1
|
Lyngholm E, Stokkevåg CH, Lühr A, Tian L, Meric I, Tjelta J, Henjum H, Handeland AH, Ytre-Hauge KS. An updated variable RBE model for proton therapy. Phys Med Biol 2024; 69:125025. [PMID: 38527373 DOI: 10.1088/1361-6560/ad3796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
Objective.While a constant relative biological effectiveness (RBE) of 1.1 forms the basis for clinical proton therapy, variable RBE models are increasingly being used in plan evaluation. However, there is substantial variation across RBE models, and several newin vitrodatasets have not yet been included in the existing models. In this study, an updatedin vitroproton RBE database was collected and used to examine current RBE model assumptions, and to propose an up-to-date RBE model as a tool for evaluating RBE effects in clinical settings.Approach.A proton database (471 data points) was collected from the literature, almost twice the size of the previously largest model database. Each data point included linear-quadratic model parameters and linear energy transfer (LET). Statistical analyses were performed to test the validity of commonly applied assumptions of phenomenological RBE models, and new model functions were proposed forRBEmaxandRBEmin(RBE at the lower and upper dose limits). Previously published models were refitted to the database and compared to the new model in terms of model performance and RBE estimates.Main results.The statistical analysis indicated that the intercept of theRBEmaxfunction should be a free fitting parameter and RBE estimates were clearly higher for models with free intercept.RBEminincreased with increasing LET, while a dependency ofRBEminon the reference radiation fractionation sensitivity (α/βx) did not significantly improve model performance. Evaluating the models, the new model gave overall lowest RMSE and highest R2 score. RBE estimates in the distal part of a spread-out-Bragg-peak in water (α/βx= 2.1 Gy) were 1.24-1.51 for original models, 1.25-1.49 for refits and 1.42 for the new model.Significance.An updated RBE model based on the currently largest database among published phenomenological models was proposed. Overall, the new model showed better performance compared to refitted published RBE models.
Collapse
Affiliation(s)
- Erlend Lyngholm
- Department of Physics and Technology, University of Bergen, Bergen, Norway
| | - Camilla Hanquist Stokkevåg
- Department of Physics and Technology, University of Bergen, Bergen, Norway
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Armin Lühr
- Department of Physics, TU Dortmund University, Dortmund, Germany
| | - Liheng Tian
- Department of Physics, TU Dortmund University, Dortmund, Germany
| | - Ilker Meric
- Department of Computer Science, Electrical Engineering and Mathematical Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | - Johannes Tjelta
- Department of Physics and Technology, University of Bergen, Bergen, Norway
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Helge Henjum
- Department of Physics and Technology, University of Bergen, Bergen, Norway
| | - Andreas Havsgård Handeland
- Department of Physics and Technology, University of Bergen, Bergen, Norway
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | | |
Collapse
|
2
|
Grissi C, Taverna Porro M, Perona M, Atia M, Negrin L, Moreno MS, Sacanell J, Olivera MS, Del Grosso M, Durán H, Ibañez IL. Superparamagnetic iron oxide nanoparticles induce persistent large foci of DNA damage in human melanoma cells post-irradiation. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2023:10.1007/s00411-023-01037-0. [PMID: 37452828 DOI: 10.1007/s00411-023-01037-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 06/25/2023] [Indexed: 07/18/2023]
Abstract
The synergy of superparamagnetic iron oxide nanoparticles (SPIONs) and ionizing radiation (IR), attributed to reactive oxygen species (ROS) and DNA double-strand breaks (DSBs) increase, was widely investigated in different cancers, but scarcely in melanoma. Herein, SPIONs were evaluated as radiosensitizers in A-375 human melanoma cells. Moreover, the effect of the combined treatment of SPIONs and gamma irradiation (SPIONs-IR) was assessed at the DNA level, where DSBs induction and their repair capacity were studied. SPIONs were synthesized, stabilized by poly(ethylene glycol) methyl ether and physicochemically characterized by high resolution-transmission electron microscopy (HR-TEM), X-ray diffraction and magnetometry and dynamic light scattering. The obtained nanoparticles showing superparamagnetic behavior and low dispersion in shape and sizes were tested in A-375 cells. The intracellular internalization of SPIONs was verified by HR-TEM and quantified by inductively coupled plasma atomic emission spectroscopy. Cells treated with SPIONs exhibited high ROS levels without associated cytotoxicity. Next, a significant radiosensitization in SPIONs-IR vs. control (IR) cells was demonstrated at 1 Gy of gamma radiation. Furthermore, a decreased DSBs repair capacity in SPIONs-IR vs. IR-treated cells was evidenced by the size increase of persistent phosphorylated H2AX foci at 24 h post-irradiation. In conclusion, these nanoparticles show the potential to radiosensitize melanoma cells by the induction of unrepairable DNA damage.
Collapse
Affiliation(s)
- Cecilia Grissi
- Subgerencia de Tecnología y Aplicaciones de Aceleradores, Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (CNEA), Instituto de Nanociencia y Nanotecnología (INN), CNEA - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Nodo Constituyentes, Av. General Paz, 1499 (B1650KNA), San Martín, Buenos Aires, Argentina
| | - Marisa Taverna Porro
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Junín 954 (C1113AAD), Ciudad Autónoma de Buenos Aires, Argentina
- Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, Campus Miguelete (B1650KNA), San Martín, Provincia de Buenos Aires, Argentina
| | - Marina Perona
- División Bioquímica Nuclear, Departamento de Radiobiología, Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. General Paz 1499 (B1650KNA), San Martín, Buenos Aires, Argentina
| | - Mariel Atia
- Subgerencia de Tecnología y Aplicaciones de Aceleradores, Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (CNEA), Instituto de Nanociencia y Nanotecnología (INN), CNEA - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Nodo Constituyentes, Av. General Paz, 1499 (B1650KNA), San Martín, Buenos Aires, Argentina
| | - Lara Negrin
- Laboratorio de Radiobiología y Biodosimetría, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (CNEA), Centro de Medicina Nuclear y Radioterapia - Instituto de Tecnologías Nucleares Para La Salud (INTECNUS), Av. Bustillo Km. 9,5 (R8402AGP), S.C. de Bariloche, Río Negro, Argentina
| | - M Sergio Moreno
- Instituto de Nanociencia y Nanotecnología (INN), Comisión Nacional de Energía Atómica (CNEA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Nodo Bariloche, Centro Atómico Bariloche, Av. Bustillo Km. 9,5 (R8402AGP), S.C. de Bariloche, Río Negro, Argentina
| | - Joaquín Sacanell
- Departamento de Física de la Materia Condensada, Comisión Nacional de Energía Atómica (CNEA), Instituto de Nanociencia y Nanotecnología (INN), CNEA - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Nodo Constituyentes, Av. General Paz 1499 (B1650KNA), San Martín, Buenos Aires, Argentina
| | - María Silvina Olivera
- Departamento Coordinación BNCT, Comisión Nacional de Energía Atómica (CNEA), Centro Atómico Constituyentes, Av. General Paz 1499 (B1650KNA), San Martín, Buenos Aires, Argentina
| | - Mariela Del Grosso
- Subgerencia de Tecnología y Aplicaciones de Aceleradores, Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (CNEA), Instituto de Nanociencia y Nanotecnología (INN), CNEA - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Nodo Constituyentes, Av. General Paz, 1499 (B1650KNA), San Martín, Buenos Aires, Argentina
| | - Hebe Durán
- Subgerencia de Tecnología y Aplicaciones de Aceleradores, Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (CNEA), Instituto de Nanociencia y Nanotecnología (INN), CNEA - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Nodo Constituyentes, Av. General Paz, 1499 (B1650KNA), San Martín, Buenos Aires, Argentina.
- Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, Campus Miguelete (B1650KNA), San Martín, Provincia de Buenos Aires, Argentina.
| | - Irene L Ibañez
- Subgerencia de Tecnología y Aplicaciones de Aceleradores, Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (CNEA), Instituto de Nanociencia y Nanotecnología (INN), CNEA - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Nodo Constituyentes, Av. General Paz, 1499 (B1650KNA), San Martín, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Du TQ, Liu R, Zhang Q, Luo H, Chen Y, Tan M, Wang Q, Wu X, Liu Z, Sun S, Yang K, Tian J, Wang X. Does particle radiation have superior radiobiological advantages for prostate cancer cells? A systematic review of in vitro studies. Eur J Med Res 2022; 27:306. [PMID: 36572945 PMCID: PMC9793637 DOI: 10.1186/s40001-022-00942-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/07/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Charged particle beams from protons to carbon ions provide many significant physical benefits in radiation therapy. However, preclinical studies of charged particle therapy for prostate cancer are extremely limited. The aim of this study was to comprehensively investigate the biological effects of charged particles on prostate cancer from the perspective of in vitro studies. METHODS We conducted a systematic review by searching EMBASE (OVID), Medline (OVID), and Web of Science databases to identify the publications assessing the radiobiological effects of charged particle irradiation on prostate cancer cells. The data of relative biological effectiveness (RBE), surviving fraction (SF), standard enhancement ratio (SER) and oxygen enhancement ratio (OER) were extracted. RESULTS We found 12 studies met the eligible criteria. The relative biological effectiveness values of proton and carbon ion irradiation ranged from 0.94 to 1.52, and 1.67 to 3.7, respectively. Surviving fraction of 2 Gy were 0.17 ± 0.12, 0.55 ± 0.20 and 0.53 ± 0.16 in carbon ion, proton, and photon irradiation, respectively. PNKP inhibitor and gold nanoparticles were favorable sensitizing agents, while it was presented poorer performance in GANT61. The oxygen enhancement ratio values of photon and carbon ion irradiation were 2.32 ± 0.04, and 1.77 ± 0.13, respectively. Charged particle irradiation induced more G0-/G1- or G2-/M-phase arrest, more expression of γ-H2AX, more apoptosis, and lower motility and/or migration ability than photon irradiation. CONCLUSIONS Both carbon ion and proton irradiation have advantages over photon irradiation in radiobiological effects on prostate cancer cell lines. Carbon ion irradiation seems to have further advantages over proton irradiation.
Collapse
Affiliation(s)
- Tian-Qi Du
- grid.9227.e0000000119573309Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd, Lanzhou, 730000 Gansu People’s Republic of China ,grid.32566.340000 0000 8571 0482The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu People’s Republic of China
| | - Ruifeng Liu
- grid.9227.e0000000119573309Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd, Lanzhou, 730000 Gansu People’s Republic of China ,grid.410726.60000 0004 1797 8419Graduate School, University of Chinese Academy of Sciences, Beijing, People’s Republic of China ,Heavy Ion Therapy Center, Lanzhou Heavy Ion Hospital, Lanzhou, Gansu People’s Republic of China
| | - Qiuning Zhang
- grid.9227.e0000000119573309Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd, Lanzhou, 730000 Gansu People’s Republic of China ,grid.410726.60000 0004 1797 8419Graduate School, University of Chinese Academy of Sciences, Beijing, People’s Republic of China ,Heavy Ion Therapy Center, Lanzhou Heavy Ion Hospital, Lanzhou, Gansu People’s Republic of China
| | - Hongtao Luo
- grid.9227.e0000000119573309Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd, Lanzhou, 730000 Gansu People’s Republic of China ,grid.410726.60000 0004 1797 8419Graduate School, University of Chinese Academy of Sciences, Beijing, People’s Republic of China ,Heavy Ion Therapy Center, Lanzhou Heavy Ion Hospital, Lanzhou, Gansu People’s Republic of China
| | - Yanliang Chen
- grid.9227.e0000000119573309Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd, Lanzhou, 730000 Gansu People’s Republic of China ,grid.32566.340000 0000 8571 0482The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu People’s Republic of China
| | - Mingyu Tan
- grid.9227.e0000000119573309Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd, Lanzhou, 730000 Gansu People’s Republic of China ,grid.32566.340000 0000 8571 0482The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu People’s Republic of China
| | - Qian Wang
- grid.9227.e0000000119573309Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd, Lanzhou, 730000 Gansu People’s Republic of China ,grid.32566.340000 0000 8571 0482The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu People’s Republic of China
| | - Xun Wu
- grid.9227.e0000000119573309Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd, Lanzhou, 730000 Gansu People’s Republic of China ,grid.32566.340000 0000 8571 0482The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu People’s Republic of China
| | - Zhiqiang Liu
- grid.9227.e0000000119573309Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd, Lanzhou, 730000 Gansu People’s Republic of China ,grid.410726.60000 0004 1797 8419Graduate School, University of Chinese Academy of Sciences, Beijing, People’s Republic of China ,Heavy Ion Therapy Center, Lanzhou Heavy Ion Hospital, Lanzhou, Gansu People’s Republic of China
| | - Shilong Sun
- grid.9227.e0000000119573309Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd, Lanzhou, 730000 Gansu People’s Republic of China ,grid.410726.60000 0004 1797 8419Graduate School, University of Chinese Academy of Sciences, Beijing, People’s Republic of China ,Heavy Ion Therapy Center, Lanzhou Heavy Ion Hospital, Lanzhou, Gansu People’s Republic of China
| | - Kehu Yang
- grid.32566.340000 0000 8571 0482Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu People’s Republic of China
| | - Jinhui Tian
- grid.32566.340000 0000 8571 0482Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu People’s Republic of China
| | - Xiaohu Wang
- grid.9227.e0000000119573309Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd, Lanzhou, 730000 Gansu People’s Republic of China ,grid.32566.340000 0000 8571 0482The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu People’s Republic of China ,grid.410726.60000 0004 1797 8419Graduate School, University of Chinese Academy of Sciences, Beijing, People’s Republic of China ,Heavy Ion Therapy Center, Lanzhou Heavy Ion Hospital, Lanzhou, Gansu People’s Republic of China
| |
Collapse
|
4
|
Evaluation of X-ray and carbon-ion beam irradiation with chemotherapy for the treatment of cervical adenocarcinoma cells in 2D and 3D cultures. Cancer Cell Int 2022; 22:391. [PMID: 36494817 PMCID: PMC9733259 DOI: 10.1186/s12935-022-02810-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cervical cancer is the second most common cancer in women and causes more than 250,000 deaths worldwide. Among these, the incidence of cervical adenocarcinomas is increasing. Cervical adenocarcinoma is not only difficult to detect and prevent in the early stages with screening, but it is also resistant to chemotherapy and radiotherapy, and its prognosis worsens significantly as the disease progresses. Furthermore, when recurrence or metastasis is observed, treatment options are limited and there is no curative treatment. Recently, heavy-particle radiotherapy has attracted attention owing to its high tumor control and minimal damage to normal tissues. In addition, heavy particle irradiation is effective for cancer stem cells and hypoxic regions, which are difficult to treat. METHODS In this study, we cultured cervical adenocarcinoma cell lines (HeLa and HCA-1) in two-dimensional (2D) or three-dimensional (3D) spheroid cultures and evaluated the effects of X-ray and carbon-ion (C-ion) beams. RESULTS X-ray irradiation decreased the cell viability in a dose-dependent manner in 2D cultures, whereas this effect was attenuated in 3D spheroid cultures. In contrast, C-ion irradiation demonstrated the same antitumor effect in 3D spheroid cultures as in 2D cultures. In 3D spheroid cultures, X-rays and anticancer drugs are attenuated because of hypoxia inside the spheroids. However, the impact of the C-ion beam was almost the same as that of the 2D culture, because heavy-particle irradiation was not affected by hypoxia. CONCLUSION These results suggest that heavy-particle radiotherapy may be a new therapeutic strategy for overcoming the resistance of cervical adenocarcinoma to treatment.
