamic acid (SAHA) in a xenograft mouse model. Methods Osteosarcoma xenografts were established by subcutaneous injection of KHOS-24OS cells and treated with either vehicle (DMSO), SAHA, HIT or HIT and SAHA. Tumor growth was determined and tumor necrosis, proliferation rate, apoptotic rate as well as vessel density were evaluated. Results Here, we show that the combination of HIT and SAHA induced a significant delay of tumor growth through increased rate of apoptosis, increased expression of p53 and p21Waf1/Cip1, inhibition of proliferation and angiogenesis compared to tumors treated with HIT only. Conclusion HIT and in particular the combination of HIT and histone deacetylase inhibition is a promising treatment strategy in OS and may be tested in clinical trials.
Collapse
Affiliation(s)
- Claudia Blattmann
- Department of Pediatric Oncology, Hematology and Immunology, University Children's, Hospital of Heidelberg, Heidelberg, Germany. .,Department of Radiation Oncology, German Cancer Research Center, Heidelberg, Germany. .,German Cancer Consortium (DKTK), Heidelberg, Germany. .,Pädiatrie 5, Olgahospital, Kriegsbergstr. 62, 70174, Stuttgart, Germany.
| | - Susanne Oertel
- Department of Radiation Oncology, University of Heidelberg, Heidelberg, Germany. .,Department of Radiation Oncology, German Cancer Research Center, Heidelberg, Germany.
| | - Markus Thiemann
- Department of Pediatric Oncology, Hematology and Immunology, University Children's, Hospital of Heidelberg, Heidelberg, Germany. .,Department of Radiation Oncology, German Cancer Research Center, Heidelberg, Germany.
| | - Anne Dittmar
- Department of Radiation Oncology, University of Heidelberg, Heidelberg, Germany. .,Department of Radiation Oncology, German Cancer Research Center, Heidelberg, Germany.
| | - Eva Roth
- Department of Pediatric Oncology, Hematology and Immunology, University Children's, Hospital of Heidelberg, Heidelberg, Germany. .,Department of Radiation Oncology, German Cancer Research Center, Heidelberg, Germany.
| | - Andreas E Kulozik
- Department of Pediatric Oncology, Hematology and Immunology, University Children's, Hospital of Heidelberg, Heidelberg, Germany. .,German Cancer Consortium (DKTK), Heidelberg, Germany. .,National Center for Tumor Diseases (NCT), University of Heidelberg, Heidelberg, Germany.
| | - Volker Ehemann
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany.
| | - Wilko Weichert
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany. .,German Cancer Consortium (DKTK), Heidelberg, Germany. .,National Center for Tumor Diseases (NCT), University of Heidelberg, Heidelberg, Germany.
| | - Peter E Huber
- Department of Radiation Oncology, German Cancer Research Center, Heidelberg, Germany.
| | | | - Jürgen Debus
- Department of Radiation Oncology, University of Heidelberg, Heidelberg, Germany. .,Department of Radiation Oncology, German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
15
|
Blattmann C, Thiemann M, Stenzinger A, Roth EK, Dittmar A, Witt H, Lehner B, Renker E, Jugold M, Eichwald V, Weichert W, Huber PE, Kulozik AE. Establishment of a patient-derived orthotopic osteosarcoma mouse model. J Transl Med 2015; 13:136. [PMID: 25926029 PMCID: PMC4428092 DOI: 10.1186/s12967-015-0497-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 04/20/2015] [Indexed: 11/10/2022] Open
Abstract
Background Osteosarcoma (OS) is the most common pediatric primary malignant bone tumor. As the prognosis for patients following standard treatment did not improve for almost three decades, functional preclinical models that closely reflect important clinical cancer characteristics are urgently needed to develop and evaluate new treatment strategies. The objective of this study was to establish an orthotopic xenotransplanted mouse model using patient-derived tumor tissue. Methods Fresh tumor tissue from an adolescent female patient with osteosarcoma after relapse was surgically xenografted into the right tibia of 6 immunodeficient BALB/c Nu/Nu mice as well as cultured into medium. Tumor growth was serially assessed by palpation and with magnetic resonance imaging (MRI). In parallel, a primary cell line of the same tumor was established. Histology and high-resolution array-based comparative genomic hybridization (aCGH) were used to investigate both phenotypic and genotypic characteristics of different passages of human xenografts and the cell line compared to the tissue of origin. Results A primary OS cell line and a primary patient-derived orthotopic xenotranplanted mouse model were established. MRI analyses and histopathology demonstrated an identical architecture in the primary tumor and in the xenografts. Array-CGH analyses of the cell line and all xenografts showed highly comparable patterns of genomic progression. So far, three further primary patient-derived orthotopic xenotranplanted mouse models could be established. Conclusion We report the first orthotopic OS mouse model generated by transplantation of tumor fragments directly harvested from the patient. This model represents the morphologic and genomic identity of the primary tumor and provides a preclinical platform to evaluate new treatment strategies in OS.
