1
|
Zheng Z, Liu D, Su Y. Supine/prone position fixation treatment in cervical cancer radiotherapy. J Cancer Res Ther 2025; 21:401-408. [PMID: 40317145 DOI: 10.4103/jcrt.jcrt_2050_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 02/20/2025] [Indexed: 05/07/2025]
Abstract
OBJECTIVE This study aimed to determine the correlation between bladder volume changes and set-up accuracy in cervical cancer patients undergoing radiotherapy. METHODS Forty patients who underwent intensity-modulated radiotherapy were divided into two groups based on their position during treatment: group A (supine) and group B (prone). Correlations between bladder volume changes and set-up accuracy were retrospectively analyzed using archived data and image files. RESULTS The rate of bladder volume change in group A (-3.99% [-24.51-31.53]) was significantly higher (Z = -2.724; P = 0.006) than that in group B (-14.95% [-41.63-7.64]). The set-up errors in the X (left-right), Y (cranial-caudal), and Z (anterior-posterior) directions were 0.05 ± 2.25 mm, 0.84 ± 2.63 mm, and 0.41 ± 2.35 mm, respectively, in group A and -0.31 ± 2.22 mm, -0.38 ± 2.88 mm, and 0.78 ± 3.41 mm, respectively, in group B. No significant differences in the X and Z directions were detected between the two groups; however, a significant difference was detected in the Y direction. The set-up error in the X direction was positively correlated with the rate of bladder volume change (r = 0.284; P = 0.010) in group A; no correlations were observed in the X, Y, and Z directions in group B. CONCLUSION Patients in the prone position demonstrated better performance in the Y direction than those in the supine position. The set-up error in the X direction was positively correlated with the rate of bladder volume change among patients in the supine position.
Collapse
Affiliation(s)
- Zhiman Zheng
- Department of Radiation Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dongyue Liu
- Department of Radiation Oncology, Binhaiwan Central Hospital of Dongguan, Dongguan, Guangdong, China
| | - Yangmei Su
- Department of Neuro-oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Yasmin-Karim S, Richards G, Fam A, Ogurek AM, Sridhar S, Makrigiorgos GM. Aerosol Delivery of Hesperetin-Loaded Nanoparticles and Immunotherapy Increases Survival in a Murine Lung Cancer Model. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:586. [PMID: 40278452 PMCID: PMC12029439 DOI: 10.3390/nano15080586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/26/2025] [Accepted: 04/03/2025] [Indexed: 04/26/2025]
Abstract
Flavonoids, like Hesperetin, have been shown to be an ACE2 receptor agonists with antioxidant and pro-apoptotic activity and can induce apoptosis in cancer cells. ACE2 receptors are abundant in lung cancer cells. Here, we explored the application of Hesperetin bound to PegPLGA-coated nanoparticles (Hesperetin nanoparticles, HNPs) and anti-CD40 antibody as an aerosol treatment for lung tumor-bearing mice. The Hesperetin nanoparticles (HNPs) were engineered using a nano-formulation microfluidic technique and polymeric nanoparticles. The in vitro studies were performed in human A549 (ATCC) and murine LL/2-Luc2 (ATCC) lung cancer cell lines. A syngeneic orthotopic murine model of lung cancer was generated in wild (+/+) C57/BL6 background mice with luciferase-positive cell line LL/2-Luc2 cells. Lung tumor-bearing mice were treated via aerosol inhalation with HNP, anti-CD40 antibody, or both. Survival was used to analyze the efficacy of the aerosol treatment. The cohorts were also analyzed for body condition score, weight, and liver and kidney function. Analysis of an orthotopic murine lung cancer model demonstrated a differential uptake of the HNPs and anti-CD40 by the cancer cells. A higher survival rate was observed when the combination of aerosol treatment with HNPs was added with the treatment with anti-CD40 (p < 0.001), as compared to anti-CD40 alone (p < 0.01). Moreover, two tumor-bearing mice survived long-term with the combination treatment, and their tumors were diminished. Subsequently, these two mice were shown to be refractory to the development of subcutaneous tumors, indicating systemic resilience to developing new tumors. Using an inhalation-based administration, we successfully established a treatment model of increased therapeutic efficacy with HNPs and anti-CD40 in an orthotopic murine lung cancer model. Our findings open the possibility of improved lung cancer treatment using nanoparticles like flavonoids and immunoadjuvants.
Collapse
Affiliation(s)
- Sayeda Yasmin-Karim
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA (S.S.)
| | - Geraud Richards
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA (S.S.)
| | - Amanda Fam
- Department of Biochemistry, Northeastern University, Boston, MA 02115, USA;
| | | | - Srinivas Sridhar
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA (S.S.)
- CaNCURE Program, Northeastern University, Boston, MA 02115, USA
- Department of Physics, Northeastern University, Boston, MA 02115, USA
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - G. Mike Makrigiorgos
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA (S.S.)
| |
Collapse
|
3
|
Yasmin-Karim S, Richards G, Fam A, Ogurek AM, Sridhar S, Makrigiorgos GM. Aerosol delivery of immunotherapy and Hesperetin-loaded nanoparticles increases survival in a murine lung cancer model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.609714. [PMID: 39253436 PMCID: PMC11383516 DOI: 10.1101/2024.08.30.609714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Purpose Studies have shown that flavonoids like Hesperetin, an ACE2 receptor agonist with antioxidant and pro-apoptotic activity, can induce apoptosis in cancer cells. ACE2 receptors are abundant in lung cancer cells. Here, we explored the application of Hesperetin bound to PLGA-coated nanoparticles (Hesperetin-nanoparticles, HNPs), and anti-CD40 antibody as an aerosol treatment for lung tumor-bearing mice. Methods In-vitro and in-vivo studies were performed in human A549 (ATCC) and murine LLC1 (ATCC) lung cancer cell lines. Hesperetin Nanoparticles (HNP) of about 60nm diameter were engineered using a nano-formulation microfluidic technique. A syngeneic orthotopic murine model of lung adenoma was generated in wild (+/+) C57/BL6 background mice with luciferase-positive cell line LLC1 cells. Lung tumor-bearing mice were treated via aerosol inhalation with HNP, anti-CD40 antibody, or both. Survival was used to analyze the efficacy of aerosol treatment. Cohorts were also analyzed for body condition score, weight, and liver and kidney function. Results Analysis of an orthotopic murine lung cancer model demonstrates a differential uptake of the HNP and anti-CD40 by cancer cells relative to normal cells. A higher survival rate, relative to untreated controls, was observed when aerosol treatment with HNP was added to treatment via anti-CD40 (p<0.001), as compared to CD40 alone (p<0.01). Moreover, 2 out of 9 tumor-bearing mice survived long term, and their tumors diminished. These 2 mice were shown to be refractory to subsequent development of subcutaneous tumors, indicating systemic resilience to tumor formation. Conclusion We successfully established increased therapeutic efficacy of anti-CD40 and HNP in an orthotopic murine lung cancer model using inhalation-based administration. Our findings open the possibility of improved lung cancer treatment using flavonoids and immuno-adjuvants.