Collapse
|
5
|
Particle radiotherapy and molecular therapies: mechanisms and strategies towards clinical applications. Expert Rev Mol Med 2022; 24:e8. [PMID: 35101155 DOI: 10.1017/erm.2022.2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immunotherapy and targeted therapy are now commonly used in clinical trials in combination with radiotherapy for several cancers. While results are promising and encouraging, the molecular mechanisms of the interaction between the drugs and radiation remain largely unknown. This is especially important when switching from conventional photon therapy to particle therapy using protons or heavier ions. Different dose deposition patterns and molecular radiobiology can in fact modify the interaction with drugs and their effectiveness. We will show here that whilst the main molecular players are the same after low and high linear energy transfer radiation exposure, significant differences are observed in post-exposure signalling pathways that may lead to different effects of the drugs. We will also emphasise that the problem of the timing between drug administration and radiation and the fractionation regime are critical issues that need to be addressed urgently to achieve optimal results in combined treatments with particle therapy.
Collapse
|
6
|
Paganetti H. Mechanisms and Review of Clinical Evidence of Variations in Relative Biological Effectiveness in Proton Therapy. Int J Radiat Oncol Biol Phys 2022; 112:222-236. [PMID: 34407443 PMCID: PMC8688199 DOI: 10.1016/j.ijrobp.2021.08.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/14/2021] [Accepted: 08/10/2021] [Indexed: 01/03/2023]
Abstract
Proton therapy is increasingly being used as a radiation therapy modality. There is uncertainty about the biological effectiveness of protons relative to photon therapies as it depends on several physical and biological parameters. Radiation oncology currently applies a constant and generic value for the relative biological effectiveness (RBE) of 1.1, which was chosen conservatively to ensure tumor coverage. The use of a constant value has been challenged particularly when considering normal tissue constraints. Potential variations in RBE have been assessed in several published reviews but have mostly focused on data from clonogenic cell survival experiments with unclear relevance for clinical proton therapy. The goal of this review is to put in vitro findings in relation to clinical observations. Relevant in vivo pathways determining RBE for tumors and normal tissues are outlined, including not only damage to tumor cells and parenchyma but also vascular damage and immune response. Furthermore, the current clinical evidence of varying RBE is reviewed. The assessment can serve as guidance for treatment planning, personalized dose prescriptions, and outcome analysis.
Collapse
Affiliation(s)
- Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA.
| |
Collapse
|
7
|
Almhagen E, Traneus E, Ahnesjö A. Handling of beam spectra in training and application of proton RBE models. Phys Med Biol 2021; 66. [PMID: 34464939 DOI: 10.1088/1361-6560/ac226a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/31/2021] [Indexed: 11/11/2022]
Abstract
Published data from cell survival experiments are frequently used as training data for models of proton relative biological effectiveness (RBE). The publications rarely provide full information about the primary particle spectrum of the used beam, or its content of heavy secondary particles. The purpose of this paper is to assess to what extent heavy secondary particles may have been present in published cell survival experiments, and to investigate the impact of non-primary protons for RBE calculations in treatment planning. We used the Monte Carlo code Geant4 to calculate the occurrence of non-primary protons and heavier secondary particles for clinical protons beams in water for four incident energies in the [100, 250] MeV interval. We used the resulting spectra together with a conservative RBE parameterization and an RBE model to map both the rise of RBE at the beam entry surface due to heavy secondary particle buildup, and the difference in estimated RBE if non-primary protons are included or not in the beam quality metric. If included, non-primary protons cause a difference of 2% of the RBE in the plateau region of an spread out Bragg peak and 1% in the Bragg peak. Including non-primary protons specifically for RBE calculations will consequently have a negligible impact and can be ignored. A buildup distance in water of one millimeter was sufficient to reach an equilibrium state of RBE for the four incident energies selected. For the investigated experimental data, 83 out of the 86 data points were found to have been determined with at least that amount of buildup material. Hence, RBE model training data should be interpreted to include the contribution of heavy secondaries.
Collapse
Affiliation(s)
- Erik Almhagen
- Medical Radiation Sciences, Department of Immunology, Genetics and Pathology, Uppsala University, Akademiska Sjukhuset, Uppsala, Sweden.,The Skandion Clinic, Uppsala, Sweden
| | | | - Anders Ahnesjö
- Medical Radiation Sciences, Department of Immunology, Genetics and Pathology, Uppsala University, Akademiska Sjukhuset, Uppsala, Sweden
| |
Collapse
|
8
|
Zhao L, He X, Chen X, Shang Y, Mi D, Sun Y. Fitting the Generalized Target Model to Cell Survival Data of Proton Radiation Reveals Dose-Dependent RBE and Inspires an Alternative Method to Estimate RBE in High-Dose Regions. Radiat Res 2019; 192:507-516. [PMID: 31418641 DOI: 10.1667/rr15428.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The imprecise estimation of the relative biological effectiveness (RBE) of proton radiation has been one of the main challenges for further calculating the biologically effective dose in proton therapy. Since dose levels can greatly influence the proton RBE, the relationship between the two should be clarified first. In addition, since the dose-response curves are usually too complex to readily assess RBE in high-dose regions, a reliable and simple method is needed to predict the RBE of proton radiation accurately in clinically relevant doses. The standard linear-quadratic (LQ) model is widely used to determine the RBE of particles for clinical applications. However, there has been some debate over its use when modeling the cell survival curves in high-dose regions, since those survival curves usually show linear behavior in the semilogarithmic plot. By considering both cellular repair effects and indirect effects of radiation, we have proposed a generalized target model with linear-quadratic linear (LQL) characteristics. For the more accurate evaluation of proton RBE in radiotherapy, here we used this generalized target model to fit the cell survival data in V79 and C3H 10T1/2 cells exposed to proton radiation with different LETs. The fitting results show that the generalized target model works as well as the LQ model in general. Based on the fitting parameters of the generalized target model, the RBE of six given doses DT (RBET) could be calculated in the corresponding cell lines with different LETs. The results show that the RBET gradually decreases with increased dose in both cell types. In addition, inspired by the calculation method of the maximum values of RBE (RBEM) in the low-dose region, a novel method was proposed for estimating the RBE in the high-dose region (RBEH) based on the slope ratio of the dose-response curves in this region. Linear regression analysis indicated a significant linear correlation between the proposed RBEH and the RBET in high-dose regions, which suggests that the current method can be used as an alternative tool, which is both simple and robust, to estimate RBE in high-dose regions.
Collapse
Affiliation(s)
- Lei Zhao
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering
| | - Xinye He
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering
| | - Xinpeng Chen
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering
| | - Yuxuan Shang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering
| | - Dong Mi
- College of Science, Dalian Maritime University, Dalian, Liaoning, China
| | - Yeqing Sun
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering
| |
Collapse
|
9
|
Qi Tan H, Yang Calvin Koh W, Kuan Rui Tan L, Hao Phua J, Wei Ang K, Yong Park S, Siang Lew W, Cheow Lei Lee J. Dependence of LET on material and its impact on current RBE model. ACTA ACUST UNITED AC 2019; 64:135022. [DOI: 10.1088/1361-6560/ab1c90] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
10
|
DNA DSB Repair Dynamics following Irradiation with Laser-Driven Protons at Ultra-High Dose Rates. Sci Rep 2019; 9:4471. [PMID: 30872656 PMCID: PMC6418121 DOI: 10.1038/s41598-019-40339-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 02/07/2019] [Indexed: 11/09/2022] Open
Abstract
Protontherapy has emerged as more effective in the treatment of certain tumors than photon based therapies. However, significant capital and operational costs make protontherapy less accessible. This has stimulated interest in alternative proton delivery approaches, and in this context the use of laser-based technologies for the generation of ultra-high dose rate ion beams has been proposed as a prospective route. A better understanding of the radiobiological effects at ultra-high dose-rates is important for any future clinical adoption of this technology. In this study, we irradiated human skin fibroblasts-AG01522B cells with laser-accelerated protons at a dose rate of 109 Gy/s, generated using the Gemini laser system at the Rutherford Appleton Laboratory, UK. We studied DNA double strand break (DSB) repair kinetics using the p53 binding protein-1(53BP1) foci formation assay and observed a close similarity in the 53BP1 foci repair kinetics in the cells irradiated with 225 kVp X-rays and ultra- high dose rate protons for the initial time points. At the microdosimetric scale, foci per cell per track values showed a good correlation between the laser and cyclotron-accelerated protons indicating similarity in the DNA DSB induction and repair, independent of the time duration over which the dose was delivered.