Collapse
Affiliation(s)
- Claudia Blattmann
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany. .,Division of Radiooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany. .,German Cancer Consortium (DKTK), Heidelberg, Germany.
| | - Markus Thiemann
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany. .,Division of Radiooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | | | - Eva K Roth
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany. .,Division of Radiooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Anne Dittmar
- Department of Radiotherapy and Radiooncology, University of Heidelberg, Heidelberg, Germany. .,Institute of Pathology, University of Heidelberg, Heidelberg, Germany.
| | - Hendrik Witt
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany. .,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany. .,German Cancer Consortium (DKTK), Heidelberg, Germany.
| | - Burkhard Lehner
- Department of Orthopedics, University of Heidelberg, Heidelberg, Germany.
| | - Eva Renker
- Department of Orthopedics, University of Heidelberg, Heidelberg, Germany.
| | - Manfred Jugold
- Core Facility, Small Animal Imaging Center, DKFZ, Heidelberg, Germany.
| | - Viktoria Eichwald
- Core Facility, Small Animal Imaging Center, DKFZ, Heidelberg, Germany.
| | - Wilko Weichert
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany. .,German Cancer Consortium (DKTK), Heidelberg, Germany. .,National Center for Tumor Diseases (NCT), University of Heidelberg, Heidelberg, Germany.
| | - Peter E Huber
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany.
| | - Andreas E Kulozik
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany. .,German Cancer Consortium (DKTK), Heidelberg, Germany. .,National Center for Tumor Diseases (NCT), University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
16
|
Jin Y, Lyu Y, Tang X, Zhang Y, Chen J, Zheng D, Liang Y. Lupeol enhances radiosensitivity of human hepatocellular carcinoma cell line SMMC-7721 in vitro and in vivo. Int J Radiat Biol 2015; 91:202-8. [DOI: 10.3109/09553002.2015.966209] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
HDAC Inhibitors: A New Radiosensitizer for Non-small-cell Lung Cancer. TUMORI JOURNAL 2015; 101:257-62. [PMID: 25953446 DOI: 10.5301/tj.5000347] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2015] [Indexed: 12/18/2022]
Abstract
For many decades, lung cancer has been the most common cancer and the leading cause of cancer death worldwide. More than 50% of non-small-cell lung cancer patients receive radiotherapy (alone or in combination with chemotherapy or surgery) during their treatment. The intrinsic radiosensitivity of tumors and dose-limiting toxicity restrict the curative potential of radiotherapy. Histone deacetylase inhibitors (HDACis) are an emerging class of agents that target histone deacetylase and represent promising radiosensitizers that affect various biological processes, such as cell growth, apoptosis, DNA repair, and terminal differentiation. Histone deacetylase inhibitors have been found to suppress many important DNA damage responses by downregulating proteins in the homologous recombination and nonhomologous end joining repair pathways in vitro. In this review, we describe the rationale for using HDACis as radiosensitizers and the clinical evidence regarding the use of HDACis for the treatment of non-small-cell lung cancer.
Collapse
|
18
|
Ree AH, Meltzer S, Flatmark K, Dueland S, Kalanxhi E. Biomarkers of treatment toxicity in combined-modality cancer therapies with radiation and systemic drugs: study design, multiplex methods, molecular networks. Int J Mol Sci 2014; 15:22835-56. [PMID: 25501337 PMCID: PMC4284741 DOI: 10.3390/ijms151222835] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 11/23/2014] [Accepted: 12/02/2014] [Indexed: 01/21/2023] Open
Abstract
Organ toxicity in cancer therapy is likely caused by an underlying disposition for given pathophysiological mechanisms in the individual patient. Mechanistic data on treatment toxicity at the patient level are scarce; hence, probabilistic and translational linkages among different layers of data information, all the way from cellular targets of the therapeutic exposure to tissues and ultimately the patient’s organ systems, are required. Throughout all of these layers, untoward treatment effects may be viewed as perturbations that propagate within a hierarchically structured network from one functional level to the next, at each level causing disturbances that reach a critical threshold, which ultimately are manifested as clinical adverse reactions. Advances in bioinformatics permit compilation of information across the various levels of data organization, presumably enabling integrated systems biology-based prediction of treatment safety. In view of the complexity of biological responses to cancer therapy, this communication reports on a “top-down” strategy, starting with the systematic assessment of adverse effects within a defined therapeutic context and proceeding to transcriptomic and proteomic analysis of relevant patient tissue samples and computational exploration of the resulting data, with the ultimate aim of utilizing information from functional connectivity networks in evaluation of patient safety in multimodal cancer therapy.
Collapse
Affiliation(s)
- Anne Hansen Ree
- Department of Oncology, Akershus University Hospital, P.O. Box 1000, 1478 Lørenskog, Norway.
| | - Sebastian Meltzer
- Department of Oncology, Akershus University Hospital, P.O. Box 1000, 1478 Lørenskog, Norway.
| | - Kjersti Flatmark
- Institute of Clinical Medicine, University of Oslo, P.O. Box 1171 Blindern, 0318 Oslo, Norway.
| | - Svein Dueland
- Department of Oncology, Oslo University Hospital, P.O. Box 4956 Nydalen, 0424 Oslo, Norway.
| | - Erta Kalanxhi
- Department of Oncology, Akershus University Hospital, P.O. Box 1000, 1478 Lørenskog, Norway.
