1
|
Arp DT, Appelt AL, Mikalone R, Nielsen MS, Poulsen LØ. Evaluating primary tumor position variation for rectal cancer patients treated with long course radiotherapy. Phys Med Biol 2025; 70:095004. [PMID: 40203847 PMCID: PMC12018874 DOI: 10.1088/1361-6560/adcaf8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 03/21/2025] [Accepted: 04/09/2025] [Indexed: 04/11/2025]
Abstract
Objective.To quantify interfraction shape and positional variations of primary tumor volumes for rectal cancer patients receiving long course radiotherapy by comparing two quantification strategies: a center-of-mass (COM) method and a surface-based metric that captures local deformations.Approach.This study utilized repeat MRI scans before and during radiotherapy (RT) for rectal cancer to investigate the positional variation of the primary gross tumor volume (GTVp). Sixteen patients underwent six MRI exams, with the initial three before the RT course and the subsequent three at one, two, and four weeks into the RT course. GTVp's were delineated on 3D T2-weighted MRIs, and positional variation analyzed using both COM and point-based surface displacements against the initial scan. Surface displacements were quantified using a bidirectional local distance measure, analyzing 3D displacement vectors. Additionally, the study examined local right-left (RL) and anterior-posterior (AP) surface variations relative to tumor height in the rectum by mapping baseline GTVp volumes onto a reference rectum structure.Main results.Systematic error for COM measurements were 1.7, 1.3 and 2.0 mm for AP, RL, and cranial-caudal (CC) direction, respectively. Random errors were 2.1, 1.2 and 2.2 mm, while the GM errors were -0.3, 0.5 and -0.3 mm for AP, RL, and CC directions, respectively. An increase in systematic and random errors were observed when comparing 95th percentile surface displacements to the COM measurements, indicating local displacements which the COM did not detect. Additionally, a general tendency for higher-located tumors to experience larger left-right and AP surface variations were seen when evaluating the 95th percentile.Significance.COM-based analysis might underestimate local deformations. Consequently, surface-based methods might provide more robust estimations of systematic, random and group mean errors for planning target volume-margin calculation. The surface variations tend to increase for tumors located in the upper part of the rectum.
Collapse
Affiliation(s)
- Dennis Tideman Arp
- Department of Medical Physics, Oncology, Aalborg University Hospital, Aalborg 9000, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg 9000, Denmark
- Department of Oncology, Clinical Cancer Research Center, Aalborg University Hospital, Aalborg 9000, Denmark
| | - Ane L Appelt
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds LS2 9JT, United Kingdom
- Leeds Cancer Centre, St James’s University Hospital, Leeds LS9 7TF, United Kingdom
| | - Rasa Mikalone
- Department of Radiology, Aalborg University Hospital, Aalborg 9000, Denmark
| | - Martin Skovmos Nielsen
- Department of Medical Physics, Oncology, Aalborg University Hospital, Aalborg 9000, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg 9000, Denmark
- Department of Oncology, Clinical Cancer Research Center, Aalborg University Hospital, Aalborg 9000, Denmark
| | - Laurids Østergaard Poulsen
- Department of Clinical Medicine, Aalborg University, Aalborg 9000, Denmark
- Department of Oncology, Clinical Cancer Research Center, Aalborg University Hospital, Aalborg 9000, Denmark
| |
Collapse
|
2
|
Pierrard J, Dechambre D, Ooteghem GV. Investigation of changes in planning target volume and regression probability of rectal boost using in-silico cone-beam computed tomography-guided online-adaptive radiotherapy. Phys Imaging Radiat Oncol 2025; 34:100757. [PMID: 40231223 PMCID: PMC11994390 DOI: 10.1016/j.phro.2025.100757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/18/2025] [Accepted: 03/18/2025] [Indexed: 04/16/2025] Open
Abstract
Background and purpose Radiotherapy boost to the primary tumour may enable organ preservation in locally advanced rectal cancer (LARC). This study evaluated cone-beam computed tomography (CBCT)-guided online-adaptive radiotherapy (ART) to reduce rectal boost planning target volume (PTVBoost) margins and allow dose escalation. Materials and methods Eleven LARC patients were included in this in silico study. Population-based PTVBoost margins were computed for non-adaptive and online-ART using van Herk's formalism. Dose/volume results were compared between: non-adaptive RT with a 25 x 2.16 Gy boost (Non-ART54Gy), ART with a 25 x 2.16 Gy boost (ART54Gy), and ART with an escalated boost of 25 x 2.4 Gy (ART60Gy). Tumour regression probability was compared between each plan using a dose-response model. Results PTVBoost margins for non-adaptive vs. online-ART were 14.2 vs. 3.3 mm in the antero-posterior, 5.0 vs. 3.2 mm in the left-right, and 12.3 vs. 8.7 mm in the supero-inferior axes. PTVBoost and pelvic lymph node PTV coverage (V95%) were significantly improved with ART54Gy and ART60Gy compared to Non-ART54Gy (p < 0.001). High-priority organ-at-risk constraints (priority 1&2) were violated in 26.8 % of cases for Non-ART54Gy, 21.2 % of cases for ART54Gy, and 20.8 % of cases for ART60Gy. Tumour regression probability was superior for ART60Gy (20.8 %) compared to ART54Gy (17.0 %, p < 0.001) and Non-ART54Gy (16.9 %, p < 0.001). Conclusions Online-ART significantly reduce rectal boost PTV margin. It allows better target volume coverage with a similar risk of radiation-induced toxicities, even when escalating the dose. Therefore, online-ART should be considered to perform dose-escalation in LARC patients with the objective of organ preservation.