Collapse
|
11
|
Paganetti H, Blakely E, Carabe-Fernandez A, Carlson DJ, Das IJ, Dong L, Grosshans D, Held KD, Mohan R, Moiseenko V, Niemierko A, Stewart RD, Willers H. Report of the AAPM TG-256 on the relative biological effectiveness of proton beams in radiation therapy. Med Phys 2019; 46:e53-e78. [PMID: 30661238 DOI: 10.1002/mp.13390] [Citation(s) in RCA: 218] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/21/2018] [Accepted: 01/13/2019] [Indexed: 12/14/2022] Open
Abstract
The biological effectiveness of proton beams relative to photon beams in radiation therapy has been taken to be 1.1 throughout the history of proton therapy. While potentially appropriate as an average value, actual relative biological effectiveness (RBE) values may differ. This Task Group report outlines the basic concepts of RBE as well as the biophysical interpretation and mathematical concepts. The current knowledge on RBE variations is reviewed and discussed in the context of the current clinical use of RBE and the clinical relevance of RBE variations (with respect to physical as well as biological parameters). The following task group aims were designed to guide the current clinical practice: Assess whether the current clinical practice of using a constant RBE for protons should be revised or maintained. Identifying sites and treatment strategies where variable RBE might be utilized for a clinical benefit. Assess the potential clinical consequences of delivering biologically weighted proton doses based on variable RBE and/or LET models implemented in treatment planning systems. Recommend experiments needed to improve our current understanding of the relationships among in vitro, in vivo, and clinical RBE, and the research required to develop models. Develop recommendations to minimize the effects of uncertainties associated with proton RBE for well-defined tumor types and critical structures.
Collapse
Affiliation(s)
- Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Eleanor Blakely
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - David J Carlson
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Indra J Das
- New York University Langone Medical Center & Laura and Isaac Perlmutter Cancer Center, New York, NY, USA
| | - Lei Dong
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - David Grosshans
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kathryn D Held
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Radhe Mohan
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vitali Moiseenko
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA
| | - Andrzej Niemierko
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Robert D Stewart
- Department of Radiation Oncology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Matsuno Y, Hyodo M, Fujimori H, Shimizu A, Yoshioka KI. Sensitization of Cancer Cells to Radiation and Topoisomerase I Inhibitor Camptothecin Using Inhibitors of PARP and Other Signaling Molecules. Cancers (Basel) 2018; 10:E364. [PMID: 30274183 PMCID: PMC6210148 DOI: 10.3390/cancers10100364] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/24/2018] [Accepted: 09/26/2018] [Indexed: 12/13/2022] Open
Abstract
Radiation and certain anticancer drugs damage DNA, resulting in apoptosis induction in cancer cells. Currently, the major limitations on the efficacy of such therapies are development of resistance and adverse side effects. Sensitization is an important strategy for increasing therapeutic efficacy while minimizing adverse effects. In this manuscript, we review possible sensitization strategies for radiation and anticancer drugs that cause DNA damage, focusing especially on modulation of damage repair pathways and the associated reactions.
Collapse
Affiliation(s)
- Yusuke Matsuno
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Mai Hyodo
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
- Biological Science and Technology, Tokyo University of Science, 6-1-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| | - Haruka Fujimori
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
- Biological Science and Technology, Tokyo University of Science, 6-1-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| | - Atsuhiro Shimizu
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Ken-Ichi Yoshioka
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| |
Collapse
|
13
|
Rodriguez C, Carpano M, Curotto P, Thorp S, Casal M, Juvenal G, Pisarev M, Dagrosa MA. In vitro studies of DNA damage and repair mechanisms induced by BNCT in a poorly differentiated thyroid carcinoma cell line. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2018; 57:143-152. [PMID: 29453554 DOI: 10.1007/s00411-017-0729-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 12/24/2017] [Indexed: 06/08/2023]
Abstract
Boron neutron capture therapy (BNCT) for aggressive tumors is based on nuclear reaction [10B (n, α) 7Li]. Previously, we demonstrated that BNCT could be applied for the treatment of undifferentiated thyroid carcinoma. The aim of the present study was to describe the DNA damage pattern and the repair pathways that are activated by BNCT in thyroid cells. We analyzed γH2AX foci and the expression of Ku70, Rad51 and Rad54, main effector enzymes of non-homologous end joining (NHEJ) and homologous recombination repair (HRR) pathways, respectively, in thyroid follicular carcinoma cells. The studied groups were: (1) C [no irradiation], (2) gamma [60Co source], (3) N [neutron beam alone], (4) BNCT [neutron beam plus 10 µg 10B/ml of boronphenylalanine (10BPA)]. The total absorbed dose was always 3 Gy. The results showed that the number of nuclear γH2AX foci was higher in the gamma group than in the N and BNCT groups (30 min-24 h) (p < 0.001). However, the focus size was significantly larger in BNCT compared to other groups (p < 0.01). The analysis of repair enzymes showed a significant increase in Rad51 and Rad54 mRNA at 4 and 6 h, respectively; in both N and BNCT groups and the expression of Ku70 did not show significant differences between groups. These findings are consistent with an activation of HRR mechanism in thyroid cells. A melanoma cell line showed different DNA damage pattern and activation of both repair pathways. These results will allow us to evaluate different blocking points, to potentiate the damage induced by BNCT.
Collapse
Affiliation(s)
- C Rodriguez
- Radiobiology Department (CAC, CNEA), 1499 Gral Paz Av, Buenos Aires, Argentina
| | - M Carpano
- Radiobiology Department (CAC, CNEA), 1499 Gral Paz Av, Buenos Aires, Argentina
| | - P Curotto
- RA-3-Investigation and Production Reactors (CAE, CNEA), 15 Presbítero González y Aragón Rd, Buenos Aires, Argentina
| | - S Thorp
- Instrumentation and Control Department (CAE, CNEA), 15 Presbítero González y Aragón Rd, Buenos Aires, Argentina
| | - M Casal
- Oncology Institute "Ángel H. Roffo"-University of Buenos Aires, 5481 San Martín Av, Ciudad Autónoma de Buenos Aires, Argentina
| | - G Juvenal
- Radiobiology Department (CAC, CNEA), 1499 Gral Paz Av, Buenos Aires, Argentina
- Scientific and Technical Research National Council (CONICET), 1917 Rivadavia St, Ciudad Autónoma de Buenos Aires, Argentina
| | - M Pisarev
- Radiobiology Department (CAC, CNEA), 1499 Gral Paz Av, Buenos Aires, Argentina
- Scientific and Technical Research National Council (CONICET), 1917 Rivadavia St, Ciudad Autónoma de Buenos Aires, Argentina
| | - M A Dagrosa
- Radiobiology Department (CAC, CNEA), 1499 Gral Paz Av, Buenos Aires, Argentina.