| |
Collapse
|
19
|
Sawant S, Shegokar R. Cancer research and therapy: Where are we today? INTERNATIONAL JOURNAL OF CANCER THERAPY AND ONCOLOGY 2014. [DOI: 10.14319/ijcto.0204.8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
20
|
Ree AH, Saelen MG, Kalanxhi E, Østensen IHG, Schee K, Røe K, Abrahamsen TW, Dueland S, Flatmark K. Biomarkers of histone deacetylase inhibitor activity in a phase 1 combined-modality study with radiotherapy. PLoS One 2014; 9:e89750. [PMID: 24587009 PMCID: PMC3934935 DOI: 10.1371/journal.pone.0089750] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 01/22/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Following the demonstration that histone deacetylase inhibitors enhanced experimental radiation-induced clonogenic suppression, the Pelvic Radiation and Vorinostat (PRAVO) phase 1 study, combining fractionated radiotherapy with daily vorinostat for pelvic carcinoma, was designed to evaluate both clinical and novel biomarker endpoints, the latter relating to pharmacodynamic indicators of vorinostat action in clinical radiotherapy. PATIENTS AND METHODS Potential biomarkers of vorinostat radiosensitizing action, not simultaneously manifesting molecular perturbations elicited by the radiation itself, were explored by gene expression array analysis of study patients' peripheral blood mononuclear cells (PBMC), sampled at baseline (T0) and on-treatment two and 24 hours (T2 and T24) after the patients had received vorinostat. RESULTS This strategy revealed 1,600 array probes that were common for the comparisons T2 versus T0 and T24 versus T2 across all of the patients, and furthermore, that no significantly differential expression was observed between the T0 and T24 groups. Functional annotation analysis of the array data showed that a significant number of identified genes were implicated in gene regulation, the cell cycle, and chromatin biology. Gene expression was validated both in patients' PBMC and in vorinostat-treated human carcinoma xenograft models, and transient repression of MYC was consistently observed. CONCLUSION Within the design of the PRAVO study, all of the identified genes showed rapid and transient induction or repression and therefore, in principle, fulfilled the requirement of being pharmacodynamic biomarkers of vorinostat action in fractionated radiotherapy, possibly underscoring the role of MYC in this therapeutic setting.
Collapse
Affiliation(s)
- Anne Hansen Ree
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- * E-mail:
| | - Marie Grøn Saelen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Tumor Biology, Oslo University Hospital – Norwegian Radium Hospital, Oslo, Norway
| | - Erta Kalanxhi
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
| | - Ingrid H. G. Østensen
- Department of Genes and Environment, Norwegian Institute of Public Health, Oslo, Norway
| | - Kristina Schee
- Department of Tumor Biology, Oslo University Hospital – Norwegian Radium Hospital, Oslo, Norway
| | - Kathrine Røe
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
| | - Torveig Weum Abrahamsen
- Department of Tumor Biology, Oslo University Hospital – Norwegian Radium Hospital, Oslo, Norway
| | - Svein Dueland
- Department of Oncology, Oslo University Hospital – Norwegian Radium Hospital, Oslo, Norway
| | - Kjersti Flatmark
- Department of Tumor Biology, Oslo University Hospital – Norwegian Radium Hospital, Oslo, Norway
- Department of Gastroenterological Surgery, Oslo University Hospital – Norwegian Radium Hospital, Oslo, Norway
| |
Collapse
|
21
|
Zhou Y, Xu Y, Wang H, Niu J, Hou H, Jiang Y. Histone deacetylase inhibitor, valproic acid, radiosensitizes the C6 glioma cell line in vitro.. Oncol Lett 2013; 7:203-208. [PMID: 24348849 PMCID: PMC3861595 DOI: 10.3892/ol.2013.1666] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 10/24/2013] [Indexed: 11/25/2022] Open
Abstract
Valproic acid (VPA) is a well-tolerated drug that is used to treat seizure disorders and that has recently been shown to inhibit histone deacetylase. The present study investigated the effects of VPA on the radiosensitization of the rat C6 glioma cell line in vitro. To select an appropriate treatment concentration and time, MTT and flow cytometry assays were performed to measure the inhibitory effects of VPA at various concentrations and incubation time-points. The radiosensitizing effect of VPA was determined using clonogenic experiments. VPA- and radiation-induced C6 apoptosis was analyzed using quantitative polymerase chain reaction and western blot analysis. Cell proliferation was significantly inhibited by VPA in a time- and dose-dependent manner (P<0.05). VPA enhanced radiation-induced C6 cell death and there was clear inhibition of clonogenic formation [sensitizer enhancement ratio (SER), 1.30]. This effect was closely associated with the concentration of VPA. VPA treatment decreased the mRNA and protein levels of Bcl-2, whereas increased changes were detected with Bax. At a concentration of 0.5 mmol/l, VPA had a low toxicity and enhanced the radiosensitization of the C6 cells. VPA may radiosensitize glioma cells by inhibiting cellular proliferation and inducing apoptosis by regulating apoptosis-related molecular changes.
Collapse
Affiliation(s)
- Yong Zhou
- Cancer Centre, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Ying Xu
- Cancer Centre, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Han Wang
- Department of Radiotherapy, Shandong Jining First People's Hospital, Jining, Shandong 272011, P.R. China
| | - Junjie Niu
- Cancer Centre, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Huaying Hou
- Cancer Centre, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yuhua Jiang
- Cancer Centre, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
22
|
Ree AH, Saelen MG, Kalanxhi E, Ostensen IHG, Schee K, Roe K, Abrahamsen TW, Dueland S, Flatmark K. Abstract C63: The Pelvic Radiation and Vorinostat (PRAVO) phase 1 study identifying MYC repression as biomarker of histone deacetylase inhibitor activity. Mol Cancer Ther 2013. [DOI: 10.1158/1535-7163.targ-13-c63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
In modern radiation oncology, new insights into molecular radiobiology provide an opportunity for the rational integration of molecularly targeted therapeutics to optimize clinical radiation effects. One example is the use of histone deacetylase (HDAC) inhibitors as potentially radiosensitizing drugs. Conveyed by histone acetylation, HDAC inhibition causes perturbations in gene regulation implicated in cell cycle progression, DNA damage signaling and repair, and apoptosis.