Collapse
|
4
|
Hagan CT, Bloomquist C, Kim I, Knape NM, Byrne JD, Tu L, Wagner K, Mecham S, DeSimone J, Wang AZ. Continuous liquid interface production of 3D printed drug-loaded spacers to improve prostate cancer brachytherapy treatment. Acta Biomater 2022; 148:163-170. [PMID: 35724920 PMCID: PMC10494976 DOI: 10.1016/j.actbio.2022.06.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/19/2022] [Accepted: 06/10/2022] [Indexed: 12/07/2022]
Abstract
Brachytherapy, which is the placement of radioactive seeds directly into tissue such as the prostate, is an important curative treatment for prostate cancer. By delivering a high dose of radiation from within the prostate gland, brachytherapy is an effective method of killing prostate cancer cells while limiting radiation dose to normal tissue. The main shortcomings of this treatment are: less efficacy against high grade tumor cells, acute urinary retention, and sub-acute urinary frequency and urgency. One strategy to improve brachytherapy is to incorporate therapeutics into brachytherapy. Drugs, such as docetaxel, can improve therapeutic efficacy, and dexamethasone is known to decrease urinary side effects. However, both therapeutics have high systemic side effects. To overcome this challenge, we hypothesized that we can incorporate therapeutics into the inert polymer spacers that are used to correctly space brachytherapy seeds during brachytherapy to enable local drug delivery. To accomplish this, we engineered 3D printed drug-loaded brachytherapy spacers using continuous liquid interface production (CLIP) with different surface patterns to control drug release. These devices have the same physical size as existing spacers, allowing them to easily replace commercial spacers. We examined these drug-loaded spacers using docetaxel and dexamethasone as model drugs in a murine model of prostate cancer. We found that drug-loaded spacers led to higher therapeutic efficacy for brachytherapy, and there was no discernable systemic toxicity from the drug-loaded spacers. STATEMENT OF SIGNIFICANCE: There has been high interest in the application of 3D printing to engineer novel medical devices. However, such efforts have been limited by the lack of technologies that can fabricate devices suitable for real world medical applications. In this study, we demonstrate a unique application for 3D printing to enhance brachytherapy for cancer treatment. We engineered drug-loaded brachytherapy spacers that can be fabricated using Continuous Liquid Interface Production (CLIP) 3D printing, allowing tunable printing of drug-loaded devices, and implanted intraoperatively with brachytherapy seeds. In combined chemotherapy and brachytherapy we are able to achieve greater therapeutic efficacy through local drug delivery and without systemic toxicities. We believe our work will facilitate further investigation in medical applications of 3D printing.
Collapse
Affiliation(s)
- C Tilden Hagan
- Laboratory of Nano- and Translational Medicine, Lineberger Comprehensive Cancer Center, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill/North Carolina State University, Chapel Hill, NC 27599, USA
| | - Cameron Bloomquist
- Laboratory of Nano- and Translational Medicine, Lineberger Comprehensive Cancer Center, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Isaiah Kim
- Laboratory of Nano- and Translational Medicine, Lineberger Comprehensive Cancer Center, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nicole M Knape
- Laboratory of Nano- and Translational Medicine, Lineberger Comprehensive Cancer Center, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - James D Byrne
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA 02114, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Litao Tu
- Laboratory of Nano- and Translational Medicine, Lineberger Comprehensive Cancer Center, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kyle Wagner
- Laboratory of Nano- and Translational Medicine, Lineberger Comprehensive Cancer Center, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sue Mecham
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joseph DeSimone
- Laboratory of Nano- and Translational Medicine, Lineberger Comprehensive Cancer Center, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA; Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical Engineering, Stanford University School of Engineering, Stanford, CA 94305, USA; Carbon, Inc, Redwood City, CA 94063, USA.
| | - Andrew Z Wang
- Laboratory of Nano- and Translational Medicine, Lineberger Comprehensive Cancer Center, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
5
|
Yasmin-Karim S, Ziberi B, Wirtz J, Bih N, Moreau M, Mueller R, Anisworth V, Hesser J, Makrigiorgos GM, Chuong MD, Wei XX, Nguyen PL, Ngwa W. Boosting the Abscopal Effect Using Immunogenic Biomaterials With Varying Radiation Therapy Field Sizes. Int J Radiat Oncol Biol Phys 2022; 112:475-486. [PMID: 34530092 PMCID: PMC8750216 DOI: 10.1016/j.ijrobp.2021.09.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 02/03/2023]
Abstract
PURPOSE Persistent immunosuppression in the tumor microenvironment is a major limitation to boosting the abscopal effect, whereby radiation therapy at 1 site can lead to regression of tumors at distant sites. Here, we investigate the use of radiation and immunogenic biomaterials (IBM) targeting only the gross tumor volume/subvolume for boosting the abscopal effect in immunologically cold tumors. METHODS AND MATERIALS To evaluate the abscopal effect, 2 syngeneic contralateral tumors were implanted in each mouse, where only 1 tumor was treated. IBM was administered to the treated tumor with 1 fraction of radiation and results were compared, including as a function of different radiation therapy field sizes. The IBM was designed similar to fiducial markers using immunogenic polymer components loaded with anti-CD40 agonist. Tumor volumes of both treated and untreated tumors were measured over time, along with survival and corresponding immune cell responses. RESULTS Results showed that radiation with IBM administered to the gross tumor subvolume can effectively boost abscopal responses in both pancreatic and prostate cancers, significantly increasing survival (P < .0001 and P < .001, respectively). Results also showed equal or superior abscopal responses when using field sizes smaller than the gross tumor volume compared with irradiating the whole tumor volume. These results were buttressed by observation of higher infiltration of cytotoxic CD8+ T-lymphocytes in the treated tumors (P < .0001) and untreated tumors (P < .0001) for prostate cancer. Significantly higher infiltration was also observed in treated tumors (P < .0001) and untreated tumors P < .01) for pancreatic cancer. Moreover, the immune responses were accompanied by a positive shift of proinflammatory cytokines in both prostate and pancreatic tumors. CONCLUSIONS The approach targeting gross tumor subvolumes with radiation and IBM offers opportunity for boosting the abscopal effect while significantly minimizing healthy tissue toxicity. This approach proffers a radioimmunotherapy dose-painting strategy that can be developed for overcoming current barriers of immunosuppression especially for immunologically cold tumors.
Collapse
Affiliation(s)
- Sayeda Yasmin-Karim
- Dana Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA,Corresponding author: Name: Sayeda Yasmin-Karim, (S.Y.)