- Scientific and Technical Research National Council (CONICET), 1917 Rivadavia St, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
14
|
Processing-Challenges Generated by Clusters of DNA Double-Strand Breaks Underpin Increased Effectiveness of High-LET Radiation and Chromothripsis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1044:149-168. [DOI: 10.1007/978-981-13-0593-1_10] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Carbon Ion Radiotherapy: A Review of Clinical Experiences and Preclinical Research, with an Emphasis on DNA Damage/Repair. Cancers (Basel) 2017; 9:cancers9060066. [PMID: 28598362 PMCID: PMC5483885 DOI: 10.3390/cancers9060066] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/21/2017] [Accepted: 06/06/2017] [Indexed: 12/31/2022] Open
Abstract
Compared to conventional photon-based external beam radiation (PhXRT), carbon ion radiotherapy (CIRT) has superior dose distribution, higher linear energy transfer (LET), and a higher relative biological effectiveness (RBE). This enhanced RBE is driven by a unique DNA damage signature characterized by clustered lesions that overwhelm the DNA repair capacity of malignant cells. These physical and radiobiological characteristics imbue heavy ions with potent tumoricidal capacity, while having the potential for simultaneously maximally sparing normal tissues. Thus, CIRT could potentially be used to treat some of the most difficult to treat tumors, including those that are hypoxic, radio-resistant, or deep-seated. Clinical data, mostly from Japan and Germany, are promising, with favorable oncologic outcomes and acceptable toxicity. In this manuscript, we review the physical and biological rationales for CIRT, with an emphasis on DNA damage and repair, as well as providing a comprehensive overview of the translational and clinical data using CIRT.
Collapse
|
16
|
Sai S, Vares G, Kim EH, Karasawa K, Wang B, Nenoi M, Horimoto Y, Hayashi M. Carbon ion beam combined with cisplatin effectively disrupts triple negative breast cancer stem-like cells in vitro. Mol Cancer 2015; 14:166. [PMID: 26338199 PMCID: PMC4560051 DOI: 10.1186/s12943-015-0429-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 08/06/2015] [Indexed: 12/23/2022] Open
Abstract
Aims Although a relatively small proportion of all breast cancer (BC), triple negative (TN) BC is responsible for a relatively large proportion of BC deaths because of its worse clinical outcome. To investigate whether a carbon ion beam alone or in combination with cisplatin (CDDP) has a beneficial effect compared to X-rays, we target triple negative (TN) breast cancer stem-like cells (CSCs). Methods Human breast CSCs sorted from MDA-MB-231 and MDA-MB-453 cells were treated with a carbon ion beam or X-ray irradiation alone or in combination with CDDP, and then colony, spheroid and tumor formation assays, RT-PCR Array analysis, and immunofluorescence γH2AX foci assay were performed. Results The colony, spheroid formation, and tumorigenicity assays confirmed that CD44+/CD24- and ESA+/CD24- cells have CSC properties in MDA-MB-231 and MDA-MB-453 cells, respectively. The proportion of CSCs was more enriched after CDDP combination with either X-ray or carbon ion beam, however carbon ion beam combined with CDDP significantly suppressed colony and spheroid formation and more significantly inhibited cell cycle progression (sub-G1 arrest) compared to X-ray combined with CDDP or carbon ion beam alone. RT-PCR Array analysis showed that carbon ion beam combined with CDDP significantly induced apoptosis-related Cytochrome c, almost completely eliminated expression of the CSC markers CD44 and ESA, and significantly inhibited angiogenesis, and metastasis-related HIF1α and CD26 compared to carbon ion beam alone, X-ray alone, or X-ray combined with CDDP. The immunofluorescence assay showed that not only the number but also the size of γH2AX foci in CSCs were larger 24 h after carbon ion beam combined with CDDP compared to those of X-ray alone and X-ray combined with CDDP. Conclusions Carbon ion beam combined with CDDP has superior potential to kill TN breast CSCs with irreparable severe DNA damage and enhanced apoptosis. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0429-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sei Sai
- Medical Physics Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa Inage-ku, Chiba, Chiba, 263-8555, Japan.
| | - Guillaume Vares
- Radiation Risk Reduction Research Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba, Japan
| | - Eun Ho Kim
- Division of Heavy Ion Clinical Research, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-Gu, Seoul, 139-706, South Korea
| | - Kumiko Karasawa
- Research Center Hospital for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | - Bing Wang
- Radiation Risk Reduction Research Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba, Japan
| | - Mitsuru Nenoi
- Radiation Risk Reduction Research Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba, Japan
| | - Yoshiya Horimoto
- Department of Breast Oncology, Juntendo University School of Medicine, Tokyo, Japan
| | - Mitsuhiro Hayashi
- Department of Breast Oncology, Tokyo Medical University Hachioji Medical Center, Tokyo, Japan
| |
Collapse
|
17
|
Liu Q, Ghosh P, Magpayo N, Testa M, Tang S, Gheorghiu L, Biggs P, Paganetti H, Efstathiou JA, Lu HM, Held KD, Willers H. Lung Cancer Cell Line Screen Links Fanconi Anemia/BRCA Pathway Defects to Increased Relative Biological Effectiveness of Proton Radiation. Int J Radiat Oncol Biol Phys 2015; 91:1081-9. [DOI: 10.1016/j.ijrobp.2014.12.046] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 12/20/2014] [Accepted: 12/24/2014] [Indexed: 12/25/2022]
|
18
|
Paganetti H. Relative biological effectiveness (RBE) values for proton beam therapy. Variations as a function of biological endpoint, dose, and linear energy transfer. Phys Med Biol 2014; 59:R419-72. [PMID: 25361443 DOI: 10.1088/0031-9155/59/22/r419] [Citation(s) in RCA: 657] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Proton therapy treatments are based on a proton RBE (relative biological effectiveness) relative to high-energy photons of 1.1. The use of this generic, spatially invariant RBE within tumors and normal tissues disregards the evidence that proton RBE varies with linear energy transfer (LET), physiological and biological factors, and clinical endpoint. Based on the available experimental data from published literature, this review analyzes relationships of RBE with dose, biological endpoint and physical properties of proton beams. The review distinguishes between endpoints relevant for tumor control probability and those potentially relevant for normal tissue complication. Numerous endpoints and experiments on sub-cellular damage and repair effects are discussed. Despite the large amount of data, considerable uncertainties in proton RBE values remain. As an average RBE for cell survival in the center of a typical spread-out Bragg peak (SOBP), the data support a value of ~1.15 at 2 Gy/fraction. The proton RBE increases with increasing LETd and thus with depth in an SOBP from ~1.1 in the entrance region, to ~1.15 in the center, ~1.35 at the distal edge and ~1.7 in the distal fall-off (when averaged over all cell lines, which may not be clinically representative). For small modulation widths the values could be increased. Furthermore, there is a trend of an increase in RBE as (α/β)x decreases. In most cases the RBE also increases with decreasing dose, specifically for systems with low (α/β)x. Data on RBE for endpoints other than clonogenic cell survival are too diverse to allow general statements other than that the RBE is, on average, in line with a value of ~1.1. This review can serve as a source for defining input parameters for applying or refining biophysical models and to identify endpoints where additional radiobiological data are needed in order to reduce the uncertainties to clinically acceptable levels.
