1
|
Yang X, Feng B, Yang H, Wang X, Luo H, Chen L, Jin F, Wang Y. CNN-based multi-modal radiomics analysis of pseudo-CT utilization in MRI-only brain stereotactic radiotherapy: a feasibility study. BMC Cancer 2024; 24:59. [PMID: 38200424 PMCID: PMC10782704 DOI: 10.1186/s12885-024-11844-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Pseudo-computed tomography (pCT) quality is a crucial issue in magnetic resonance image (MRI)-only brain stereotactic radiotherapy (SRT), so this study systematically evaluated it from the multi-modal radiomics perspective. METHODS 34 cases (< 30 cm³) were retrospectively included (2021.9-2022.10). For each case, both CT and MRI scans were performed at simulation, and pCT was generated by a convolutional neural network (CNN) from planning MRI. Conformal arc or volumetric modulated arc technique was used to optimize the dose distribution. The SRT dose was compared between pCT and planning CT with dose volume histogram (DVH) metrics and gamma index. Wilcoxon test and Spearman analysis were used to identify key factors associated with dose deviations. Additionally, original image features were extracted for radiomic analysis. Tumor control probability (TCP) and normal tissue complication probability (NTCP) were employed for efficacy evaluation. RESULTS There was no significant difference between pCT and planning CT except for radiomics. The mean value of Hounsfield unit of the planning CT was slightly higher than that of pCT. The Gadolinium-based agents in planning MRI could increase DVH metrics deviation slightly. The median local gamma passing rates (1%/1 mm) between planning CTs and pCTs (non-contrast) was 92.6% (range 63.5-99.6%). Also, differences were observed in more than 85% of original radiomic features. The mean absolute deviation in TCP was 0.03%, and the NTCP difference was below 0.02%, except for the normal brain, which had a 0.16% difference. In addition, the number of SRT fractions and lesions, and lesion morphology could influence dose deviation. CONCLUSIONS This is the first multi-modal radiomics analysis of CNN-based pCT from planning MRI for SRT of small brain lesions, covering dosiomics and radiomics. The findings suggest the potential of pCT in SRT plan design and efficacy prediction, but caution needs to be taken for radiomic analysis.
Collapse
Affiliation(s)
- Xin Yang
- Departments of Radiation Oncology, Chongqing University Cancer Hospital, No. 181, Han Yu Road, Shapingba District, Chongqing, 400030, People's Republic of China.
| | - Bin Feng
- Departments of Radiation Oncology, Chongqing University Cancer Hospital, No. 181, Han Yu Road, Shapingba District, Chongqing, 400030, People's Republic of China
| | - Han Yang
- Departments of Radiation Oncology, Chongqing University Cancer Hospital, No. 181, Han Yu Road, Shapingba District, Chongqing, 400030, People's Republic of China
| | - Xiaoqi Wang
- Apodibot Medical, Beijing, People's Republic of China
| | - Huanli Luo
- Departments of Radiation Oncology, Chongqing University Cancer Hospital, No. 181, Han Yu Road, Shapingba District, Chongqing, 400030, People's Republic of China
| | - Liyuan Chen
- Departments of Radiation Oncology, Chongqing University Cancer Hospital, No. 181, Han Yu Road, Shapingba District, Chongqing, 400030, People's Republic of China
| | - Fu Jin
- Departments of Radiation Oncology, Chongqing University Cancer Hospital, No. 181, Han Yu Road, Shapingba District, Chongqing, 400030, People's Republic of China.
| | - Ying Wang
- Departments of Radiation Oncology, Chongqing University Cancer Hospital, No. 181, Han Yu Road, Shapingba District, Chongqing, 400030, People's Republic of China.