| | - Bashkim Ziberi
- Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA,University of Tetova, Tetova, Republic of North Macedonia
| | - Johanna Wirtz
- Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA,Medical Faculty of University Ulm, Ulm, Germany
| | - Noella Bih
- Dana Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michele Moreau
- Dana Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA,University of Massachusetts, Lowell, Massachusetts, USA
| | - Romy Mueller
- Dana Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA,Data Analysis and Modeling in Medicine, Mannheim Institute for Intelligent Systems in Medicine (MIISM), Heidelberg University, 69117 Heidelberg, Germany
| | - Victoria Anisworth
- Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA,University of Massachusetts, Lowell, Massachusetts, USA
| | - Juergen Hesser
- Data Analysis and Modeling in Medicine, Mannheim Institute for Intelligent Systems in Medicine (MIISM), Heidelberg University, 69117 Heidelberg, Germany
| | - G. Mike Makrigiorgos
- Dana Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael D Chuong
- Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
| | - Xiao Xiao Wei
- Dana Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Paul L. Nguyen
- Dana Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Wilfred Ngwa
- Dana Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA,University of Massachusetts, Lowell, Massachusetts, USA
| |
Collapse
|
6
|
Feng W, Rivard MJ, Carey EM, Hearn RA, Pai S, Nath R, Kim Y, Thomason CL, Boyce DE, Zhang H. Recommendations for intraoperative mesh brachytherapy: Report of AAPM Task Group No. 222. Med Phys 2021; 48:e969-e990. [PMID: 34431524 DOI: 10.1002/mp.15191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 11/11/2022] Open
Abstract
Mesh brachytherapy is a special type of a permanent brachytherapy implant: it uses low-energy radioactive seeds in an absorbable mesh that is sutured onto the tumor bed immediately after a surgical resection. This treatment offers low additional risk to the patient as the implant procedure is carried out as part of the tumor resection surgery. Mesh brachytherapy utilizes identification of the tumor bed through direct visual evaluation during surgery or medical imaging following surgery through radiographic imaging of radio-opaque markers within the sources located on the tumor bed. Thus, mesh brachytherapy is customizable for individual patients. Mesh brachytherapy is an intraoperative procedure involving mesh implantation and potentially real-time treatment planning while the patient is under general anesthesia. The procedure is multidisciplinary and requires the complex coordination of multiple medical specialties. The preimplant dosimetry calculation can be performed days beforehand or expediently in the operating room with the use of lookup tables. In this report, the guidelines of American Association of Physicists in Medicine (AAPM) are presented on the physics aspects of mesh brachytherapy. It describes the selection of radioactive sources, design and preparation of the mesh, preimplant treatment planning using a Task Group (TG) 43-based lookup table, and postimplant dosimetric evaluation using the TG-43 formalism or advanced algorithms. It introduces quality metrics for the mesh implant and presents an example of a risk analysis based on the AAPM TG-100 report. Recommendations include that the preimplant treatment plan be based upon the TG-43 dose calculation formalism with the point source approximation, and the postimplant dosimetric evaluation be performed by using either the TG-43 approach, or preferably the newer model-based algorithms (viz., TG-186 report) if available to account for effects of material heterogeneities. To comply with the written directive and regulations governing the medical use of radionuclides, this report recommends that the prescription and written directive be based upon the implanted source strength, not target-volume dose coverage. The dose delivered by mesh implants can vary and depends upon multiple factors, such as postsurgery recovery and distortions in the implant shape over time. For the sake of consistency necessary for outcome analysis, prescriptions based on the lookup table (with selection of the intended dose, depth, and treatment area) are recommended, but the use of more advanced techniques that can account for real situations, such as material heterogeneities, implant geometric perturbations, and changes in source orientations, is encouraged in the dosimetric evaluation. The clinical workflow, logistics, and precautions are also presented.
Collapse
Affiliation(s)
- Wenzheng Feng
- Department of Radiation Oncology, Saint Barnabas Medical Center, Livingston, New Jersey, USA
| | - Mark J Rivard
- Department of Radiation Oncology, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | | | - Robert A Hearn
- Department of Radiation Physics at Theragenics, Theragenics Corp., Buford, Georgia, USA
| | - Sujatha Pai
- Department of Radiation Oncology, Memorial Hermann Texas Medical Center, Houston, Texas, USA
| | - Ravinder Nath
- Department of Therapeutic Radiology, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Yongbok Kim
- Department of Radiation Oncology, University of Arizona, Tucson, Arizona, USA
| | - Cynthia L Thomason
- Department of Radiation Oncology, Loyola University Medical Center, Maywood, Illinois, USA
| | | | - Hualin Zhang
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Northwestern Memorial Hospital, Chicago, Illinois, USA
| |
Collapse
|
7
|
Therapeutic potential of cannabinoids in combination cancer therapy. Adv Biol Regul 2021; 79:100774. [PMID: 33422460 DOI: 10.1016/j.jbior.2020.100774] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022]
Abstract
Derivatives of the plant Cannabis sativa have been used for centuries for both medical and recreational purposes, as well as industrial. The first proof of its medicinal use comes from ancient China, although there is evidence of its earlier utilization in Europe and Asia. In the 19th century, European practitioners started to employ cannabis extracts to treat tetanus, convulsions, and mental diseases and, in 1851, cannabis made its appearance in the Pharmacopoeia of the United States as an analgesic, hypnotic and anticonvulsant. It was only in 1937 that the Marijuana Tax Act prohibited the use of this drug in the USA. The general term Cannabis is commonly used by the scientific and scholar community to indicate derivatives of the plant Cannabis sativa. The word cannabinoid is a term describing chemical compounds that are either derivate of Cannabis (phytocannabinoids) or artificial analogues (synthetic) or are produced endogenously by the body (endocannabinoids). A more casual term "marijuana" or "weed", a compound derived from dried Cannabis flower tops and leaves, has progressively superseded the term cannabis when referred to its recreational use. The 2018 World health organisation (WHO) data suggest that nearly 2.5% of the global population (147 million) uses marijuana and some countries, such as Canada and Uruguay, have already legalised it. Due to its controversial history, the medicinal use of cannabinoids has always been a centre of debate. The isolation and characterisation of Δ9 tetrahydrocannabinol (THC), the major psychoactive component of cannabis and the detection of two human cannabinoid receptor (CBRs) molecules renewed interest in the medical use of cannabinoids, boosting research and commercial heed in this sector. Some cannabinoid-based drugs have been approved as medications, mainly as antiemetic, antianorexic, anti-seizure remedies and in cancer and multiple sclerosis patients' palliative care. Nevertheless, due to the stigma commonly associated with these compounds, cannabinoids' potential in the treatment of conditions such as cancer is still largely unknown and therefore underestimated.
Collapse
|
8
|
Mueller R, Moreau M, Yasmin-Karim S, Protti A, Tillement O, Berbeco R, Hesser J, Ngwa W. Imaging and Characterization of Sustained Gadolinium Nanoparticle Release from Next Generation Radiotherapy Biomaterial. NANOMATERIALS 2020; 10:nano10112249. [PMID: 33202903 PMCID: PMC7697013 DOI: 10.3390/nano10112249] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/03/2020] [Accepted: 11/08/2020] [Indexed: 11/16/2022]
Abstract
Smart radiotherapy biomaterials (SRBs) present a new opportunity to enhance image-guided radiotherapy while replacing routinely used inert radiotherapy biomaterials like fiducials. In this study the potential of SRBs loaded with gadolinium-based nanoparticles (GdNPs) is investigated for magnetic resonance imaging (MRI) contrast. GdNP release from SRB is quantified and modelled for accurate prediction. SRBs were manufactured similar to fiducials, with a cylindrical shell consisting of poly(lactic-co-glycolic) acid (PLGA) and a core loaded with GdNPs. Magnetic resonance imaging (MRI) contrast was investigated at 7T in vitro (in agar) and in vivo in subcutaneous tumors grown with the LLC1 lung cancer cell line in C57/BL6 mice. GdNPs were quantified in-phantom and in tumor and their release was modelled by the Weibull distribution. Gd concentration was linearly fitted to the R1 relaxation rate with a detection limit of 0.004 mmol/L and high confidence level (R2 = 0.9843). GdNP loaded SRBs in tumor were clearly visible up to at least 14 days post-implantation. Signal decrease during this time showed GdNP release in vivo, which was calculated as 3.86 ± 0.34 µg GdNPs release into the tumor. This study demonstrates potential and feasibility for SRBs with MRI-contrast, and sensitive GdNP quantification and release from SRBs in a preclinical animal model. The feasibility of monitoring nanoparticle (NP) concentration during treatment, allowing dynamic quantitative treatment planning, is also discussed.
Collapse
Affiliation(s)
- Romy Mueller
- Department Data Analysis and Modeling in Medicine, Mannheim Institute for Intelligent Systems in Medicine (MIISM), Heidelberg University, 69117 Heidelberg, Germany;
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Boston, MA 02115, USA; (M.M.); (S.Y.-K.); (R.B.); (W.N.)
- Correspondence:
| | - Michele Moreau
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Boston, MA 02115, USA; (M.M.); (S.Y.-K.); (R.B.); (W.N.)
- Department of Radiation Oncology, Harvard Medical School, Boston, MA 02115, USA
- Department of Physics, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Sayeda Yasmin-Karim
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Boston, MA 02115, USA; (M.M.); (S.Y.-K.); (R.B.); (W.N.)