Collapse
Affiliation(s)
- Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, 30 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|
19
|
Kedracka-Krok S, Jankowska U, Elas M, Sowa U, Swakon J, Cierniak A, Olko P, Romanowska-Dixon B, Urbanska K. Proteomic analysis of proton beam irradiated human melanoma cells. PLoS One 2014; 9:e84621. [PMID: 24392146 PMCID: PMC3879347 DOI: 10.1371/journal.pone.0084621] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 11/26/2013] [Indexed: 12/19/2022] Open
Abstract
Proton beam irradiation is a form of advanced radiotherapy providing superior distributions of a low LET radiation dose relative to that of photon therapy for the treatment of cancer. Even though this clinical treatment has been developing for several decades, the proton radiobiology critical to the optimization of proton radiotherapy is far from being understood. Proteomic changes were analyzed in human melanoma cells treated with a sublethal dose (3 Gy) of proton beam irradiation. The results were compared with untreated cells. Two-dimensional electrophoresis was performed with mass spectrometry to identify the proteins. At the dose of 3 Gy a minimal slowdown in proliferation rate was seen, as well as some DNA damage. After allowing time for damage repair, the proteomic analysis was performed. In total 17 protein levels were found to significantly (more than 1.5 times) change: 4 downregulated and 13 upregulated. Functionally, they represent four categories: (i) DNA repair and RNA regulation (VCP, MVP, STRAP, FAB-2, Lamine A/C, GAPDH), (ii) cell survival and stress response (STRAP, MCM7, Annexin 7, MVP, Caprin-1, PDCD6, VCP, HSP70), (iii) cell metabolism (TIM, GAPDH, VCP), and (iv) cytoskeleton and motility (Moesin, Actinin 4, FAB-2, Vimentin, Annexin 7, Lamine A/C, Lamine B). A substantial decrease (2.3 x) was seen in the level of vimentin, a marker of epithelial to mesenchymal transition and the metastatic properties of melanoma.
Collapse
Affiliation(s)
- Sylwia Kedracka-Krok
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
- Malopolska Centre of Biotechnology, Krakow, Poland
| | - Urszula Jankowska
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
- Malopolska Centre of Biotechnology, Krakow, Poland
| | - Martyna Elas
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Urszula Sowa
- Institute of Nuclear Physics, PAS, Kraków, Poland
| | - Jan Swakon
- Institute of Nuclear Physics, PAS, Kraków, Poland
| | - Agnieszka Cierniak
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Pawel Olko
- Institute of Nuclear Physics, PAS, Kraków, Poland
| | - Bozena Romanowska-Dixon
- Department of Ophthalmology and Ophthalmic Oncology, Jagiellonian University Medical College, Kraków, Poland
| | - Krystyna Urbanska
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
20
|
Hirota Y, Masunaga SI, Kondo N, Kawabata S, Hirakawa H, Yajima H, Fujimori A, Ono K, Kuroiwa T, Miyatake SI. High linear-energy-transfer radiation can overcome radioresistance of glioma stem-like cells to low linear-energy-transfer radiation. JOURNAL OF RADIATION RESEARCH 2014; 55:75-83. [PMID: 23955054 PMCID: PMC3885128 DOI: 10.1093/jrr/rrt095] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 06/24/2013] [Accepted: 06/26/2013] [Indexed: 06/02/2023]
Abstract
Ionizing radiation is applied as the standard treatment for glioblastoma multiforme (GBM). However, radiotherapy remains merely palliative, not curative, because of the existence of glioma stem cells (GSCs), which are regarded as highly radioresistant to low linear-energy-transfer (LET) photons. Here we analyzed whether or not high-LET particles can overcome the radioresistance of GSCs. Glioma stem-like cells (GSLCs) were induced from the GBM cell line A172 in stem cell culture medium. The phenotypes of GSLCs and wild-type cells were confirmed using stem cell markers. These cells were irradiated with (60)Co gamma rays or reactor neutron beams. Under neutron-beam irradiation, high-LET proton particles can be produced through elastic scattering or nitrogen capture reaction. Radiosensitivity was assessed by a colony-forming assay, and the DNA double-strand breaks (DSBs) were assessed by a histone gamma-H2AX focus detection assay. In stem cell culture medium, GSLCs could form neurosphere-like cells and express neural stem cell markers (Sox2 and Musashi) abundantly in comparison with their parental cells. GSLCs were significantly more radioresistant to gamma rays than their parental cells, but neutron beams overcame this resistance. There were significantly fewer gamma-H2AX foci in the A172 GSLCs 24 h after irradiation with gamma rays than in their parental cultured cells, while there was no apparent difference following neutron-beam irradiation. High-LET radiation can overcome the radioresistance of GSLCs by producing unrepairable DNA DSBs. High-LET radiation therapy might have the potential to overcome GBM's resistance to X-rays in a clinical setting.
Collapse
Affiliation(s)
- Yuki Hirota
- Department of Neurosurgery, Osaka Medical College, 2–7 Daigaku-machi, Takatsuki City, Osaka 569-8686, Japan
| | - Shin-Ichiro Masunaga
- Particle Radiation Oncology Research Center, Research Reactor Institute, Kyoto University, Osaka, Japan
| | - Natsuko Kondo
- Particle Radiation Oncology Research Center, Research Reactor Institute, Kyoto University, Osaka, Japan
| | - Shinji Kawabata
- Department of Neurosurgery, Osaka Medical College, 2–7 Daigaku-machi, Takatsuki City, Osaka 569-8686, Japan
| | - Hirokazu Hirakawa
- Cellular and Molecular Biology Team, National Institute of Radiological Science, Heavy-ion Radiobiology Research Group, Research Center for Charged Particle Therapy, Chiba, Japan
| | - Hirohiko Yajima
- Cellular and Molecular Biology Team, National Institute of Radiological Science, Heavy-ion Radiobiology Research Group, Research Center for Charged Particle Therapy, Chiba, Japan
| | - Akira Fujimori
- Cellular and Molecular Biology Team, National Institute of Radiological Science, Heavy-ion Radiobiology Research Group, Research Center for Charged Particle Therapy, Chiba, Japan
| | - Koji Ono
- Particle Radiation Oncology Research Center, Research Reactor Institute, Kyoto University, Osaka, Japan
| | - Toshihiko Kuroiwa
- Department of Neurosurgery, Osaka Medical College, 2–7 Daigaku-machi, Takatsuki City, Osaka 569-8686, Japan
| | - Shin-Ichi Miyatake
- Department of Neurosurgery, Osaka Medical College, 2–7 Daigaku-machi, Takatsuki City, Osaka 569-8686, Japan
| |
Collapse
|
21
|
Bracalente C, Ibañez IL, Molinari B, Palmieri M, Kreiner A, Valda A, Davidson J, Durán H. Induction and persistence of large γH2AX foci by high linear energy transfer radiation in DNA-dependent protein kinase-deficient cells. Int J Radiat Oncol Biol Phys 2013; 87:785-94. [PMID: 23972723 DOI: 10.1016/j.ijrobp.2013.07.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 06/28/2013] [Accepted: 07/09/2013] [Indexed: 02/01/2023]
Abstract
PURPOSE To evaluate the cell response to DNA double-strand breaks induced by low and high linear energy transfer (LET) radiations when the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs), an essential protein of the nonhomologous end-joining repair pathway, lacks kinase activity. METHODS AND MATERIALS CHO10B2, a Chinese hamster ovary cell line, and its derived radiosensitive mutant cell line, irs-20, lacking DNA-PKcs activity, were evaluated after 0 to 3 Gy of γ-rays, plateau and Bragg peak protons, and lithium beams by clonogenic assay, and as a measurement of double-strand breaks, phosphorylated H2AX (γH2AX) foci number and size were quantified by immunocytofluorescence. RESULTS Irs-20 exhibited greater radiosensitivity and a higher amount of γH2AX foci than CHO10B2 at 6 hours after irradiation for all types of radiations. Remarkably, CHO10B2 and irs-20 maintained their difference in radiosensitivity after high-LET radiation. Six hours after low-LET radiations, irs-20 did not reach basal levels of γH2AX at high doses, whereas CHO10B2 recovered basal levels for all doses. After high-LET radiation, only CHO10B2 exhibited a reduction in γH2AX foci, but it never reached basal levels. Persistent foci in irs-20 confirmed a repair deficiency. Interestingly, after 30 minutes of high-LET radiation both cell lines exhibited large foci (size>0.9 μm2) related to the damage nature, whereas at 6 hours irs-20 showed a higher amount of large foci than CHO10B2, with a 7-fold increase at 3 Gy, that could also be associated to radiosensitivity. CONCLUSIONS We demonstrated, for the first time, an association between deficient DNA-PKcs activity and not only high levels of H2AX phosphorylation but also persistence and size increase of γH2AX foci after high-LET irradiation.