| |
Collapse
|
2
|
Quashie EE, Li XA, Prior P, Awan M, Schultz C, Tai A. Obtaining organ-specific radiobiological parameters from clinical data for radiation therapy planning of head and neck cancers. Phys Med Biol 2023; 68:245015. [PMID: 37903437 DOI: 10.1088/1361-6560/ad07f5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/30/2023] [Indexed: 11/01/2023]
Abstract
Objective.Different radiation therapy (RT) strategies, e.g. conventional fractionation RT (CFRT), hypofractionation RT (HFRT), stereotactic body RT (SBRT), adaptive RT, and re-irradiation are often used to treat head and neck (HN) cancers. Combining and/or comparing these strategies requires calculating biological effective dose (BED). The purpose of this study is to develop a practical process to estimate organ-specific radiobiologic model parameters that may be used for BED calculations in individualized RT planning for HN cancers.Approach.Clinical dose constraint data for CFRT, HFRT and SBRT for 5 organs at risk (OARs) namely spinal cord, brainstem, brachial plexus, optic pathway, and esophagus obtained from literature were analyzed. These clinical data correspond to a particular endpoint. The linear-quadratic (LQ) and linear-quadratic-linear (LQ-L) models were used to fit these clinical data and extract relevant model parameters (alpha/beta ratio, gamma/alpha,dTand BED) from the iso-effective curve. The dose constraints in terms of equivalent physical dose in 2 Gy-fraction (EQD2) were calculated using the obtained parameters.Main results.The LQ-L and LQ models fitted clinical data well from the CFRT to SBRT with the LQ-L representing a better fit for most of the OARs. The alpha/beta values for LQ-L (LQ) were found to be 2.72 (2.11) Gy, 0.55 (0.30) Gy, 2.82 (2.90) Gy, 6.57 (3.86) Gy, 5.38 (4.71) Gy, and the dose constraint EQD2 were 55.91 (54.90) Gy, 57.35 (56.79) Gy, 57.54 (56.35) Gy, 60.13 (59.72) Gy and 65.66 (64.50) Gy for spinal cord, optic pathway, brainstem, brachial plexus, and esophagus, respectively. Additional two LQ-L parametersdTwere 5.24 Gy, 5.09 Gy, 7.00 Gy, 5.23 Gy, and 6.16 Gy, and gamma/alpha were 7.91, 34.02, 8.67, 5.62 and 4.95.Significance.A practical process was developed to extract organ-specific radiobiological model parameters from clinical data. The obtained parameters can be used for biologically based radiation planning such as calculating dose constraints of different fractionation regimens.
Collapse
Affiliation(s)
- Edwin E Quashie
- Department of Radiation Oncology, Medical College of Wisconsin, WI 53226, United States of America
- Department of Radiation Oncology, Brown University School of Medicine, Providence, RI 02903, United States of America
- Department of Radiation Oncology, Rhode Island Hospital, Providence, RI 02903, United States of America
| | - X Allen Li
- Department of Radiation Oncology, Medical College of Wisconsin, WI 53226, United States of America
| | - Phillip Prior
- Department of Radiation Oncology, Medical College of Wisconsin, WI 53226, United States of America
| | - Musaddiq Awan
- Department of Radiation Oncology, Medical College of Wisconsin, WI 53226, United States of America
| | - Christopher Schultz
- Department of Radiation Oncology, Medical College of Wisconsin, WI 53226, United States of America
| | - An Tai
- Department of Radiation Oncology, Medical College of Wisconsin, WI 53226, United States of America
| |
Collapse
|
3
|
Dennstädt F, Medová M, Putora PM, Glatzer M. Parameters of the Lyman Model for Calculation of Normal-Tissue Complication Probability: A Systematic Literature Review. Int J Radiat Oncol Biol Phys 2023; 115:696-706. [PMID: 36029911 DOI: 10.1016/j.ijrobp.2022.08.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 02/04/2023]
Abstract
PURPOSE The Lyman model is one of the most used radiobiological models for calculation of normal-tissue complication probability (NTCP). Since its introduction in 1985, many authors have published parameter values for the model based on clinical data of different radiotherapeutic situations. This study attempted to collect the entirety of radiobiological parameter sets published to date and provide an overview of the data basis for different variations of the model. Furthermore, it sought to compare the parameter values and calculated NTCPs for selected endpoints with sufficient data available. METHODS AND MATERIALS A systematic literature analysis was performed, searching for publications that provided parameters for the different variations of the Lyman model in the Medline database using PubMed. Parameter sets were grouped into 13 toxicity-related endpoint groups. For 3 selected endpoint groups (≤25% reduction of saliva 12 months after irradiation of the parotid, symptomatic pneumonitis after irradiation of the lung, and bleeding of grade 2 or less after irradiation of the rectum), parameter values were compared and differences in calculated NTCP values were analyzed. RESULTS A total of 509 parameter sets from 130 publications were identified. Considerable heterogeneities were detected regarding the number of parameters available for different radio-oncological situations. Furthermore, for the 3 selected endpoints, large differences in published parameter values were found. These translated into great variations of calculated NTCPs, with maximum ranges of 35.2% to 93.4% for the saliva endpoint, of 39.4% to 90.4% for the pneumonitis endpoint, and of 5.4% to 99.3% for the rectal bleeding endpoint. CONCLUSIONS The detected heterogeneity of the data as well as the large variations of published radiobiological parameters underline the necessity for careful interpretation when using such parameters for NTCP calculations. Appropriate selection of parameters and validation of values are essential when using the Lyman model.