Collapse
Affiliation(s)
- Julien Pierrard
- UCLouvain, Institut de Recherche Experimentale et Clinique (IREC), Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
- Department of Radiation Oncology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - David Dechambre
- Department of Radiation Oncology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Geneviève Van Ooteghem
- UCLouvain, Institut de Recherche Experimentale et Clinique (IREC), Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
- Department of Radiation Oncology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
3
|
Ruan J, Huang X, Wang T, Mai X, Lin C, Li F, Li Y, Chi F, Li B. Impact of belly board immobilization devices and body mass factor on setup displacement using daily cone-beam CT in rectal cancer radiotherapy. J Appl Clin Med Phys 2025; 26:e14573. [PMID: 39611734 PMCID: PMC11905242 DOI: 10.1002/acm2.14573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/30/2024] [Accepted: 10/28/2024] [Indexed: 11/30/2024] Open
Abstract
OBJECTIVE The objective of this study is to evaluate the impact of different belly board and daily changes in patient's body-mass factor (BMF) on setup displacement in radiotherapy for rectal cancer. METHODS Twenty-five patients were immobilized using the thermoplastic mask with belly board (TM-BB), and 30 used the vacuum bag cushion with belly board (VBC-BB), performing daily cone-beam computed tomography (CBCT) scans 625 times and 750 times, respectively. Daily pretreatment CBCT scans were registered to the planned CT images for BMF change determination and setup displacement measurement. Independent t-tests compared setup displacement between the two groups in left-right (LR), superior-inferior (SI), and anterior-posterior (AP) directions, as well as the BMF changes. The impact of daily BMF changes on setup displacement was evaluated using multivariate logistic regression and 10-fold cross-validation. RESULTS The setup displacement for TM-BB in the LR, SI, and AP directions were 0.31 ± 0.25, 0.58 ± 0.40, and 0.19 ± 0.18 cm, respectively, while VBC-BB showed 0.19 ± 0.15, 0.26 ± 0.22, and 0.36 ± 0.29 cm in the corresponding directions, respectively. Margins of planning target volume (PTV) for TM-BB were 8, 10, and 6 mm in LR, SI, and AP directions, while VBC-BB showed margins of 5,7, and 8 mm, respectively. The daily BMF changes for both groups were ranked in descending order as follows: sacral rotation angle (RS), hip lateral diameter (HLD), and hip anterior-posterior diameter (HAPD). HAPD was the main factor affecting setup displacement in both the AP and SI directions in TM-BB, while RS was the primary factor for setup displacement in the AP direction in VBC-BB. CONCLUSION Compared with TM-BB, VBC-BB had a larger AP displacement but smaller in LR and SI displacement. Daily changes in BMF have distinct effects on setup displacement in different immobilization devices. Image-guided radiation therapy (IGRT) is highly recommended and BMF changes should be given consideration during radiotherapy.