- Department of Radiation Oncology, Harvard Medical School, Boston, MA 02115, USA
| | - Andrea Protti
- Department of Imaging, Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02110, USA;
| | - Olivier Tillement
- Institut Lumière Matière, CNRS, Université de Lyon, 69622 Villeurbanne, France;
| | - Ross Berbeco
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Boston, MA 02115, USA; (M.M.); (S.Y.-K.); (R.B.); (W.N.)
- Department of Radiation Oncology, Harvard Medical School, Boston, MA 02115, USA
| | - Jürgen Hesser
- Department Data Analysis and Modeling in Medicine, Mannheim Institute for Intelligent Systems in Medicine (MIISM), Heidelberg University, 69117 Heidelberg, Germany;
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, 69120 Heidelberg, Germany
- Central Institute for Computer Engineering (ZITI), Heidelberg University, 68159 Mannheim, Germany
| | - Wilfred Ngwa
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Boston, MA 02115, USA; (M.M.); (S.Y.-K.); (R.B.); (W.N.)
- Department of Radiation Oncology, Harvard Medical School, Boston, MA 02115, USA
- Department of Physics, University of Massachusetts Lowell, Lowell, MA 01854, USA
| |
Collapse
|
9
|
Wang J, Li Z, Wang Z, Yu Y, Li D, Li B, Ding J. Nanomaterials for Combinational Radio–Immuno Oncotherapy. ADVANCED FUNCTIONAL MATERIALS 2020; 30. [DOI: 10.1002/adfm.201910676] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/09/2020] [Indexed: 08/29/2023]
Abstract
AbstractRadiotherapy, a clinically used local treatment modality of cancers, is regarded as a promising candidate to promote current immunotherapy through initiating an in situ vaccination effect and reprogramming the immunosuppressive microenvironment. The combination of radiotherapy and immunotherapy, referred to as combinational radio–immuno oncotherapy (CRIOT), elicits a synergistic antitumor effect based on the immunomodulatory properties of radiation. Unfortunately, current CRIOT accompanies low response rate and severe toxicity in clinical trials, thus limiting its application. To this end, various nanomaterials are being developed to sensitize radiotherapy or deliver immune agents, or both, to improve the unsatisfactory outcomes of CRIOT. Herein, enhanced antitumor efficacy of CRIOT with nanomaterials through the possible mechanisms of rejuvenation and activation of T cells, increased presentation of tumor‐related antigens, and inhibition of suppressive macrophages is presented, and the prospect of CRIOT in clinical practice is proposed.
Collapse
Affiliation(s)
- Juan Wang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
- Department of Radiation Oncology Cancer Hospital of Shandong First Medical University 440 Jiyan Road Jinan 250117 P. R. China
| | - Zhongmin Li
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
- Department of Gastrointestinal, Colorectal, and Anal Surgery China–Japan Union Hospital of Jilin University 126 Xiantai Street Changchun 130012 P. R. China
| | - Zhongtang Wang
- Department of Radiation Oncology Cancer Hospital of Shandong First Medical University 440 Jiyan Road Jinan 250117 P. R. China
| | - Yonghua Yu
- Department of Radiation Oncology Cancer Hospital of Shandong First Medical University 440 Jiyan Road Jinan 250117 P. R. China
| | - Di Li
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
| | - Baosheng Li
- Department of Radiation Oncology Cancer Hospital of Shandong First Medical University 440 Jiyan Road Jinan 250117 P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
| |
Collapse
|
10
|
Boateng F, Ngwa W. Delivery of Nanoparticle-Based Radiosensitizers for Radiotherapy Applications. Int J Mol Sci 2019; 21:ijms21010273. [PMID: 31906108 PMCID: PMC6981554 DOI: 10.3390/ijms21010273] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/21/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023] Open
Abstract
Nanoparticle-based radiosensitization of cancerous cells is evolving as a favorable modality for enhancing radiotherapeutic ratio, and as an effective tool for increasing the outcome of concomitant chemoradiotherapy. Nevertheless, delivery of sufficient concentrations of nanoparticles (NPs) or nanoparticle-based radiosensitizers (NBRs) to the targeted tumor without or with limited systemic side effects on healthy tissues/organs remains a challenge that many investigators continue to explore. With current systemic intravenous delivery of a drug, even targeted nanoparticles with great prospect of reaching targeted distant tumor sites, only a portion of the administered NPs/drug dosage can reach the tumor, despite the enhanced permeability and retention (EPR) effect. The rest of the targeted NPs/drug remain in systemic circulation, resulting in systemic toxicity, which can decrease the general health of patients. However, the dose from ionizing radiation is generally delivered across normal tissues to the tumor cells (especially external beam radiotherapy), which limits dose escalation, making radiotherapy (RT) somewhat unsafe for some diseased sites despite the emerging development in RT equipment and technologies. Since radiation cannot discriminate healthy tissue from diseased tissue, the radiation doses delivered across healthy tissues (even with nanoparticles delivered via systemic administration) are likely to increase injury to normal tissues by accelerating DNA damage, thereby creating free radicals that can result in secondary tumors. As a result, other delivery routes, such as inhalation of nanoparticles (for lung cancers), localized delivery via intratumoral injection, and implants loaded with nanoparticles for local radiosensitization, have been studied. Herein, we review the current NP delivery techniques; precise systemic delivery (injection/infusion and inhalation), and localized delivery (intratumoral injection and local implants) of NBRs/NPs. The current challenges, opportunities, and future prospects for delivery of nanoparticle-based radiosensitizers are also discussed.
Collapse
Affiliation(s)
- Francis Boateng
- TIDTAC LLC, Orlando, FL 32828, USA
- Correspondence: ; Tel.: +1-7745264723
| | - Wilfred Ngwa
- TIDTAC LLC, Orlando, FL 32828, USA
- Department of Physics and Applied Physics, University of Massachusetts Lowell Lowell, MA 01854, USA
- Department of Radiation Oncology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Radiation Oncology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
11
|
Boateng F, Ngwa W. Novel bioerodable eluting-spacers for radiotherapy applications with in situ dose painting. Br J Radiol 2019; 92:20180745. [PMID: 31084497 DOI: 10.1259/bjr.20180745] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To investigate feasibility of using bioerodable/bioerodible spacers (BES) over biodegradable spacers (BDS) loaded with gold nanoparticles for radiotherapy applications with in situ dose-painting, and to explore dosimetric impact on dose enhancement ratio of different radioisotopes. METHODS Analytical models proposed were based on experimentally reported erosion rate constant (k 0 = 5. 5E-7 kgm- 2s- 1 ) for bioerodible polymeric matrix. An in vivo determined diffusion coefficient (2.2E-8 cm2/s) of 10 nm gold nanoparticles (AuNP) of concentration 7 mg/g was used to estimate diffusion coefficient of other AuNP sizes (2, 5, 14 nm) using the Stoke-Einstein diffusion equation. The corresponding dose enhancement factors (DEF) were used to study dosimetric feasibility of employing AuNP-eluting BPS for radiotherapy applications. RESULTS The results showed AuNP release period from BES was significantly shorter (116 h) compared to BDS (more than a month) reported previously. The results also agree with reported Hopfenberg equation for a cylindrical matrix undergoing surface erosion. The DEF at tumour distance 5 mm for Cs-131 (DEF > 2.2) greater than that of I-125 (DEF > 2) and Pd-103 (DEF ≥ 2) could be achieved for AuNP sizes (2, 5, 10, and 14 nm) respectively. CONCLUSION Our findings suggested that BES could be used for short-lived radioisotopes like Pd-103 and Cs-131 in comparison to eluting BDS which is feasible for long-lived radioisotopes like I-125. ADVANCES IN KNOWLEDGE The study provides scientific basis for development of new generation eluting spacers viable for enhancing localized tumour dose. It concludes that BES gives higher DEF for Cs-131, and good candidate for replacing conventional fiducials/spacers.