Following the demonstration that HDAC inhibitors enhanced radiation-induced clonogenic suppression in human colorectal carcinoma cell lines and xenograft models [1-3], the PRAVO study was conducted [4-5]. This trial, undertaken in patients treated with pelvic palliative radiotherapy (30 Gy in 3-Gy daily fractions) combined with the HDAC inhibitor vorinostat (administered once daily, three hours before radiation) for advanced gastrointestinal malignancy, was the first to report on the use of an HDAC inhibitor in clinical radiotherapy. It was designed to demonstrate that vorinostat reached the specific target (detection of tumor histone acetylation), the applicability of non-invasive tumor response assessment (using functional imaging), and importantly, that this combined-modality therapy was safe and tolerable.
In the present report, potential biomarkers of vorinostat radiosensitizing action, not simultaneously manifesting molecular perturbations elicited by the radiation itself, were explored by gene expression array analysis of the PRAVO study patients’ peripheral blood mononuclear cells (PBMC), sampled at baseline (T0) and on-treatment two and 24 hours (T2 and T24) after the patients had received vorinostat. This strategy revealed 1,600 array probes that were common for the comparisons T2 versus T0 and T24 versus T2 across all of the patients, and furthermore, that no significantly differential expression was observed between the T0 and T24 groups. Functional annotation analysis of the array data showed that a significant number of the identified genes were implicated in biological processes and pathways comprising gene regulation (transcription, RNA processing), cell cycle progression (including p53 signaling, commonly involved in the DNA damage response), and chromatin biology. Of five genes that were selected both for verification of patients’ PBMC expression and for validation of vorinostat-regulated expression in human colorectal carcinoma xenograft models, transient repression of MYC was consistently observed in all conditions.
In conclusion, within the design of the PRAVO study, all of the identified genes showed rapid and transient induction or repression and therefore, in principle, fulfilled the requirement of being pharmacodynamic biomarkers of vorinostat activity in fractionated radiotherapy, possibly underscoring the regulatory role of myc in this therapeutic setting.
Citation Information: Mol Cancer Ther 2013;12(11 Suppl):C63.
Citation Format: Anne Hansen Ree, Marie G. Saelen, Erta Kalanxhi, Ingrid H. G. Ostensen, Kristina Schee, Kathrine Roe, Torveig W. Abrahamsen, Svein Dueland, Kjersti Flatmark. The Pelvic Radiation and Vorinostat (PRAVO) phase 1 study identifying MYC repression as biomarker of histone deacetylase inhibitor activity. [abstract]. In: Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; 2013 Oct 19-23; Boston, MA. Philadelphia (PA): AACR; Mol Cancer Ther 2013;12(11 Suppl):Abstract nr C63.
Collapse
|
23
|
He G, Wang Y, Pang X, Zhang B. Inhibition of autophagy induced by TSA sensitizes colon cancer cell to radiation. Tumour Biol 2013; 35:1003-11. [DOI: 10.1007/s13277-013-1134-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 08/23/2013] [Indexed: 01/13/2023] Open
|
24
|
Ree AH, Hollywood D. Design and conduct of early-phase radiotherapy trials with targeted therapeutics: lessons from the PRAVO experience. Radiother Oncol 2013; 108:3-16. [PMID: 23830196 DOI: 10.1016/j.radonc.2013.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 05/28/2013] [Accepted: 06/10/2013] [Indexed: 12/28/2022]
Abstract
New strategies to facilitate the improvement of physical and integrated biological optimization of high-precision treatment protocols are an important priority for modern radiation oncology. From a clinical perspective, as knowledge accumulates from molecular radiobiology, there is a complex and exciting opportunity to investigate novel approaches to rational patient treatment stratification based on actionable tumor targets, together with the appropriate design of next-generation early-phase radiotherapy trials utilizing targeted therapeutics, to formally evaluate relevant clinical and biomarker endpoints. A unique aspect in the development pathway of systemic agents with presumed radiosensitizing activity will also be the need for special attention on patient eligibility and the rigorous definition of radiation dose-volume relationships and potential dose-limiting toxicities. Based on recent experience from systematically investigating histone deacetylase inhibitors as radiosensitizing agents, from initial studies in preclinical tumor models through the conduct of a phase I clinical study to evaluate tumor activity of the targeted agent as well as patient safety and tumor response to the combined treatment modality, this communication will summarize principles relating to early clinical evaluation of combining radiotherapy and targeted therapeutics.
Collapse
Affiliation(s)
- Anne Hansen Ree
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway.
| | | |
Collapse
|
25
|
Blattmann C, Thiemann M, Stenzinger A, Christmann A, Roth E, Ehemann V, Debus J, Kulozik AE, Weichert W, Huber PE, Oertel S, Abdollahi A. Radiosensitization by histone deacetylase inhibition in an osteosarcoma mouse model. Strahlenther Onkol 2013; 189:957-66. [PMID: 23801068 DOI: 10.1007/s00066-013-0372-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/29/2013] [Indexed: 12/18/2022]
Abstract
BACKGROUND Osteosarcomas (OS) are highly malignant and radioresistant tumors. Histone deacetylase inhibitors (HDACi) constitute a novel class of anticancer agents. We sought to investigate the effect of combined treatment with suberoylanilide hydroxamic acid (SAHA) and radiotherapy in OS in vivo. METHODS Clonogenic survival of human OS cell lines as well as tumor growth delay of OS xenografts were tested after treatment with either vehicle, radiotherapy (XRT), SAHA, or XRT and SAHA. Tumor proliferation, necrosis, microvascular density, apoptosis, and p53/p21 were monitored by immunohistochemistry. The CD95 pathway was performed by flow cytometry, caspase (3/7/8) activity measurements, and functional inhibition of CD95 death signaling. RESULTS Combined treatment with SAHA and XRT markedly reduced the surviving fraction of OS cells as compared to XRT alone. Likewise, dual therapy significantly inhibited OS tumor growth in vivo as compared to XRT alone, reflected by reduced tumor proliferation, impaired angiogenesis, and increased apoptosis. Addition of HDACi to XRT led to elevated p53, p21, CD95, and CD95L expression. Inhibition of CD95 signaling reduced HDACi- and XRT-induced apoptosis. CONCLUSION Our data show that HDACi increases the radiosensitivity of osteosarcoma cells at least in part via ligand-induced apoptosis. HDACi thus emerge as potentially useful treatment components of OS.