Collapse
Affiliation(s)
- Fabio Dennstädt
- Department of Radiation Oncology, Kantonsspital St. Gallen, St. Gallen, Switzerland.
| | - Michaela Medová
- Department of Radiation Oncology, University of Bern, Bern, Switzerland; Department for BioMedical Research, Inselspital Bern, Bern, Switzerland
| | - Paul Martin Putora
- Department of Radiation Oncology, Kantonsspital St. Gallen, St. Gallen, Switzerland; Department of Radiation Oncology, University of Bern, Bern, Switzerland
| | - Markus Glatzer
- Department of Radiation Oncology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| |
Collapse
|
4
|
Sahgal A, Chang JH, Ma L, Marks LB, Milano MT, Medin P, Niemierko A, Soltys SG, Tomé WA, Wong CS, Yorke E, Grimm J, Jackson A. Spinal Cord Dose Tolerance to Stereotactic Body Radiation Therapy. Int J Radiat Oncol Biol Phys 2021; 110:124-136. [DOI: 10.1016/j.ijrobp.2019.09.038] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 09/22/2019] [Accepted: 09/25/2019] [Indexed: 12/29/2022]
|
5
|
Liu G, Zhao L, Qin A, Grills I, Deraniyagala R, Stevens C, Zhang S, Yan D, Li X, Ding X. Lung Stereotactic Body Radiotherapy (SBRT) Using Spot-Scanning Proton Arc (SPArc) Therapy: A Feasibility Study. Front Oncol 2021; 11:664455. [PMID: 33968770 PMCID: PMC8100671 DOI: 10.3389/fonc.2021.664455] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/26/2021] [Indexed: 12/26/2022] Open
Abstract
Purpose We developed a 4D interplay effect model to quantitatively evaluate breathing-induced interplay effects and assess the feasibility of utilizing spot-scanning proton arc (SPArc) therapy for hypo-fractionated lung stereotactic body radiotherapy (SBRT). The model was then validated by retrospective application to clinical cases. Materials and Methods A digital lung 4DCT phantoms was used to mimic targets in diameter of 3cm with breathing motion amplitudes: 5, 10, 15, and 20 mm, respectively. Two planning groups based on robust optimization were generated: (1) Two-field Intensity Modulated Proton Therapy (IMPT) plans and (2) SPArc plans via a partial arc. 5,000 cGy relative biological effectiveness (RBE) was prescribed to the internal target volume (ITV) in five fractions. To quantitatively assess the breathing induced interplay effect, the 4D dynamic dose was calculated by synchronizing the breathing pattern with the simulated proton machine delivery sequence, including IMPT, Volumetric repainting (IMPTvolumetric), iso-layered repainting (IMPTlayer) and SPArc. Ten lung patients’ 4DCT previously treated with VMAT SBRT, were used to validate the digital lung tumor model. Normal tissue complicated probability (NTCP) of chestwall toxicity was calculated. Result Target dose were degraded as the tumor motion amplitude increased. The 4D interplay effect phantom model indicated that motion mitigation effectiveness using SPArc was about five times of IMPTvolumetric or IMPTlayer using maximum MU/spot as 0.5 MU at 20 mm motion amplitude. The retrospective study showed that SPArc has an advantage in normal tissue sparing. The probability of chestwall’s toxicity were significantly improved from 40.2 ± 29.0% (VMAT) (p = 0.01) and 16.3 ± 12.0% (IMPT) (p = 0.01) to 10.1 ± 5.4% (SPArc). SPArc could play a significant role in the interplay effect mitigation with breathing-induced motion more than 20 mm, where the target D99 of 4D dynamic dose for patient #10 was improved from 4,514 ± 138 cGy [RBE] (IMPT) vs. 4,755 ± 129 cGy [RBE] (SPArc) (p = 0.01). Conclusion SPArc effectively mitigated the interplay effect for proton lung SBRT compared to IMPT with repainting and was associated with normal tissue sparing. This technology may make delivery of proton SBRT more technically feasible and less complex with fewer concerns over underdosing the target compared to other proton therapy techniques.