Collapse
Affiliation(s)
| | - Wilfred Ngwa
- 2 University of Massachusetts Lowell , Massachusetts , USA.,3 Brigham and Women's Hospital , Massachusetts , USA.,4 Harvard Medical School , Massachusetts , USA
| |
Collapse
|
12
|
Guthier CV, D'Amico AV, King MT, Nguyen PL, Orio PF, Sridhar S, Makrigiorgos GM, Cormack RA. Determining optimal eluter design by modeling physical dose enhancement in brachytherapy. Med Phys 2018; 45:3916-3925. [PMID: 29905964 DOI: 10.1002/mp.13051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 05/30/2018] [Accepted: 06/06/2018] [Indexed: 11/05/2022] Open
Abstract
PURPOSE In situ drug release concurrent with radiation therapy has been proposed to enhance the therapeutic ratio of permanent prostate brachytherapy. Both brachytherapy sources and brachytherapy spacers have been proposed as potential eluters to release compounds, such as nanoparticles or chemotherapeutic agents. The relative effectiveness of the approaches has not been compared yet. This work models the physical dose enhancement of implantable eluters in conjunction with brachytherapy to determine which delivery mechanism provides greatest opportunity to enhance the therapeutic ratio. MATERIALS AND METHODS The combined effect of implanted eluters and radioactive sources were modeled in a manner that allowed the comparison of the relative effectiveness of different types of implantable eluters over a range of parameters. Prostate geometry, source, and spacer positions were extracted from treatment plans used for 125 I permanent prostate implants. Compound concentrations were calculated using steady-state solution to the diffusion equation including an elimination term characterized by the diffusion-elimination modulus (ϕb ). Does enhancement was assumed to be dependent on compound concentration up to a saturation concentration (csat ). Equivalent uniform dose (EUD) was used as an objective to determine the optimal configuration of eluters for a range of diffusion-elimination moduli, concentrations, and number of eluters. The compound delivery vehicle that produced the greatest enhanced dose was tallied for points in parameter space mentioned to determine the conditions under whether there are situations where one approach is preferable to the other. RESULTS The enhanced effect of implanted eluters was calculated for prostate volumes from 14 to 45 cm3 , ϕb from 0.01 to 4 mm-1 , csat from 0.05 to 7.5 times the steady-state compound concentration released from the surface of the eluter. The number of used eluters (ne ) was simulated from 10 to 60 eluters. For the region of (csat , Φ)-space that results in a large fraction of the gland being maximally sensitized, compound eluting spacers or sources produce equal increase in EUD. In the majority of the remaining (csat , Φ)-space, eluting spacers result in a greater EUD than sources even where sources often produce greater maximal physical dose enhancement. Placing eluting implants in planned locations throughout the prostate results in even greater enhancement than using only source or spacer locations. CONCLUSIONS Eluting brachytherapy spacers offer an opportunity to increase EUD during the routine brachytherapy process. Incorporating additional needle placements permits compound eluting spacer placement independent of source placement and thereby allowing a further increase in the therapeutic ratio. Additional work is needed to understand the in vivo spatial distribution of compound around eluters, and to incorporate time dependence of both compound release and radiation dose.
Collapse
Affiliation(s)
- C V Guthier
- Department of Radiation Oncology, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - A V D'Amico
- Department of Radiation Oncology, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - M T King
- Department of Radiation Oncology, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - P L Nguyen
- Department of Radiation Oncology, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - P F Orio
- Department of Radiation Oncology, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - S Sridhar
- Department of Radiation Oncology, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Nanomedicine Science and Technology Center, Northeastern University, Boston, MA, USA
| | - G M Makrigiorgos
- Department of Radiation Oncology, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - R A Cormack
- Department of Radiation Oncology, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Ngwa W, Irabor OC, Schoenfeld JD, Hesser J, Demaria S, Formenti SC. Using immunotherapy to boost the abscopal effect. Nat Rev Cancer 2018; 18:313-322. [PMID: 29449659 PMCID: PMC5912991 DOI: 10.1038/nrc.2018.6] [Citation(s) in RCA: 843] [Impact Index Per Article: 120.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
More than 60 years ago, the effect whereby radiotherapy at one site may lead to regression of metastatic cancer at distant sites that are not irradiated was described and called the abscopal effect (from 'ab scopus', that is, away from the target). The abscopal effect has been connected to mechanisms involving the immune system. However, the effect is rare because at the time of treatment, established immune-tolerance mechanisms may hamper the development of sufficiently robust abscopal responses. Today, the growing consensus is that combining radiotherapy with immunotherapy provides an opportunity to boost abscopal response rates, extending the use of radiotherapy to treatment of both local and metastatic disease. In this Opinion article, we review evidence for this growing consensus and highlight emerging limitations to boosting the abscopal effect using immunotherapy. This is followed by a perspective on current and potential cross-disciplinary approaches, including the use of smart materials to address these limitations.
Collapse
Affiliation(s)
- Wilfred Ngwa
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital and Harvard Medical School, 450 Brookline Avenue, Boston, MA, USA
| | - Omoruyi Credit Irabor
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital and Harvard Medical School, 450 Brookline Avenue, Boston, MA, USA
| | - Jonathan D. Schoenfeld
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital and Harvard Medical School, 450 Brookline Avenue, Boston, MA, USA
| | - Jürgen Hesser
- University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1–3. D-68167, Mannheim, Germany
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine, 1300 York Avenue, Box 169, New York, NY, USA
| | - Silvia C. Formenti
- Department of Radiation Oncology, Weill Cornell Medicine, 1300 York Avenue, Box 169, New York, NY, USA
| |
Collapse
|
14
|
Yasmin-Karim S, Moreau M, Mueller R, Sinha N, Dabney R, Herman A, Ngwa W. Enhancing the Therapeutic Efficacy of Cancer Treatment With Cannabinoids. Front Oncol 2018; 8:114. [PMID: 29740535 PMCID: PMC5928848 DOI: 10.3389/fonc.2018.00114] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/29/2018] [Indexed: 01/06/2023] Open
Abstract
Over the years, many in vitro and in vivo studies have shown the antineoplastic effects of cannabinoids (CBDs), with reports advocating for investigations of combination therapy approaches that could better leverage these effects in clinical translation. This study explores the potential of combination approaches employing CBDs with radiotherapy (RT) or smart biomaterials toward enhancing therapeutic efficacy during treatment of pancreatic and lung cancers. In in vitro studies, clonogenic assay results showed greater effective tumor cell killing, when combining CBDs and RT. Meanwhile, in vivo study results revealed major increase in survival when employing smart biomaterials for sustained delivery of CBDs to tumor cells. The significance of these findings, considerations for further research, and viable roadmap to clinical translation are discussed.