Collapse
Affiliation(s)
- C Blattmann
- Pädiatrie 5, Olgahospital, Bismarckstr. 8, 70176, Stuttgart, Germany,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hui KF, Lam BHW, Ho DN, Tsao SW, Chiang AKS. Bortezomib and SAHA synergistically induce ROS-driven caspase-dependent apoptosis of nasopharyngeal carcinoma and block replication of Epstein-Barr virus. Mol Cancer Ther 2013; 12:747-58. [PMID: 23475956 DOI: 10.1158/1535-7163.mct-12-0811] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A novel drug combination of a proteasome inhibitor, bortezomib, and a histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), was tested in nasopharyngeal carcinoma (NPC), both in vitro and in vivo. Dose-response of different concentrations of bortezomib and SAHA on inhibition of cell proliferation of NPC was determined. Mechanisms of apoptosis and effects on lytic cycle activation of Epstein-Barr virus (EBV) were investigated. Combination of bortezomib and SAHA (bortezomib/SAHA) synergistically induced killing of a panel of NPC cell lines. Pronounced increase in sub-G1, Annexin V-positive, and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive cell populations were detected after treatment with bortezomib/SAHA when compared with either drug alone. Concomitantly, markedly augmented proteolytic cleavage of PARP, caspase-3, -7, -8, and -9, reactive oxygen species (ROS) generation, and caspase-8-dependent histone acetylation were observed. ROS scavenger, N-acetyl cysteine, diminished the apoptotic effects of bortezomib/SAHA, whereas caspase inhibitor Z-VAD-FMK significantly suppressed the apoptosis without decreasing the generation of ROS. Bortezomib inhibited SAHA's induction of EBV replication and abrogated production of infectious viral particles in NPC cells. Furthermore, bortezomib/SAHA potently induced apoptosis and suppressed the growth of NPC xenografts in nude mice. In conclusion, the novel drug combination of bortezomib and SAHA is highly synergistic in the killing of NPC cells in vitro and in vivo. The major mechanism of cell death is ROS-driven caspase-dependent apoptosis. Bortezomib antagonizes SAHA's activation of EBV lytic cycle in NPC cells. This study provides a strong basis for clinical testing of the combination drug regimen in patients with NPC.
Collapse
Affiliation(s)
- Kwai Fung Hui
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | | | | | | | | |
Collapse
|
27
|
Saelen MG, Ree AH, Kristian A, Fleten KG, Furre T, Hektoen HH, Flatmark K. Radiosensitization by the histone deacetylase inhibitor vorinostat under hypoxia and with capecitabine in experimental colorectal carcinoma. Radiat Oncol 2012; 7:165. [PMID: 23017053 PMCID: PMC3488009 DOI: 10.1186/1748-717x-7-165] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 09/21/2012] [Indexed: 01/01/2023] Open
Abstract
Background The histone deacetylase inhibitor vorinostat is a candidate radiosensitizer in locally advanced rectal cancer (LARC). Radiosensitivity is critically influenced by hypoxia; hence, it is important to evaluate the efficacy of potential radiosensitizers under variable tissue oxygenation. Since fluoropyrimidine-based chemoradiotherapy (CRT) is the only clinically validated regimen in LARC, efficacy in combination with this established regimen should be assessed in preclinical models before a candidate drug enters clinical trials. Methods Radiosensitization by vorinostat under hypoxia was studied in four colorectal carcinoma cell lines and in one colorectal carcinoma xenograft model by analysis of clonogenic survival and tumor growth delay, respectively. Radiosensitizing effects of vorinostat in combination with capecitabine were assessed by evaluation of tumor growth delay in two colorectal carcinoma xenografts models. Results Under hypoxia, radiosensitization by vorinostat was demonstrated in vitro in terms of decreased clonogenicity and in vivo as inhibition of tumor growth. Adding vorinostat to capecitabine-based CRT increased radiosensitivity of xenografts in terms of inhibited tumor growth. Conclusions Vorinostat sensitized colorectal carcinoma cells to radiation under hypoxia in vitro and in vivo and improved therapeutic efficacy in combination with capecitabine-based CRT in vivo. The results encourage implementation of vorinostat into CRT in LARC trials.
Collapse
Affiliation(s)
- Marie Grøn Saelen
- Department of Tumor Biology, Norwegian Radium Hospital, Oslo University Hospital, P,O, Box 4953, Nydalen, 0424, Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
28
|
Xia J, Chen C, Chen Z, Miele L, Sarkar FH, Wang Z. Targeting pancreatic cancer stem cells for cancer therapy. Biochim Biophys Acta Rev Cancer 2012; 1826:385-99. [PMID: 22728049 DOI: 10.1016/j.bbcan.2012.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 04/14/2012] [Accepted: 06/13/2012] [Indexed: 12/15/2022]
Abstract
Pancreatic cancer (PC) is the fourth most frequent cause of cancer death in the United States. Emerging evidence suggests that pancreatic cancer stem cells (CSCs) play a crucial role in the development and progression of PC. Recently, there is increasing evidence showing that chemopreventive agents commonly known as nutraceuticals could target and eliminate CSCs that have been proposed as the root of the tumor progression, which could be partly due to attenuating cell signaling pathways involved in CSCs. Therefore, targeting pancreatic CSCs by nutraceuticals for the prevention of tumor progression and treatment of PC may lead to the development of novel strategy for achieving better treatment outcome of PC patients. In this review article, we will summarize the most recent advances in the pancreatic CSC field, with particular emphasis on nutraceuticals that target CSCs, for fighting this deadly disease.