Collapse
Affiliation(s)
- Gang Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, United States
| | - Lewei Zhao
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, United States
| | - An Qin
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, United States
| | - Inga Grills
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, United States
| | - Rohan Deraniyagala
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, United States
| | - Craig Stevens
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, United States
| | - Sheng Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Yan
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, United States
| | - Xiaoqiang Li
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, United States
| | - Xuanfeng Ding
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, United States
| |
Collapse
|
6
|
Kotecha R, Mehta MP, Chang EL, Brown PD, Suh JH, Lo SS, Das S, Samawi HH, Keith J, Perry J, Sahgal A. Updates in the management of intradural spinal cord tumors: a radiation oncology focus. Neuro Oncol 2019; 21:707-718. [PMID: 30977511 PMCID: PMC6556849 DOI: 10.1093/neuonc/noz014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Primary spinal cord tumors represent a hetereogeneous group of central nervous system malignancies whose management is complex given the relatively uncommon nature of the disease and variety of tumor subtypes, functional neurologic deficits from the tumor, and potential morbidities associated with definitive treatment. Advances in neuroimaging; integration of diagnostic, prognostic, and predictive molecular testing into tumor classification; and developments in neurosurgical techniques have refined the current role of radiotherapy in the multimodal management of patients with primary spinal cord tumors, and corroborated the need for prospective, multidisciplinary discussion and treatment decision making. Radiotherapeutic technological advances have dramatically improved the entire continuum from treatment planning to treatment delivery, and the development of stereotactic radiosurgery and proton radiotherapy provides new radiotherapy options for patients treated in the definitive, adjuvant, or salvage setting. The objective of this comprehensive review is to provide a contemporary overview of the management of primary intradural spinal cord tumors, with a focus on radiotherapy.
Collapse
Affiliation(s)
- Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Minesh P Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Eric L Chang
- Department of Radiation Oncology, University of Southern California, Los Angeles, California, USA
| | - Paul D Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - John H Suh
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Taussig Cancer Institute, Cleveland, Ohio, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | - Simon S Lo
- Department of Radiation Oncology, University of Washington, Seattle, Washington, USA
| | - Sunit Das
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Haider H Samawi
- Division of Hematology/Oncology, St Michael’s Hospital, Toronto, Ontario, Canada
| | - Julia Keith
- Department of Anatomical Pathology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - James Perry
- Department of Neurology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Chadha AS, Liu G, Chen HC, Das P, Minsky BD, Mahmood U, Delclos ME, Suh Y, Sawakuchi GO, Beddar S, Katz MH, Fleming JB, Javle MM, Varadhachary GR, Wolff RA, Crane CH, Wang X, Thames H, Krishnan S. Does Unintentional Splenic Radiation Predict Outcomes After Pancreatic Cancer Radiation Therapy? Int J Radiat Oncol Biol Phys 2016; 97:323-332. [PMID: 28068240 DOI: 10.1016/j.ijrobp.2016.10.046] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 10/26/2016] [Accepted: 10/31/2016] [Indexed: 12/16/2022]
Abstract
PURPOSE To determine whether severity of lymphopenia is dependent on radiation dose and fractional volume of spleen irradiated unintentionally during definitive chemoradiation (CRT) in patients with locally advanced pancreatic cancer (LAPC). METHODS 177 patients with LAPC received induction chemotherapy (mainly gemcitabine-based regimens) followed by CRT (median 50.4 Gy with concurrent capecitabine) from January 2006 to December 2012. Absolute lymphocyte count (ALC) was recorded at baseline, before CRT, and 2 to 10 weeks after CRT. Splenic dose-volume histogram (DVH) parameters were reported as mean splenic dose (MSD) and percentage of splenic volume receiving at least 5- (V5), 10- (V10), 15- (V15), and 20-Gy (V20) dose. Overall survival (OS) was analyzed with use of the Cox model, and development of post-CRT severe lymphopenia (ALC <0.5 K/UL) was assessed by multivariate logistic regression with use of baseline and treatment factors. RESULTS The median post-CRT ALC (0.68 K/UL; range, 0.13-2.72) was significantly lower than both baseline ALC (1.42 K/UL; range, 0.34-3.97; P<.0001) and pre-CRT ALC (1.32 K/UL, range 0.36-4.82; P<.0001). Post-CRT ALC <0.5 K/UL was associated with inferior OS on univariate analysis (median, 11.1 vs 15.3 months; P=.01) and multivariate analysis (hazard ratio = 1.66, P=.01). MSD (9.8 vs 6 Gy, P=.03), median V10 (32.6 vs 16%, P=.04), V15 (23.2 vs 9.5%, P=.03), and V20 (15.4 vs 4.6%, P=.02) were significantly higher in patients with severe lymphopenia than in those without. On multivariate analysis, postinduction lymphopenia (P<.001; odds ratio [OR] = 5.25) and MSD (P=.002; OR= 3.42) were independent predictors for the development of severe post-CRT lymphopenia. CONCLUSION Severe post-CRT lymphopenia is an independent predictor of poor OS in LAPC patients receiving CRT. Higher splenic doses increase the risk for the development of severe post-CRT lymphopenia. When clinically indicated, assessment of splenic DVHs before the acceptance of treatment plans may minimize the risk of severe post-CRT lymphopenia.