Collapse
Affiliation(s)
- Sayeda Yasmin-Karim
- Radiation Oncology, Brigham and Women's Hospital, Boston, MA, United States.,Dana-Farber Cancer Institute, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Michele Moreau
- Dana-Farber Cancer Institute, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States.,University of Massachusetts Lowell, Lowell, MA, United States
| | - Romy Mueller
- Radiation Oncology, Brigham and Women's Hospital, Boston, MA, United States.,Dana-Farber Cancer Institute, Boston, MA, United States.,University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Neeharika Sinha
- Radiation Oncology, Brigham and Women's Hospital, Boston, MA, United States.,Dana-Farber Cancer Institute, Boston, MA, United States
| | | | - Allen Herman
- Cannabis Science, Inc., Irvine, CA, United States
| | - Wilfred Ngwa
- Radiation Oncology, Brigham and Women's Hospital, Boston, MA, United States.,Dana-Farber Cancer Institute, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States.,University of Massachusetts Lowell, Lowell, MA, United States
| |
Collapse
|
15
|
Boateng F, Ngwa W. Modeling gold nanoparticle-eluting spacer degradation during brachytherapy application with in situ dose painting. Br J Radiol 2017; 90:20170069. [PMID: 28383280 DOI: 10.1259/bjr.20170069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To investigate the dosimetric impact of slow vs burst release of gold nanoparticles (GNPs) from biodegradable brachytherapy spacers loaded with GNPs, which has been proposed to increase therapeutic efficacy during brachytherapy application with in situ dose painting. METHODS Mathematical models were developed based on experimental data to study the release of GNPs from a spacer designed with poly(lactic-co-glycolic acid) polymer. The models addressed diffusion controlled-release process and poly(lactic-co-glycolic acid) degradation kinetics that were used to determine GNP concentration profiles in tumour and the corresponding dose enhancement. RESULTS The results show a significant delay of GNP diffusion in the tumour in comparison to burst release assumed in previous studies. The model for diffusion controlled-release process and the model for combined processes of both diffusion and polymer degradation indicated that it may take about 25 and 45 days, respectively, for all GNPs to release from the spacer. Based on tumour concentration profiles, a significant dose enhancement factor (>2) could be attained at a tumour distance of 5 mm from a spacer loaded with 2-, 5- and 10-nm GNP sizes. CONCLUSION The results highlight the need to account for the slow release of GNPs from spacers and polymer biodegradation in research development of the GNP-eluting spacers. The findings suggest the use of radioisotopes with longer half-lives, such as iodine-125, in comparison with others with shorter half-lives such as Pd-103 and Cs-131. Advances in knowledge: The study provides a scientific platform and basis for research development of GNP-eluting spacers that can be used during brachytherapy to boost dose to tumour subvolumes, towards enhancing therapeutic efficacy. It concludes that the use of iodine-125 would be more feasible.
Collapse
Affiliation(s)
- Francis Boateng
- 1 Department of Biomedical Engineering and Biotechnology, University of Massachusetts, Lowell, MA, USA
| | - Wilfred Ngwa
- 1 Department of Biomedical Engineering and Biotechnology, University of Massachusetts, Lowell, MA, USA.,2 Department of Physics and Applied Physics, University of Massachusetts, Lowell, MA, USA.,3 Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Hao Y, Yasmin-Karim S, Moreau M, Sinha N, Sajo E, Ngwa W. Enhancing radiotherapy for lung cancer using immunoadjuvants delivered in situ from new design radiotherapy biomaterials: a preclinical study. Phys Med Biol 2016; 61:N697-N707. [PMID: 27910826 DOI: 10.1088/1361-6560/61/24/n697] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Studies show that radiotherapy of a primary tumor in combination with immunoadjuvants (IA) can result in increased survival or immune-mediated regression of metastasis outside the radiation field, a phenomenon known as abscopal effect. However, toxicities due to repeated systematic administration of IA have been shown to be a major obstacle in clinical trials. To minimize the toxicities and prime a more potent immune response, Ngwa et al have proposed that inert radiotherapy biomaterials such as fiducials could be upgraded to multifunctional ones loaded with IA for in situ delivery directly into the tumor sub-volume at no additional inconvenience to patients. In this preliminary study, the potential of such an approach is investigated for lung cancer using anti-CD40 antibody. First the benefit of using the anti-CD40 delivered in situ to enhance radiotherapy was tested in mice with subcutaneous tumors generated with the Lewis Lung cancer cell line LL/2 (LLC-1). The tumors were implanted on both flanks of the mice to simulate metastasis. Tumors on one flank were treated with and without anti-CD40 and the survival benefits compared. An experimentally determined in vivo diffusion coefficient for nanoparticles was then employed to estimate the time for achieving intratumoral distribution of the needed minimal concentrations of anti-CD40 nanoparticles if released from a multifuntional radiotherapy biomaterials. The studies show that the use of anti-CD40 significantly enhanced radiotherapy effect, slowing the growth of the treated and untreated tumors, and increasing survival. Meanwhile our calculations indicate that for a 2-4 cm tumor and 7 mg g-1 IA concentrations, it would take 4.4-17.4 d, respectively, following burst release, for the required concentration of IA nanoparticles to accumulate throughout the tumor during image-guided radiotherapy. The distribution of IA could be customized as a function of loading concentrations or nanoparticle size to fit current Stereotactic Body Radiotherapy schedules. Overall, the preliminary results support ongoing work in developing multifunctional radiotherapy biomaterials for in situ delivery of immunoadjuvants such as anti-CD40 to leverage the abscopal effect, while minimizing systemic toxicities. The potential of extending such an approach to other cancer types is discussed.
Collapse
Affiliation(s)
- Yao Hao
- Department of Physics and Applied Physics, University of Massachusetts, Lowell, MA, USA
| | | | | | | | | | | |
Collapse
|
17
|
Ngwa W, Boateng F, Kumar R, Irvine DJ, Formenti S, Ngoma T, Herskind C, Veldwijk MR, Hildenbrand GL, Hausmann M, Wenz F, Hesser J. Smart Radiation Therapy Biomaterials. Int J Radiat Oncol Biol Phys 2016; 97:624-637. [PMID: 28126309 DOI: 10.1016/j.ijrobp.2016.10.034] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/21/2016] [Accepted: 10/24/2016] [Indexed: 12/22/2022]
Abstract
Radiation therapy (RT) is a crucial component of cancer care, used in the treatment of over 50% of cancer patients. Patients undergoing image guided RT or brachytherapy routinely have inert RT biomaterials implanted into their tumors. The single function of these RT biomaterials is to ensure geometric accuracy during treatment. Recent studies have proposed that the inert biomaterials could be upgraded to "smart" RT biomaterials, designed to do more than 1 function. Such smart biomaterials include next-generation fiducial markers, brachytherapy spacers, and balloon applicators, designed to respond to stimuli and perform additional desirable functions like controlled delivery of therapy-enhancing payloads directly into the tumor subvolume while minimizing normal tissue toxicities. More broadly, smart RT biomaterials may include functionalized nanoparticles that can be activated to boost RT efficacy. This work reviews the rationale for smart RT biomaterials, the state of the art in this emerging cross-disciplinary research area, challenges and opportunities for further research and development, and a purview of potential clinical applications. Applications covered include using smart RT biomaterials for boosting cancer therapy with minimal side effects, combining RT with immunotherapy or chemotherapy, reducing treatment time or health care costs, and other incipient applications.