Collapse
Affiliation(s)
- Jun Xia
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Anhui, People's Republic of China
| | | | | | | | | | | |
Collapse
|
29
|
Thiemann M, Oertel S, Ehemann V, Weichert W, Stenzinger A, Bischof M, Weber KJ, Perez RL, Haberkorn U, Kulozik AE, Debus J, Huber PE, Battmann C. In vivo efficacy of the histone deacetylase inhibitor suberoylanilide hydroxamic acid in combination with radiotherapy in a malignant rhabdoid tumor mouse model. Radiat Oncol 2012; 7:52. [PMID: 22458853 PMCID: PMC3342162 DOI: 10.1186/1748-717x-7-52] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 03/29/2012] [Indexed: 05/16/2023] Open
Abstract
Purpose Histone deacetylase inhibitors are promising new substances in cancer therapy and have also been shown to sensitize different tumor cells to irradiation (XRT). We explored the effect as well as the radiosensitizing properties of suberoylanilide hydroxamic acid (SAHA) in vivo in a malignant rhabdoid tumor (MRT) mouse model. Methods and material Potential radiosensitization by SAHA was assessed in MRT xenografts by analysis of tumor growth delay, necrosis (HE), apoptosis (TUNEL), proliferation (ki-67) and γH2AX expression as well as dynamic 18F-Fluorodeoxyglucose Positron Emission Tomography (18F-FDG -PET) after treatment with either SAHA alone, single-dose (10 Gy) or fractionated XRT (3 × 3Gy) solely as well as in combination with SAHA compared to controls. Results SAHA only had no significant effect on tumor growth. Combination of SAHA for 8 days with single-dose XRT resulted in a higher number of complete remissions, but failed to prove a significant growth delay compared to XRT only. In contrast fractionated XRT plus SAHA for 3 weeks did induce significant tumor growth delay in MRT-xenografts. The histological examination showed a significant effect of XRT in tumor necrosis, expression of Ki-67, γH2AX and apoptosis. SAHA only had no significant effect in the histological examination. Comparison of xenografts treated with XRT and XRT plus SAHA revealed a significantly increased γH2AX expression and apoptosis induction in the mice tumors after combination treatment with single-dose as well as fractionated XRT. The combination of SAHA with XRT showed a tendency to increased necrosis and decrease of proliferation compared to XRT only, which, however, was not significant. The 18F-FDG-PET results showed no significant differences in the standard uptake value or glucose transport kinetics after either treatment. Conclusion SAHA did not have a significant effect alone, but proved to enhance the effect of XRT in our MRT in vivo model.
Collapse
Affiliation(s)
- Markus Thiemann
- Department of Radiation Oncology, University of Heidelberg, INF 600, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ree A. Epigenetikk - gen og miljø. TIDSSKRIFT FOR DEN NORSKE LEGEFORENING 2012. [DOI: 10.4045/tidsskr.11.1160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
31
|
Shabason JE, Tofilon PJ, Camphausen K. Grand rounds at the National Institutes of Health: HDAC inhibitors as radiation modifiers, from bench to clinic. J Cell Mol Med 2011; 15:2735-44. [PMID: 21362133 PMCID: PMC3112261 DOI: 10.1111/j.1582-4934.2011.01296.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 01/27/2011] [Indexed: 01/18/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive malignant brain tumour. Patients afflicted with this disease unfortunately have a very poor prognosis, and fewer than 5% of patients survive for 5 years from the time of diagnosis. Therefore, improved therapies to treat this disease are sorely needed. One such class of drugs that have generated great enthusiasm for the treatment of numerous malignancies, including GBM, is histone deacetylase (HDAC) inhibitors. Pre-clinical data have demonstrated the efficacy of various HDAC inhibitors as anticancer agents, with the greatest effects shown when HDAC inhibitors are used in combination with other therapies. As a result of encouraging pre-clinical data, numerous HDAC inhibitors are under investigation in clinical trials, either as monotherapies or in conjunction with other treatments such as chemotherapy, biologic therapy or radiation therapy. In fact, two actively studied HDAC inhibitors, vorinostat and depsipeptide, were recently approved for the treatment of refractory cutaneous T cell lymphoma. In this review, we first present a patient with GBM, and then discuss the pathogenesis, epidemiology and current treatment options of GBM. Finally, we examine the translation of pre-clinical studies that have demonstrated HDAC inhibitors as potent radiosensitizers in in vitro and in vivo models, to a phase II clinical trial combining the HDAC inhibitor, valproic acid, along with temozolomide and radiation therapy for the treatment of GBM.