Collapse
Affiliation(s)
- Awalpreet S Chadha
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Guan Liu
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hsiang-Chun Chen
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Prajnan Das
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bruce D Minsky
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Usama Mahmood
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Marc E Delclos
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yelin Suh
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gabriel O Sawakuchi
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas; Graduate School of Biomedical Sciences, The University of Texas, Houston, Texas
| | - Sam Beddar
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Matthew H Katz
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason B Fleming
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Milind M Javle
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gauri R Varadhachary
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert A Wolff
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christopher H Crane
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xuemei Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Howard Thames
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sunil Krishnan
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
8
|
Grimm J, Sahgal A, Soltys SG, Luxton G, Patel A, Herbert S, Xue J, Ma L, Yorke E, Adler JR, Gibbs IC. Estimated Risk Level of Unified Stereotactic Body Radiation Therapy Dose Tolerance Limits for Spinal Cord. Semin Radiat Oncol 2016; 26:165-71. [PMID: 27000514 DOI: 10.1016/j.semradonc.2015.11.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A literature review of more than 200 stereotactic body radiation therapy spine articles from the past 20 years found only a single article that provided dose-volume data and outcomes for each spinal cord of a clinical dataset: the Gibbs 2007 article (Gibbs et al, 2007(1)), which essentially contains the first 100 stereotactic body radiation therapy (SBRT) spine treatments from Stanford University Medical Center. The dataset is modeled and compared in detail to the rest of the literature review, which found 59 dose tolerance limits for the spinal cord in 1-5 fractions. We partitioned these limits into a unified format of high-risk and low-risk dose tolerance limits. To estimate the corresponding risk level of each limit we used the Gibbs 2007 clinical spinal cord dose-volume data for 102 spinal metastases in 74 patients treated by spinal radiosurgery. In all, 50 of the patients were previously irradiated to a median dose of 40Gy in 2-3Gy fractions and 3 patients developed treatment-related myelopathy. These dose-volume data were digitized into the dose-volume histogram (DVH) Evaluator software tool where parameters of the probit dose-response model were fitted using the maximum likelihood approach (Jackson et al, 1995(3)). Based on this limited dataset, for de novo cases the unified low-risk dose tolerance limits yielded an estimated risk of spinal cord injury of ≤1% in 1-5 fractions, and the high-risk limits yielded an estimated risk of ≤3%. The QUANTEC Dmax limits of 13Gy in a single fraction and 20Gy in 3 fractions had less than 1% risk estimated from this dataset, so we consider these among the low-risk limits. In the previously irradiated cohort, the estimated risk levels for 10 and 14Gy maximum cord dose limits in 5 fractions are 0.4% and 0.6%, respectively. Longer follow-up and more patients are required to improve the risk estimates and provide more complete validation.
Collapse
Affiliation(s)
- Jimm Grimm
- Bott Cancer Center, Holy Redeemer Hospital, Meadowbrook, PA.
| | - Arjun Sahgal
- Sunnybrook Health Sciences Center, University of Toronto, Toronto, Ontario, Canada
| | - Scott G Soltys
- Department of Radiation Oncology, Stanford University, Stanford, CA
| | - Gary Luxton
- Department of Radiation Oncology, Stanford University, Stanford, CA
| | - Ashish Patel
- Department of Radiation Oncology, MD Anderson Cancer Center at Cooper University Hospital, Camden, NJ
| | - Scott Herbert
- Division of Radiation Oncology, Abington Memorial Hospital, Abington, PA
| | - Jinyu Xue
- Department of Radiation Oncology, MD Anderson Cancer Center at Cooper University Hospital, Camden, NJ
| | - Lijun Ma
- Department of Radiation Oncology, University of California at San Francisco, San Francisco, CA
| | - Ellen Yorke
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - John R Adler
- Department of Neurosurgery, Stanford University, Stanford, CA
| | - Iris C Gibbs
- Department of Radiation Oncology, Stanford University, Stanford, CA
| |
Collapse
|
9
|
Zindler JD, Thomas CR, Hahn SM, Hoffmann AL, Troost EGC, Lambin P. Increasing the Therapeutic Ratio of Stereotactic Ablative Radiotherapy by Individualized Isotoxic Dose Prescription. J Natl Cancer Inst 2015; 108:djv305. [PMID: 26476075 DOI: 10.1093/jnci/djv305] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 09/25/2015] [Indexed: 12/25/2022] Open
Abstract
To obtain a favorable tradeoff between treatment benefits and morbidity ("therapeutic ratio"), radiotherapy (RT) dose is prescribed according to the tumor volume, with the goal of controlling the disease while respecting normal tissue tolerance levels. We propose a new paradigm for tumor dose prescription in stereotactic ablative radiotherapy (SABR) based on organ-at-risk (OAR) tolerance levels called isotoxic dose prescription (IDP), which is derived from experiences and limitations of conventionally fractionated radiotherapy. With IDP, the radiation dose is prescribed based on the predefined level of normal tissue complication probability of a nearby dose-limiting OAR at a prespecified dose-volume constraint. Simultaneously, the prescribed total tumor dose (TTD) is maximized to the technically highest achievable level in order to increase the local tumor control probability (TCP). IDP is especially relevant for tumors located at eloquent locations or for large tumors in which severe toxicity has been described. IDP will result in a lower RT dose or a treatment scheduled with more fractions if the OAR tolerance level is exceeded, and potential dose escalation occurs when the OAR tolerance level allows it and when it is expected to be beneficial (if TCP < 90%). For patients with small tumors at noneloquent sites, the current SABR dose prescription already results in high rates of local control at low toxicity rates. In this review, the concept of IDP is described in the context of SABR.