Collapse
Affiliation(s)
- Candelaria Bracalente
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Sorokina S, Markova E, Gursky J, Dobrovodsky J, Belyaev I. Relative biological efficiency of protons at low and therapeutic doses in induction of 53BP1/γH2AX foci in lymphocytes from umbilical cord blood. Int J Radiat Biol 2013; 89:716-23. [DOI: 10.3109/09553002.2013.797619] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
23
|
Friedrich T, Scholz U, ElsäSser T, Durante M, Scholz M. Systematic analysis of RBE and related quantities using a database of cell survival experiments with ion beam irradiation. JOURNAL OF RADIATION RESEARCH 2013; 54:494-514. [PMID: 23266948 PMCID: PMC3650740 DOI: 10.1093/jrr/rrs114] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 10/30/2012] [Accepted: 11/02/2012] [Indexed: 05/22/2023]
Abstract
For tumor therapy with light ions and for experimental aspects in particle radiobiology the relative biological effectiveness (RBE) is an important quantity to describe the increased effectiveness of particle radiation. By establishing and analysing a database of ion and photon cell survival data, some remarkable properties of RBE-related quantities were observed. The database consists of 855 in vitro cell survival experiments after ion and photon irradiation. The experiments comprise curves obtained in different labs, using different ion species, different irradiation modalities, the whole range of accessible energies and linear energy transfers (LETs) and various cell types. Each survival curve has been parameterized using the linear-quadratic (LQ) model. The photon parameters, α and β, appear to be slightly anti-correlated, which might point toward an underlying biological mechanism. The RBE values derived from the survival curves support the known dependence of RBE on LET, on particle species and dose. A positive correlation of RBE with the ratio α/β of the photon LQ parameters is found at low doses, which unexpectedly changes to a negative correlation at high doses. Furthermore, we investigated the course of the β coefficient of the LQ model with increasing LET, finding typically a slight initial increase and a final falloff to zero. The observed fluctuations in RBE values of comparable experiments resemble overall RBE uncertainties, which is of relevance for treatment planning. The database can also be used for extensive testing of RBE models. We thus compare simulations with the local effect model to achieve this goal.
Collapse
Affiliation(s)
- Thomas Friedrich
- GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany
- Corresponding author. Tel: +49 (0)6159-71-1340; Fax: +49 (0)6159-71-2106; E-mail:
| | - Uwe Scholz
- GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany
| | - Thilo ElsäSser
- GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany
| | - Marco Durante
- GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany
- Technische Universität Darmstadt, Hochschulstraße 6, 64289 Darmstadt, Germany
| | - Michael Scholz
- GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany
| |
Collapse
|
24
|
Girdhani S, Sachs R, Hlatky L. Biological Effects of Proton Radiation: What We Know and Don't Know. Radiat Res 2013; 179:257-72. [DOI: 10.1667/rr2839.1] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
Abstract
Development of new radiotherapy strategies based on the use of hadrons, as well as reduction of uncertainties associated with radiation health risk during long-term space flights, requires increasing knowledge of the mechanisms underlying the biological effects of charged particles. It is well known that charged particles are more effective in damaging biological systems than photons. This capability has been related to the production of spatially correlated and/or clustered DNA damage, in particular two or more double-strand breaks (DSB) in close proximity or DSB associated with other lesions within a localized DNA region. These kinds of complex damages are rarely induced by photons. They are difficult to repair accurately and are therefore expected to produce severe consequences at the cellular level. This paper provides a review of radiation-induced cellular effects and will discuss the dependence of cell death and mutation induction on the linear energy transfer of various light and heavy ions. This paper will show the inadequacy of a single physical parameter for describing radiation quality, underlining the importance of the characteristics of the track structure at the submicrometer level to determine the biological effects. This paper will give a description of the physical properties of the track structure that can explain the differences in the spatial distributions of DNA damage, in particular DSB, induced by radiation of different qualities. In addition, this paper will show how a combined experimental and theoretical approach based on Monte Carlo simulations can be useful for providing information on the damage distribution at the nanoscale level. It will also emphasize the importance, especially for DNA damage evaluation at low doses, of the more recent functional approaches based on the use of fluorescent antibodies against proteins involved in the cellular processing of DNA damage. Advantages and limitations of the different experimental techniques will be discussed with particular emphasis on the still unsolved problem of the clustered DNA damage resolution. Development of biophysical models aimed to describe the kinetics of the DNA repair process is underway, and it is expected to support the experimental investigation of the mechanisms underlying the cellular radiation response.
Collapse
|
26
|
Friedrich T, Durante M, Scholz M. Modeling Cell Survival after Photon Irradiation Based on Double-Strand Break Clustering in Megabase Pair Chromatin Loops. Radiat Res 2012; 178:385-94. [DOI: 10.1667/rr2964.1] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
27
|
Oonishi K, Cui X, Hirakawa H, Fujimori A, Kamijo T, Yamada S, Yokosuka O, Kamada T. Different effects of carbon ion beams and X-rays on clonogenic survival and DNA repair in human pancreatic cancer stem-like cells. Radiother Oncol 2012; 105:258-65. [DOI: 10.1016/j.radonc.2012.08.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 08/15/2012] [Accepted: 08/16/2012] [Indexed: 11/28/2022]
|
28
|
Hong Z, Kase Y, Moritake T, Gerelchuluun A, Sun L, Suzuki K, Terunuma T, Yasuoka K, Kumada H, Anzai K, Sakurai H, Sakae T, Tsuboi K. Lineal energy-based evaluation of oxidative DNA damage induced by proton beams and X-rays. Int J Radiat Biol 2012; 89:36-43. [PMID: 22901337 DOI: 10.3109/09553002.2012.715791] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To determine the oxidative capabilities of proton beams compared to X-rays based on lineal energy (y). MATERIALS AND METHODS Microdosimetry was used to determine y-values of 155 MeV protons. Salmon testes deoxyribonucleic acid (ST-DNA) in solution and human tumor cells (MOLT-4) were irradiated with 200 kV X-rays (X) or 155 MeV protons at their plateau (P) and near their Bragg-peak (B). 8-Hydroxydeoxyguanosine (8-OHdG) production was determined by high performance liquid chromatography. Double-strand breaks (DSB) in ST-DNA were evaluated by agarose gel electrophoresis and DSB in cell nuclei were evaluated by immunocytochemical analysis of phosphorylated histone H2AX (γH2AX) foci. Edaravone was used as a radical scavenger. RESULTS 8-OHdG yields in ST-DNA were significantly higher with X than with P or B, and they were significantly higher with P than with B. DSB yields in ST-DNA were higher with P than with B or X, although not statistically significant, and were nearly equal with B and X. Although γH2AX foci formation in MOLT-4 cells after each irradiation type was nearly identical, the addition of edaravone significantly inhibited foci formation only with X. CONCLUSIONS Our results indicated that radical-induced indirect DNA damage was significantly lower with proton beams than with X-rays.