Collapse
Affiliation(s)
- Wilfred Ngwa
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Physics and Applied Physics, University of Massachusetts, Lowell, Massachusetts.
| | - Francis Boateng
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rajiv Kumar
- Department of Physics, Northeastern University, Dana-Farber Cancer Institute, Massachusetts
| | - Darrell J Irvine
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Silvia Formenti
- Department of Radiation Oncology, Cornell University, Ithaca, New York
| | - Twalib Ngoma
- Department of Clinical Oncology, Muhimbili University of Health and Allied Sciences, Tanzania
| | - Carsten Herskind
- University Medical Center Mannheim, University of Heidelberg, Germany
| | - Marlon R Veldwijk
- University Medical Center Mannheim, University of Heidelberg, Germany
| | | | - Michael Hausmann
- Kirchhoff-Institute for Physics, University of Heidelberg, Germany
| | - Frederik Wenz
- University Medical Center Mannheim, University of Heidelberg, Germany
| | - Juergen Hesser
- University Medical Center Mannheim, University of Heidelberg, Germany
| |
Collapse
|
18
|
Markovic S, Belz J, Kumar R, Cormack RA, Sridhar S, Niedre M. Near-infrared fluorescence imaging platform for quantifying in vivo nanoparticle diffusion from drug loaded implants. Int J Nanomedicine 2016; 11:1213-23. [PMID: 27069363 PMCID: PMC4818055 DOI: 10.2147/ijn.s93324] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Drug loaded implants are a new, versatile technology platform to deliver a localized payload of drugs for various disease models. One example is the implantable nanoplatform for chemo-radiation therapy where inert brachytherapy spacers are replaced by spacers doped with nanoparticles (NPs) loaded with chemotherapeutics and placed directly at the disease site for long-term localized drug delivery. However, it is difficult to directly validate and optimize the diffusion of these doped NPs in in vivo systems. To better study this drug release and diffusion, we developed a custom macroscopic fluorescence imaging system to visualize and quantify fluorescent NP diffusion from spacers in vivo. To validate the platform, we studied the release of free fluorophores, and 30 nm and 200 nm NPs conjugated with the same fluorophores as a model drug, in agar gel phantoms in vitro and in mice in vivo. Our data verified that the diffusion volume was NP size-dependent in all cases. Our near-infrared imaging system provides a method by which NP diffusion from implantable nanoplatform for chemo-radiation therapy spacers can be systematically optimized (eg, particle size or charge) thereby improving treatment efficacy of the platform.
Collapse
Affiliation(s)
- Stacey Markovic
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, USA
| | - Jodi Belz
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Rajiv Kumar
- Department of Physics, Northeastern University, Boston, MA, USA; Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Robert A Cormack
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Srinivas Sridhar
- Department of Physics, Northeastern University, Boston, MA, USA; Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Mark Niedre
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
19
|
Kumar R, Belz J, Markovic S, Jadhav T, Fowle W, Niedre M, Cormack R, Makrigiorgos MG, Sridhar S. Nanoparticle-based brachytherapy spacers for delivery of localized combined chemoradiation therapy. Int J Radiat Oncol Biol Phys 2015; 91:393-400. [PMID: 25636762 PMCID: PMC4527168 DOI: 10.1016/j.ijrobp.2014.10.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 10/16/2014] [Accepted: 10/21/2014] [Indexed: 10/24/2022]
Abstract
PURPOSE In radiation therapy (RT), brachytherapy-inert source spacers are commonly used in clinical practice to achieve high spatial accuracy. These implanted devices are critical technical components of precise radiation delivery but provide no direct therapeutic benefits. METHODS AND MATERIALS Here we have fabricated implantable nanoplatforms or chemoradiation therapy (INCeRT) spacers loaded with silica nanoparticles (SNPs) conjugated containing a drug, to act as a slow-release drug depot for simultaneous localized chemoradiation therapy. The spacers are made of poly(lactic-co-glycolic) acid (PLGA) as matrix and are physically identical in size to the commercially available brachytherapy spacers (5 mm × 0.8 mm). The silica nanoparticles, 250 nm in diameter, were conjugated with near infrared fluorophore Cy7.5 as a model drug, and the INCeRT spacers were characterized in terms of size, morphology, and composition using different instrumentation techniques. The spacers were further doped with an anticancer drug, docetaxel. We evaluated the in vivo stability, biocompatibility, and biodegradation of these spacers in live mouse tissues. RESULTS The electron microscopy studies showed that nanoparticles were distributed throughout the spacers. These INCeRT spacers remained stable and can be tracked by the use of optical fluorescence. In vivo optical imaging studies showed a slow diffusion of nanoparticles from the spacer to the adjacent tissue in contrast to the control Cy7.5-PLGA spacer, which showed rapid disintegration in a few days with a burst release of Cy7.5. The docetaxel spacers showed suppression of tumor growth in contrast to control mice over 16 days. CONCLUSIONS The imaging with the Cy7.5 spacer and therapeutic efficacy with docetaxel spacers supports the hypothesis that INCeRT spacers can be used for delivering the drugs in a slow, sustained manner in conjunction with brachytherapy, in contrast to the rapid clearance of the drugs when administered systemically. The results demonstrate that these spacers with tailored release profiles have potential in improving the combined therapeutic efficacy of chemoradiation therapy.
Collapse
Affiliation(s)
- Rajiv Kumar
- Nanomedicine Science and Technology Center, Northeastern University, Boston, MA 02115
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA USA
| | - Jodi Belz
- Nanomedicine Science and Technology Center, Northeastern University, Boston, MA 02115
| | - Stacey Markovic
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA USA
| | - Tej Jadhav
- Nanomedicine Science and Technology Center, Northeastern University, Boston, MA 02115
| | - William Fowle
- Nanomedicine Science and Technology Center, Northeastern University, Boston, MA 02115
| | - Mark Niedre
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA USA
| | - Robert Cormack
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA USA
| | - Mike G Makrigiorgos
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA USA
| | - Srinivas Sridhar
- Nanomedicine Science and Technology Center, Northeastern University, Boston, MA 02115
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA USA
| |
Collapse
|
20
|
New potential for enhancing concomitant chemoradiotherapy with FDA approved concentrations of cisplatin via the photoelectric effect. Phys Med 2014; 31:25-30. [PMID: 25492359 DOI: 10.1016/j.ejmp.2014.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 11/18/2014] [Accepted: 11/19/2014] [Indexed: 12/25/2022] Open
Abstract
We predict, for the first time, that by using United States Food and Drug Administration approved concentrations of cisplatin, major radiosensitization may be achieved via photoelectric mechanism during concomitant chemoradiotherapy (CCRT). Our analytical calculations estimate that radiotherapy (RT) dose to cancer cells may be enhanced via this mechanism by over 100% during CCRT. The results proffer new potential for significantly enhancing CCRT via an emerging clinical scenario, where the cisplatin is released in-situ from RT biomaterials loaded with cisplatin nanoparticles.
Collapse
|
21
|
Ngwa W, Kumar R, Sridhar S, Korideck H, Zygmanski P, Cormack RA, Berbeco R, Makrigiorgos GM. Targeted radiotherapy with gold nanoparticles: current status and future perspectives. Nanomedicine (Lond) 2014; 9:1063-82. [PMID: 24978464 PMCID: PMC4143893 DOI: 10.2217/nnm.14.55] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Radiation therapy (RT) is the treatment of cancer and other diseases with ionizing radiation. The ultimate goal of RT is to destroy all the disease cells while sparing healthy tissue. Towards this goal, RT has advanced significantly over the past few decades in part due to new technologies including: multileaf collimator-assisted modulation of radiation beams, improved computer-assisted inverse treatment planning, image guidance, robotics with more precision, better motion management strategies, stereotactic treatments and hypofractionation. With recent advances in nanotechnology, targeted RT with gold nanoparticles (GNPs) is actively being investigated as a means to further increase the RT therapeutic ratio. In this review, we summarize the current status of research and development towards the use of GNPs to enhance RT. We highlight the promising emerging modalities for targeted RT with GNPs and the corresponding preclinical evidence supporting such promise towards potential clinical translation. Future prospects and perspectives are discussed.