Collapse
Affiliation(s)
- Jaap D Zindler
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands (JDZ, ALH, EGCT, PL); Department of Radiation Medicine, Knight Cancer Institute, Oregon Health & Science University, Oregon, OR (CRTJr); Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX (SMH); Helmholtz Zentrum Dresden-Rossendorf, Dresden, Germany (ALH, EGCT); Department of Radiation Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany (ALH, EGCT).
| | - Charles R Thomas
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands (JDZ, ALH, EGCT, PL); Department of Radiation Medicine, Knight Cancer Institute, Oregon Health & Science University, Oregon, OR (CRTJr); Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX (SMH); Helmholtz Zentrum Dresden-Rossendorf, Dresden, Germany (ALH, EGCT); Department of Radiation Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany (ALH, EGCT)
| | - Stephen M Hahn
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands (JDZ, ALH, EGCT, PL); Department of Radiation Medicine, Knight Cancer Institute, Oregon Health & Science University, Oregon, OR (CRTJr); Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX (SMH); Helmholtz Zentrum Dresden-Rossendorf, Dresden, Germany (ALH, EGCT); Department of Radiation Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany (ALH, EGCT)
| | - Aswin L Hoffmann
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands (JDZ, ALH, EGCT, PL); Department of Radiation Medicine, Knight Cancer Institute, Oregon Health & Science University, Oregon, OR (CRTJr); Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX (SMH); Helmholtz Zentrum Dresden-Rossendorf, Dresden, Germany (ALH, EGCT); Department of Radiation Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany (ALH, EGCT)
| | - Esther G C Troost
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands (JDZ, ALH, EGCT, PL); Department of Radiation Medicine, Knight Cancer Institute, Oregon Health & Science University, Oregon, OR (CRTJr); Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX (SMH); Helmholtz Zentrum Dresden-Rossendorf, Dresden, Germany (ALH, EGCT); Department of Radiation Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany (ALH, EGCT)
| | - Philippe Lambin
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands (JDZ, ALH, EGCT, PL); Department of Radiation Medicine, Knight Cancer Institute, Oregon Health & Science University, Oregon, OR (CRTJr); Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX (SMH); Helmholtz Zentrum Dresden-Rossendorf, Dresden, Germany (ALH, EGCT); Department of Radiation Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany (ALH, EGCT)
| |
Collapse
|
10
|
What type of patients with lesions of the pancreas and spine are suitable candidates for treatment with the CyberKnife robotic radiosurgical system? JOURNAL OF RADIOTHERAPY IN PRACTICE 2014. [DOI: 10.1017/s1460396912000568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractMaterials & methodsA systematic literature review was conducted to critically examine patient selection for patients undergoing stereotactic body radiotherapy (SBRT) to the spine and pancreas on the CyberKnife robotic radiosurgical system (CK). Online databases were searched and data was collected and ranked using a system from the Scottish Intercollegiate Guideline Network. The quality of the evidence analysed was insufficient to generate universal recommendations. However, the conclusions reached do help to demonstrate the safety and efficacy of CK treatment to both pancreatic and spinal patients.ResultsExcellent local control rates and minimal acute toxicity were reported within the spinal literature with uncertainties remaining with regard to the precise tolerance of the spinal cord and the reliability of current toxicity prediction methods. For pancreatic patients prognosis remains dismal due to the tendency for patients to present with advanced or inoperable disease. Combinations of CK SBRT and Gemcitabine chemotherapy are given though regimes vary and overall survival is not extended due to the rapid onset of distant metastases. New chemotherapy agents are required as well as better means of predicting response to treatment.ConclusionNo randomised controlled trials or meta-analyses were identified in the review and these are required in order to generate universal guidelines
Collapse
|
11
|