Collapse
Affiliation(s)
- Jacob E Shabason
- Radiation Oncology Branch, National Cancer Institute, National Institutes of HealthBethesda, MD, USA
- Howard Hughes Medical Institute—National Institutes of Health Research Scholars ProgramBethesda, MD, USA
| | - Philip J Tofilon
- Radiation Oncology Branch, National Cancer Institute, National Institutes of HealthBethesda, MD, USA
| | - Kevin Camphausen
- Radiation Oncology Branch, National Cancer Institute, National Institutes of HealthBethesda, MD, USA
| |
Collapse
|
32
|
Mueller S, Yang X, Sottero TL, Gragg A, Prasad G, Polley MY, Weiss WA, Matthay KK, Davidoff AM, DuBois SG, Haas-Kogan DA. Cooperation of the HDAC inhibitor vorinostat and radiation in metastatic neuroblastoma: efficacy and underlying mechanisms. Cancer Lett 2011; 306:223-9. [PMID: 21497989 DOI: 10.1016/j.canlet.2011.03.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 03/06/2011] [Accepted: 03/16/2011] [Indexed: 11/16/2022]
Abstract
Histone deacetylase (HDAC) inhibitors can radiosensitize cancer cells. Radiation is critical in high-risk neuroblastoma treatment, and combinations of HDAC inhibitor vorinostat and radiation are proposed for neuroblastoma trials. Therefore, we investigated radiosensitizing effects of vorinostat in neuroblastoma. Treatment of neuroblastoma cell lines decreased cell viability and resulted in additive effects with radiation. In a murine metastatic neuroblastoma in vivo model vorinostat and radiation combinations decreased tumor volumes compared to single modality. DNA repair enzyme Ku-86 was reduced in several neuroblastoma cells treated with vorinostat. Thus, vorinostat potentiates anti-neoplastic effects of radiation in neuroblastoma possibly due to down-regulation of DNA repair enzyme Ku-86.
Collapse
Affiliation(s)
- Sabine Mueller
- Department of Neurology, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143-0106, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Thurn KT, Thomas S, Moore A, Munster PN. Rational therapeutic combinations with histone deacetylase inhibitors for the treatment of cancer. Future Oncol 2011; 7:263-83. [PMID: 21345145 PMCID: PMC3127396 DOI: 10.2217/fon.11.2] [Citation(s) in RCA: 188] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Histone deacetylases (HDACs) regulate the acetylation of a variety of histone and nonhistone proteins, controlling the transcription and regulation of genes involved in cell cycle control, proliferation, survival, DNA repair and differentiation. Unsurprisingly, HDAC expression is frequently altered in hematologic and solid tumor malignancies. Two HDAC inhibitors (vorinostat and romidepsin) have been approved by the US FDA for the treatment of cutaneous T-cell lymphoma. As single agents, treatment with HDAC inhibitors has demonstrated limited clinical benefit for patients with solid tumors, prompting the investigation of novel treatment combinations with other cancer therapeutics. In this article, the rationales and clinical progress of several combinations with HDAC inhibitors are presented, including DNA-damaging chemotherapeutic agents, radiotherapy, hormonal therapies, DNA methyltransferase inhibitors and various small-molecule inhibitors. The future application of HDAC inhibitors as a treatment for cancer is discussed, examining current hurdles to overcome before realizing the potential of this new approach.
Collapse
Affiliation(s)
- K Ted Thurn
- Department of Medicine, Hematology/Oncology Division. University of California, San Francisco, CA, USA
| | - Scott Thomas
- Department of Medicine, Hematology/Oncology Division. University of California, San Francisco, CA, USA
| | - Amy Moore
- Department of Medicine, Hematology/Oncology Division. University of California, San Francisco, CA, USA
| | - Pamela N Munster
- Department of Medicine, Hematology/Oncology Division. University of California, San Francisco, CA, USA
- Author for correspondence: 1600 Divisadero St, Room A722, Box 1770, San Francisco, CA 94115, USA Tel.: +1 415 885 7810 Fax: +1 415 353 7779
| |
Collapse
|
34
|
Konsoula Z, Cao H, Velena A, Jung M. Adamantanyl-histone deacetylase inhibitor H6CAHA exhibits favorable pharmacokinetics and augments prostate cancer radiation sensitivity. Int J Radiat Oncol Biol Phys 2011; 79:1541-8. [PMID: 21277099 DOI: 10.1016/j.ijrobp.2010.11.057] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 11/16/2010] [Accepted: 11/25/2010] [Indexed: 02/02/2023]
Abstract
PURPOSE To evaluate pharmacological properties of H6CAHA, an adamantyl-hydroxamate histone deacetylase inhibitor, and to investigate its effect on prostate cancer cells following exposure to γ-radiation in vitro and in vivo. METHODS AND MATERIALS H6CAHA was assessed for in vitro solubility, lipophilicity and growth inhibition, and in vivo plasma pharmacokinetics. The effect of H6CAHA on radiation clonogenic survival and DNA damage repair was evaluated in human prostate cancer (PC3, DU145, LNCaP) and nonmalignant control epithelial (RWPE1 and 267B1) cell lines. The effect of this agent on the growth of prostate cancer xenografts was also assessed in mice. RESULTS H6CAHA demonstrated good solubility and permeability profiles and preferentially inhibited the growth of prostate cancer cells over nonmalignant cells. Plasma pharmacokinetics revealed that the area under the curve of H6CAHA was 8.08 ± 0.91 μM × h, and its half-life was 11.17 ± 0.87 h. Radiation clonogenic assays revealed that H6CAHA decreased the survival of prostate cancer cells at the dose that exerted limited effect on normal cells. Concomitantly, delayed DNA damage repair following combination treatment was evident in cancer cells, indicated by the prolonged appearance of γH2AX and Rad51 foci and suppression of DNA damage repair genes (ATM, BRCA1, and BRCA2). Combined modality of H6CAHA (daily intraperitoneal injections for 10 days) with γ-radiation (10 × 2 Gy) completely blocked the growth of PC3 tumor xenografts (p < 0.001) over 60 days. CONCLUSION These results support the potential therapeutic value of H6CAHA in combination with radiation and support the rationale for further clinical investigation.