Collapse
Affiliation(s)
- Zhengshan Hong
- Proton Medical Research Center, Graduate School of Comprehensive Human Sciences, University of Tsukuba
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Okayasu R. Repair of DNA damage induced by accelerated heavy ions--a mini review. Int J Cancer 2011; 130:991-1000. [PMID: 21935920 DOI: 10.1002/ijc.26445] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 09/15/2011] [Indexed: 12/14/2022]
Abstract
Increasing use of heavy ions for cancer therapy and concerns from exposure to heavy charged particles in space necessitate the study of the basic biological mechanisms associated with exposure to heavy ions. As the most critical damage induced by ionizing radiation is DNA double strand break (DSB), this review focuses on DSBs induced by heavy ions and their repair processes. Compared with X- or gamma-rays, high-linear energy transfer (LET) heavy ion radiation induces more complex DNA damage, categorized into DSBs and non-DSB oxidative clustered DNA lesions (OCDL). This complexity makes the DNA repair process more difficult, partially due to retarded enzymatic activities, leading to increased chromosome aberrations and cell death. In general, the repair process following heavy ion exposure is LET-dependent, but with nonhomologous end joining defective cells, this trend is less emphasized. The variation in cell survival levels throughout the cell cycle is less prominent in cells exposed to high-LET heavy ions when compared with low LET, but this mechanism has not been well understood until recently. Involvement of several DSB repair proteins is suggested to underlie this interesting phenomenon. Recent improvements in radiation-induced foci studies combined with high-LET heavy ion exposure could provide a useful opportunity for more in depth study of DSB repair processes. Accelerated heavy ions have become valuable tools to investigate the molecular mechanisms underlying repair of DNA DSBs, the most crucial form of DNA damage induced by radiation and various chemotherapeutic agents.
Collapse
Affiliation(s)
- Ryuichi Okayasu
- International Open Laboratory and Heavy-ion Radiobiology Research Group, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Inage-ku, Chiba, Japan.
| |
Collapse
|
30
|
Kinashi Y, Takahashi S, Kashino G, Okayasu R, Masunaga S, Suzuki M, Ono K. DNA double-strand break induction in Ku80-deficient CHO cells following boron neutron capture reaction. Radiat Oncol 2011; 6:106. [PMID: 21888676 PMCID: PMC3179943 DOI: 10.1186/1748-717x-6-106] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 09/05/2011] [Indexed: 11/21/2022] Open
Abstract
Background Boron neutron capture reaction (BNCR) is based on irradiation of tumors after accumulation of boron compound. 10B captures neutrons and produces an alpha (4He) particle and a recoiled lithium nucleus (7Li). These particles have the characteristics of high linear energy transfer (LET) radiation and have marked biological effects. The purpose of this study is to verify that BNCR will increase cell killing and slow disappearance of repair protein-related foci to a greater extent in DNA repair-deficient cells than in wild-type cells. Methods Chinese hamster ovary (CHO-K1) cells and a DNA double-strand break (DSB) repair deficient mutant derivative, xrs-5 (Ku80 deficient CHO mutant cells), were irradiated by thermal neutrons. The quantity of DNA-DSBs following BNCR was evaluated by measuring the phosphorylation of histone protein H2AX (gamma-H2AX) and 53BP1 foci using immunofluorescence intensity. Results Two hours after neutron irradiation, the number of gamma-H2AX and 53BP1 foci in the CHO-K1 cells was decreased to 36.5-42.8% of the levels seen 30 min after irradiation. In contrast, two hours after irradiation, foci levels in the xrs-5 cells were 58.4-69.5% of those observed 30 min after irradiation. The number of gamma-H2AX foci in xrs-5 cells at 60-120 min after BNCT correlated with the cell killing effect of BNCR. However, in CHO-K1 cells, the RBE (relative biological effectiveness) estimated by the number of foci following BNCR was increased depending on the repair time and was not always correlated with the RBE of cytotoxicity. Conclusion Mutant xrs-5 cells show extreme sensitivity to ionizing radiation, because xrs-5 cells lack functional Ku-protein. Our results suggest that the DNA-DSBs induced by BNCR were not well repaired in the Ku80 deficient cells. The RBE following BNCR of radio-sensitive mutant cells was not increased but was lower than that of radio-resistant cells. These results suggest that gamma-ray resistant cells have an advantage over gamma-ray sensitive cells in BNCR.
Collapse
Affiliation(s)
- Yuko Kinashi
- Research Reactor Institute, Kyoto University, Sennan-gun, Osaka, Japan.
| | | | | | | | | | | | | |
Collapse
|
31
|
Mohapatra S, Kawahara M, Khan IS, Yannone SM, Povirk LF. Restoration of G1 chemo/radioresistance and double-strand-break repair proficiency by wild-type but not endonuclease-deficient Artemis. Nucleic Acids Res 2011; 39:6500-10. [PMID: 21531702 PMCID: PMC3159448 DOI: 10.1093/nar/gkr257] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Deficiency in Artemis is associated with lack of V(D)J recombination, sensitivity to radiation and radiomimetic drugs, and failure to repair a subset of DNA double-strand breaks (DSBs). Artemis harbors an endonuclease activity that trims both 5′- and 3′-ends of DSBs. To examine whether endonucleolytic trimming of terminally blocked DSBs by Artemis is a biologically relevant function, Artemis-deficient fibroblasts were stably complemented with either wild-type Artemis or an endonuclease-deficient D165N mutant. Wild-type Artemis completely restored resistance to γ-rays, bleomycin and neocarzinostatin, and also restored DSB-repair proficiency in G0/G1 phase as measured by pulsed-field gel electrophoresis and repair focus resolution. In contrast, cells expressing the D165N mutant, even at very high levels, remained as chemo/radiosensitive and repair deficient as the parental cells, as evidenced by persistent γ-H2AX, 53BP1 and Mre11 foci that slowly increased in size and ultimately became juxtaposed with promyelocytic leukemia protein nuclear bodies. In normal fibroblasts, overexpression of wild-type Artemis increased radioresistance, while D165N overexpression conferred partial repair deficiency following high-dose radiation. Restoration of chemo/radioresistance by wild-type, but not D165N Artemis suggests that the lack of endonucleolytic trimming of DNA ends is the principal cause of sensitivity to double-strand cleaving agents in Artemis-deficient cells.
Collapse
Affiliation(s)
- Susovan Mohapatra
- Department of Pharmacology and Toxicology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | |
Collapse
|
32
|
Gerelchuluun A, Hong Z, Sun L, Suzuki K, Terunuma T, Yasuoka K, Sakae T, Moritake T, Tsuboi K. Induction of in situ DNA double-strand breaks and apoptosis by 200 MeV protons and 10 MV X-rays in human tumour cell lines. Int J Radiat Biol 2010; 87:57-70. [PMID: 20954835 DOI: 10.3109/09553002.2010.518201] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To clarify the properties of clinical high-energy protons by comparing with clinical high-energy X-rays. MATERIALS AND METHODS Human tumor cell lines, ONS76 and MOLT4, were irradiated with 200 MeV protons or 10 MV X-rays. In situ DNA double-strand breaks (DDSB) induction was evaluated by immunocytochemical staining of phosphorylated histone H2AX (γ-H2AX). Apoptosis was measured by flow-cytometry after staining with Annexin V. The relative biological effectiveness (RBE) was obtained by clonogenic survival assay. RESULTS DDSB induction was significantly higher for protons than X-rays with average ratios of 1.28 (ONS76) and 1.59 (MOLT4) at 30 min after irradiation. However the differences became insignificant at 6 h. Also, apoptosis induction in MOLT4 cells was significantly higher for protons than X-rays with an average ratio of 2.13 at 12 h. However, the difference became insignificant at 20 h. RBE values of protons to X-rays at 10% survival were 1.06 ± 0.04 and 1.02 ± 0.15 for ONS76 and MOLT4, respectively. CONCLUSIONS Cell inactivation may differ according to different timings and/or endpoints. Proton beams demonstrated higher cell inactivation than X-rays in the early phases. These data may facilitate the understanding of the biological properties of clinical proton beams.
Collapse
Affiliation(s)
- Ariungerel Gerelchuluun
- Proton Medical Research Center, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|