Chan MKH, Kwong DLW, Ng SCY, Tam EKW, Tong ASM. Investigation of four-dimensional (4D) Monte Carlo dose calculation in real-time tumor tracking stereotatic body radiotherapy for lung cancers. Med Phys 2012; 39:5479-87. [DOI: 10.1118/1.4739249] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
12
|
Sahgal A, Weinberg V, Ma L, Chang E, Chao S, Muacevic A, Gorgulho A, Soltys S, Gerszten PC, Ryu S, Angelov L, Gibbs I, Wong CS, Larson DA. Probabilities of radiation myelopathy specific to stereotactic body radiation therapy to guide safe practice. Int J Radiat Oncol Biol Phys 2012; 85:341-7. [PMID: 22713832 DOI: 10.1016/j.ijrobp.2012.05.007] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 04/27/2012] [Accepted: 05/03/2012] [Indexed: 11/28/2022]
Abstract
PURPOSE Dose-volume histogram (DVH) results for 9 cases of post spine stereotactic body radiation therapy (SBRT) radiation myelopathy (RM) are reported and compared with a cohort of 66 spine SBRT patients without RM. METHODS AND MATERIALS DVH data were centrally analyzed according to the thecal sac point maximum (Pmax) volume, 0.1- to 1-cc volumes in increments of 0.1 cc, and to the 2 cc volume. 2-Gy biologically equivalent doses (nBED) were calculated using an α/β = 2 Gy (units = Gy(2/2)). For the 2 cohorts, the nBED means and distributions were compared using the t test and Mann-Whitney test, respectively. Significance (P<.05) was defined as concordance of both tests at each specified volume. A logistic regression model was developed to estimate the probability of RM using the dose distribution for a given volume. RESULTS Significant differences in both the means and distributions at the Pmax and up to the 0.8-cc volume were observed. Concordant significance was greatest for the Pmax volume. At the Pmax volume the fit of the logistic regression model, summarized by the area under the curve, was 0.87. A risk of RM of 5% or less was observed when limiting the thecal sac Pmax volume doses to 12.4 Gy in a single fraction, 17.0 Gy in 2 fractions, 20.3 Gy in 3 fractions, 23.0 Gy in 4 fractions, and 25.3 Gy in 5 fractions. CONCLUSION We report the first logistic regression model yielding estimates for the probability of human RM specific to SBRT.
Collapse
Affiliation(s)
- Arjun Sahgal
- Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto, ON, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Bazan JG, Luxton G, Mok EC, Koong AC, Chang DT. Normal tissue complication probability modeling of acute hematologic toxicity in patients treated with intensity-modulated radiation therapy for squamous cell carcinoma of the anal canal. Int J Radiat Oncol Biol Phys 2012; 84:700-6. [PMID: 22414279 DOI: 10.1016/j.ijrobp.2011.12.072] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 12/20/2011] [Accepted: 12/21/2011] [Indexed: 11/25/2022]
Abstract
PURPOSE To identify dosimetric parameters that correlate with acute hematologic toxicity (HT) in patients with squamous cell carcinoma of the anal canal treated with definitive chemoradiotherapy (CRT). METHODS AND MATERIALS We analyzed 33 patients receiving CRT. Pelvic bone (PBM) was contoured for each patient and divided into subsites: ilium, lower pelvis (LP), and lumbosacral spine (LSS). The volume of each region receiving at least 5, 10, 15, 20, 30, and 40 Gy was calculated. Endpoints included grade ≥3 HT (HT3+) and hematologic event (HE), defined as any grade ≥2 HT with a modification in chemotherapy dose. Normal tissue complication probability (NTCP) was evaluated with the Lyman-Kutcher-Burman (LKB) model. Logistic regression was used to test associations between HT and dosimetric/clinical parameters. RESULTS Nine patients experienced HT3+ and 15 patients experienced HE. Constrained optimization of the LKB model for HT3+ yielded the parameters m = 0.175, n = 1, and TD(50) = 32 Gy. With this model, mean PBM doses of 25 Gy, 27.5 Gy, and 31 Gy result in a 10%, 20%, and 40% risk of HT3+, respectively. Compared with patients with mean PBM dose of <30 Gy, patients with mean PBM dose ≥30 Gy had a 14-fold increase in the odds of developing HT3+ (p = 0.005). Several low-dose radiation parameters (i.e., PBM-V10) were associated with the development of HT3+ and HE. No association was found with the ilium, LP, or clinical factors. CONCLUSIONS LKB modeling confirms the expectation that PBM acts like a parallel organ, implying that the mean dose to the organ is a useful predictor for toxicity. Low-dose radiation to the PBM was also associated with clinically significant HT. Keeping the mean PBM dose <22.5 Gy and <25 Gy is associated with a 5% and 10% risk of HT, respectively.