Collapse
Affiliation(s)
- Zacharoula Konsoula
- Department of Radiation Medicine, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057-1482, USA
| | | | | | | |
Collapse
|
35
|
Histone deacetylase inhibitor: antineoplastic agent and radiation modulator. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 720:171-9. [PMID: 21901627 DOI: 10.1007/978-1-4614-0254-1_14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Inhibitors of histone deacetylases (HDACs) have emerged as a new class of anticancer agents based on their actions in cancer cell growth and cell cycle arrest, terminal differentiation, and apoptosis. Previously, we rationally designed and developed a new class of hydroxamide- and mercaptoacetamide-bearing HDAC inhibitors. A subset of these inhibitors exhibited chemo-radiation sensitizing properties in various human cancer cells. Furthermore, some HDAC inhibitors protected normal cells from radiation-induced damage and extended the survival of mice following total body exposure to lethal dose radiation. Pathological analyses revealed that intestinal and bone marrow cellularities recovered significantly from radiation-induced damage by structural compartments restoration, suggesting the mechanism of action of these HDAC inhibitors. These findings support the hypothesis that epigenetic regulation may play a crucial role in the functional recovery of normal tissues from radiation injuries.
Collapse
|
36
|
Histone deacetylase inhibitors in the treatment of hematological malignancies and solid tumors. J Biomed Biotechnol 2010; 2011:475641. [PMID: 21188171 PMCID: PMC3004414 DOI: 10.1155/2011/475641] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 10/12/2010] [Indexed: 12/18/2022] Open
Abstract
The human genome is epigenetically organized through a series of modifications to the histone proteins that interact with the DNA. In cancer, many of the proteins that regulate these modifications can be altered in both function and expression. One example of this is the family of histone deacetylases (HDACs), which as their name implies remove acetyl groups from the histone proteins, allowing for more condensed nucleosomal structure. HDACs have increased expression in cancer and are also believed to promote carcinogenesis through the acetylation and interaction with key transcriptional regulators. Given this, small molecule histone deacetylases inhibitors have been identified and developed, which not only inhibit HDACs, but can also lead to growth arrest, differentiation, and/or apoptosis in tumors both in vitro and in vivo. Here, we will discuss some of the recent developments in clinical trials utilizing HDACs inhibitors for the treatment of both hematological malignancies as well as solid tumors.
Collapse
|
37
|
Flatmark K, Ree AH. Radiosensitizing Drugs: Lessons to Be Learned From the Oxaliplatin Story. J Clin Oncol 2010; 28:e577-8; author reply e581-3. [DOI: 10.1200/jco.2010.30.0921] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Kjersti Flatmark
- Clinic of Cancer and Surgery, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Anne Hansen Ree
- Akershus University Hospital, Lørenskog; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
38
|
Jazirehi AR. Regulation of apoptosis-associated genes by histone deacetylase inhibitors: implications in cancer therapy. Anticancer Drugs 2010; 21:805-13. [PMID: 20679890 DOI: 10.1097/cad.0b013e32833dad91] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Ree AH, Dueland S, Folkvord S, Hole KH, Seierstad T, Johansen M, Abrahamsen TW, Flatmark K. Vorinostat, a histone deacetylase inhibitor, combined with pelvic palliative radiotherapy for gastrointestinal carcinoma: the Pelvic Radiation and Vorinostat (PRAVO) phase 1 study. Lancet Oncol 2010; 11:459-64. [PMID: 20378407 DOI: 10.1016/s1470-2045(10)70058-9] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Histone deacetylase (HDAC) inhibitors have shown radiosensitising activity in preclinical tumour models. This phase 1 study assessed the use of vorinostat combined with pelvic palliative radiotherapy for gastrointestinal carcinoma. METHODS Between Feb 14, 2007, and May 18, 2009, eligible patients with histologically confirmed carcinoma, scheduled to receive pelvic palliative radiation to 30 Gy in 3 Gy daily fractions over 2 weeks, were enrolled into cohorts of escalating vorinostat dose. Vorinostat was administered orally once daily, 3 h before each radiotherapy fraction, at the following dose levels: 100 mg (n=1), 200 mg (n=4), 300 mg (n=6), and 400 mg (n=6). Endpoints included safety, tolerability, and biological activity (tumour histone acetylation). This study is registered with ClinicalTrials.gov, number NCT00455351. FINDINGS One patient withdrew consent after one treatment day, leaving 16 patients evaluable for tolerability. Most recorded adverse events were grade 1 and 2, among which fatigue (all patients) and gastrointestinal events (all patients) were most common. Grade 3 adverse events included fatigue (n=5), anorexia (n=3), diarrhoea (n=2), hyponatraemia (n=1), hypokalaemia (n=1), and acneiform rash (n=1). Of these, treatment-related grade 3 events (ie, dose-limiting toxicities) were observed in one of six patients at vorinostat 300 mg once daily (fatigue and anorexia), and in two of six patients at vorinostat 400 mg once daily (two events of diarrhoea and one each of fatigue, anorexia, hyponatraemia, and hypokalaemia). The maximum-tolerated dose of vorinostat in combination with palliative radiotherapy was thus determined to be 300 mg once daily. Histone hyperacetylation was detected, indicating biological activity of vorinostat. INTERPRETATION Vorinostat can be safely combined with short-term pelvic palliative radiotherapy. This study highlights the potential use of HDAC inhibitors with radiation, and suggests investigation of vorinostat in long-term curative pelvic radiotherapy--eg, as a component of preoperative chemoradiotherapy for rectal cancer. FUNDING Merck & Co, Inc, Norwegian Cancer Society, Norwegian Health and Rehabilitation Foundation.
Collapse
Affiliation(s)
- Anne Hansen Ree
- Department of Tumour Biology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|