Collapse
Affiliation(s)
- Wilfred Ngwa
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham & Women’s Hospital & Harvard Medical School, Boston, MA 02215, USA
| | - Rajiv Kumar
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham & Women’s Hospital & Harvard Medical School, Boston, MA 02215, USA
- Electronic Materials Research Institute & Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Srinivas Sridhar
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham & Women’s Hospital & Harvard Medical School, Boston, MA 02215, USA
- Electronic Materials Research Institute & Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Houari Korideck
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham & Women’s Hospital & Harvard Medical School, Boston, MA 02215, USA
| | - Piotr Zygmanski
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham & Women’s Hospital & Harvard Medical School, Boston, MA 02215, USA
| | - Robert A Cormack
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham & Women’s Hospital & Harvard Medical School, Boston, MA 02215, USA
| | - Ross Berbeco
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham & Women’s Hospital & Harvard Medical School, Boston, MA 02215, USA
| | - G Mike Makrigiorgos
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham & Women’s Hospital & Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
22
|
Geilich BM, Webster TJ. Conference Scene: Scientists discuss the future of nanomedicine. Nanomedicine (Lond) 2013. [DOI: 10.2217/nnm.13.162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The First International Translational Nanomedicine Conference was recently held at Northeastern University (MA, USA) from 26 to 28 July 2013, in the heart of historic Boston (MA, USA). Sponsored by the International Journal of Nanomedicine and Northeastern University’s College of Engineering, the conference focused on strategies for turning the advances in nanomedicine research into actual products, as well as addressing other issues pertinent to the future of the field. Plenary talks were given by distinguished Northeastern University faculty members for 1 h, and 30-min technical talks were given by experts from all over the world. Interspersed through the lectures, over 100 students and researchers presented posters detailing their latest findings.
Collapse
Affiliation(s)
- Benjamin M Geilich
- Program in Bioengineering & Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Thomas J Webster
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
23
|
Kumar R, Belz J, Markovic S, Jadhav T, Nguyen P, Niedre M, DAmico A, Makrigiorgos M, Cormack R, Sridhar S. Abstract 1594: Sustained release of drug eluting nanoparticles from implantable devices for loco-regional chemoradiation therapy. Cancer Res 2013. [DOI: 10.1158/1538-7445.am2013-1594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Systemic chemotherapy is often used with radiation therapy in the management of prostate, cervix and lung cancer patients, but leads to severe systemic toxicities. We have introduced a new modality of loco-regional chemoradiation therapy termed in-situ image guided radiation therapy (BIS-IGRT) that offers the potential to deliver planned, localized and sustained delivery of chemotherapy agent, without systemic toxicities, as part of routine minimally invasive image guided radiation therapy procedures. Such image guided chemoradiation therapy requires characterization of the drug distribution produced by implantable drug eluters. This work presents imaging based means to measure temporal and spatial properties of diffusion distributions around spacers coated with dye-loaded nanoparticles.
The distribution of 250nm silica nanoparticles (NP) conjugated to Cyanine 7.5 dye was evaluated with a custom built high-speed near-infrared small animal imaging platform providing 0.1 millimeter spatial resolution with >1Hz image acquisition rate. A brachytherapy spacer loaded with the Cy7.5/silica NP was injected subcutaneously on the left hind flank of a mouse and one was inserted into a xenograft tumor on the opposite flank as part of an approved animal research protocol. The mouse was imaged more than 36 days.
The in vivo imaging experiments show that the area of high signal increases with time suggesting that NP accumulate in the vicinity of a spacer without diffusing to the rest of the body. The spatial and temporal characteristics of NP accumulation indicate that a BIS-IGRT approach may provide an effective means to improve the therapeutic ratio of brachytherapy.
Conclusion: In-vivo measurements demonstrate that NP remain resident in the vicinity of the implanted eluting spacers with accumulation over times appropriate to improve brachytherapy's therapeutic ratio. Future work will optimize the NP and substrate properties of an implantable spacer to attain the optimal chemotherapy distributions for simultaneous placement during image guided brachytherapy implants.
We acknowledge partial support from NSF DGE 0965843 and HHS/5U54CA151881-02.
Citation Format: Rajiv Kumar, Jodi Belz, Stacey Markovic, Tej Jadhav, Paul Nguyen, Mark Niedre, Anthony DAmico, Mike Makrigiorgos, Robert Cormack, Srinivas Sridhar. Sustained release of drug eluting nanoparticles from implantable devices for loco-regional chemoradiation therapy. [abstract]. In: Proceedings of the 104th Annual Meeting of the American Association for Cancer Research; 2013 Apr 6-10; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2013;73(8 Suppl):Abstract nr 1594. doi:10.1158/1538-7445.AM2013-1594
Collapse
Affiliation(s)
| | | | | | | | - Paul Nguyen
- 2Dana Farber Cancer Institute and Brigham Womens Hospital, Boston, MA
| | | | - Anthony DAmico
- 2Dana Farber Cancer Institute and Brigham Womens Hospital, Boston, MA
| | - Mike Makrigiorgos
- 2Dana Farber Cancer Institute and Brigham Womens Hospital, Boston, MA
| | - Robert Cormack
- 2Dana Farber Cancer Institute and Brigham Womens Hospital, Boston, MA
| | | |
Collapse
|
24
|
Nagesha DK, Tada DB, Stambaugh CKK, Gultepe E, Jost E, Levy CO, Cormack R, Makrigiorgos GM, Sridhar S. Radiosensitizer-eluting nanocoatings on gold fiducials for biologicalin-situimage-guided radio therapy (BIS-IGRT). Phys Med Biol 2010; 55:6039-52. [DOI: 10.1088/0031-9155/55/20/001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
25
|
Abstract
"Dose-painting" radiotherapy allows for a heterogeneous delivery of radiation within the tumour volume by targeting radioresistant areas defined by functional imaging. Within gross tumour volume, it is possible to define one or more target volumes based on biology (biological target volume [BTV]) and to apply a strategy of intensity modulated radiation therapy (IMRT) that will deliver a higher dose to these regions. In this review of the literature, we will highlight the biological elements responsible for radioresistance, and how to image them, then we will detail the radiotherapy techniques necessary for this approach, before presenting clinical results in various situations (head and neck tumours, prostate, brain tumours, etc.). Despite many difficulties that make dose-painting IMRT unusable in routine nowadays, biology-guided radiation therapy represents one of the major pathways of development of radiotherapy in the coming years.
Collapse
|
26
|
Tada DB, Singh S, Nagesha D, Jost E, Levy CO, Gultepe E, Cormack R, Makrigiorgos GM, Sridhar S. Chitosan film containing poly(D,L-lactic-co-glycolic acid) nanoparticles: a platform for localized dual-drug release. Pharm Res 2010; 27:1738-45. [PMID: 20521086 DOI: 10.1007/s11095-010-0176-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 05/17/2010] [Indexed: 10/19/2022]
Abstract
PURPOSE To characterize and evaluate chitosan film containing PLGA nanoparticles (NPs) as a platform for localized dual-drug release. METHODS Fluorescent Paclitaxel (FPTX), a hydrophobic drug, was incorporated into PLGA NPs. FPTX-loaded PLGA NPs and Carboxyfluorescein (CF), a hydrophilic model drug, were embedded into chitosan films. Release of CF and NPs from chitosan and release of FPTX from PLGA NPs were monitored by fluorescence. The stability of the platform was observed through SEM and dynamic light scattering (DLS). RESULTS Chitosan films containing CF and FPTX-loaded PLGA NPs showed a biphasic release profile. In the first phase, 78% of CF and 34% of NPs were released within few days. In the second phase, the release was slower, showing an additional release of 22% of CF and 18% of NPs after 3 weeks. SEM images and DLS measurements showed that NP release depends on film degradation rate. FPTX-loaded PLGA NPs showed the release of 19.8% of total drug in 2 days, and no additional release was detected in the next 26 days. CONCLUSIONS The ability of chitosan film containing PLGA NPs to coat gold surface and to incorporate and release two different drugs of different hydrophilicity make it a promising platform for localized dual-drug release.
Collapse
Affiliation(s)
- Dayane B Tada
- Electronic Materials Research Institute and Department of Physics, Northeastern University, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | |
Collapse
|