Collapse
Affiliation(s)
- Jose G Bazan
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305-5847, USA
| | | | | | | | | |
Collapse
|
14
|
Spinal cord tolerance to reirradiation with single-fraction radiosurgery: a swine model. Int J Radiat Oncol Biol Phys 2011; 83:1031-7. [PMID: 22197239 DOI: 10.1016/j.ijrobp.2011.08.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 07/05/2011] [Accepted: 08/24/2011] [Indexed: 12/17/2022]
Abstract
PURPOSE This study was performed to determine swine spinal cord tolerance to single-fraction, partial-volume irradiation 1 year after receiving uniform irradiation to 30 Gy in 10 fractions. METHODS AND MATERIALS A 10-cm length of spinal cord (C3-T1) was uniformly irradiated to 30 Gy in 10 consecutive fractions and reirradiated 1 year later with a single radiosurgery dose centered within the previously irradiated segment. Radiosurgery was delivered to a cylindrical volume approximately 5 cm in length and 2 cm in diameter, which was positioned laterally to the cervical spinal cord, resulting in a dose distribution with the 90%, 50%, and 10% isodose lines traversing the ipsilateral, central, and contralateral spinal cord, respectively. Twenty-three pigs were stratified into six dose groups with mean maximum spinal cord doses of 14.9 ± 0.1 Gy (n = 2), 17.1 ± 0.3 Gy (n = 3), 19.0 ± 0.1 Gy (n = 5), 21.2 ± 0.1 Gy (n = 5), 23.4 ± 0.2 Gy (n = 5), and 25.4 ± 0.4 Gy (n = 3). The mean percentage of spinal cord volumes receiving ≥10 Gy for the same groups were 34% ± 1%, 40% ± 1%, 46% ± 3%, 52% ± 1%, 56 ± 3%, and 57% ± 1%. The study endpoint was motor neurologic deficit as determined by a change in gait during a 1- year follow-up period. RESULTS A steep dose-response curve was observed with a 50% incidence of paralysis (ED(50)) for the maximum point dose of 19.7 Gy (95% confidence interval, 17.4-21.4). With two exceptions, histology was unremarkable in animals with normal neurologic status, while all animals with motor deficits showed some degree of demyelination and focal white matter necrosis on the irradiated side, with relative sparing of gray matter. Histologic comparison with a companion study of de novo irradiated animals revealed that retreatment responders had more extensive tissue damage, including infarction of gray matter, only at prescription doses >20 Gy. CONCLUSION Pigs receiving spinal radiosurgery 1 year after receiving 30 Gy in 10 fractions were not at significantly higher risk of developing motor deficits than pigs that received radiosurgery alone.
Collapse
|
15
|
Guckenberger M, Sweeney RA, Flickinger JC, Gerszten PC, Kersh R, Sheehan J, Sahgal A. Clinical practice of image-guided spine radiosurgery--results from an international research consortium. Radiat Oncol 2011; 6:172. [PMID: 22172095 PMCID: PMC3286433 DOI: 10.1186/1748-717x-6-172] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 12/15/2011] [Indexed: 03/10/2023] Open
Abstract
Background Spinal radiosurgery is a quickly evolving technique in the radiotherapy and neurosurgical communities. However, the methods of spine radiosurgery have not been standardized. This article describes the results of a survey about the methods of spine radiosurgery at five international institutions. Methods All institutions are members of the Elekta Spine Radiosurgery Research Consortium and have a dedicated research and clinical focus on image-guided radiosurgery. The questionnaire consisted of 75 items covering all major steps of spine radiosurgery. Results Strong agreement in the methods of spine radiosurgery was observed. In particular, similarities were observed with safety and quality assurance playing an important role in the methods of all institutions, cooperation between neurosurgeons and radiation oncologists in case selection, dedicated imaging for target- and organ-at-risk delineation, application of proper safety margins for the target volume and organs-at-risk, conformal planning and precise image-guided treatment delivery, and close clinical and radiological follow-up. In contrast, three major areas of uncertainty and disagreement were identified: 1) Indications and contra-indications for spine radiosurgery; 2) treatment dose and fractionation and 3) tolerance dose of the spinal cord. Conclusions Results of this study reflect the current practice of spine radiosurgery in large academic centers. Despite close agreement was observed in many steps of spine radiosurgery, further research in form of retrospective and especially prospective studies is required to refine the details of spinal radiosurgery in terms of safety and efficacy.
Collapse
Affiliation(s)
- Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Wuerzburg, Wuerzburg, Germany.
| | | | | | | | | | | | | |
Collapse
|