Collapse
Affiliation(s)
- Junjie Ruan
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP. R. China
| | - Xiaotong Huang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP. R. China
| | - Tong Wang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP. R. China
| | - Xiuying Mai
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP. R. China
| | - Chuyan Lin
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP. R. China
| | - Fanghua Li
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP. R. China
| | - Yunfeng Li
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP. R. China
| | - Feng Chi
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP. R. China
| | - Bin Li
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP. R. China
| |
Collapse
|
4
|
Pierrard J, Heylen S, Vandermeulen A, Van Ooteghem G. Dealing with rectum motion during radiotherapy: How can we anticipate it? Tech Innov Patient Support Radiat Oncol 2024; 32:100277. [PMID: 39391230 PMCID: PMC11465212 DOI: 10.1016/j.tipsro.2024.100277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/02/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Intra- and inter-fraction rectum motion is important for pelvic radiotherapy (RT). This study assesses how RT session duration, the presence or the absence of an intra-rectal tumour, and the distance from the anorectal junction (ARJd) impact rectal motion. Materials and methods Analyses used cone-beam computed tomographies (CBCTs) from RT patients treated for rectal and prostate cancer. Three structures were evaluated: (1) the entire rectum in patients without a rectal tumour (RectumProstate); (2) the non-invaded portion (RectumRectum) and (3) the tumour-invaded portion (RectumTumour) in rectal cancer patients.Intrafraction motion was assessed using the Hausdorff distance 95% and the Mean distance-to-agreement between structures delineated on the first CBCT and the 2 subsequent CBCTs within a same RT session. Interfraction motion was quantified by comparing structures delineated on the planning-CT and the first CBCT of each session.Linear mixed model evaluated rectum motion in relation to time, tumour presence, and ARJd, respectively. Results We included 10 patients with and 10 without rectal cancer, collecting 385 CBCTs. A significant correlation (p < 0.05) between rectum motion and RT session duration was found. Intrafraction motion was significantly higher in prostate cancer patients (RectumProstate motion > RectumRectum and RectumTumour, p < 0.01). For interfraction motion, only the mean distance to agreement was significantly higher for RectumProstate (p < 0.05). Motion increased significantly with ARJd for all three structures (p < 0.001). Conclusions Session duration, absence of a tumour, and ARJd are associated with larger intra- and interfraction rectal motion. This highlights the need for tailored RT treatment, including online-adaptive RT, to manage intra- and interfraction variations. Rectal motion should be handled differently for patients with prostate cancer and those with rectal cancer.
Collapse
Affiliation(s)
- Julien Pierrard
- UCLouvain, Institut de Recherche Experimentale et Clinique (IREC), Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
- Department of Radiation Oncology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Sofie Heylen
- Department of Radiation Oncology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Ad Vandermeulen
- Department of Radiation Oncology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Geneviève Van Ooteghem
- UCLouvain, Institut de Recherche Experimentale et Clinique (IREC), Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
- Department of Radiation Oncology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
5
|
Ingle M, White I, Chick J, Stankiewicz H, Mitchell A, Barnes H, Herbert T, Nill S, Oelfke U, Huddart R, Ng-Cheng-Hin B, Hafeez S, Lalondrelle S, Dunlop A, Bhide S. Understanding the Benefit of Magnetic Resonance-guided Adaptive Radiotherapy in Rectal Cancer Patients: a Single-centre Study. Clin Oncol (R Coll Radiol) 2023; 35:e135-e142. [PMID: 36336579 DOI: 10.1016/j.clon.2022.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/01/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
AIMS Neoadjuvant chemoradiotherapy followed by surgery is the mainstay of treatment for patients with rectal cancer. Standard clinical target volume (CTV) to planning target volume (PTV) margins of 10 mm are used to accommodate inter- and intrafraction motion of target. Treating on magnetic resonance-integrated linear accelerators (MR-linacs) allows for online manual recontouring and adaptation (MRgART) enabling the reduction of PTV margins. The aim of this study was to investigate motion of the primary CTV (CTVA; gross tumour volume and macroscopic nodes with 10 mm expansion to cover microscopic disease) in order to develop a simultaneous integrated boost protocol for use on MR-linacs. MATERIALS AND METHODS Patients suitable for neoadjuvant chemoradiotherapy were recruited for treatment on MR-linac using a two-phase technique; only the five phase 1 fractions on MR-linac were used for analysis. Intrafraction motion of CTVA was measured between pre-treatment and post-treatment MRI scans. In MRgART, isotropically expanded pre-treatment PTV margins from 1 to 10 mm were rigidly propagated to post-treatment MRI to determine overlap with 95% of CTVA. The PTV margin was considered acceptable if overlap was >95% in 90% of fractions. To understand the benefit of MRgART, the same methodology was repeated using a reference computed tomography planning scan for pre-treatment imaging. RESULTS In total, nine patients were recruited between January 2018 and December 2020 with T3a-T4, N0-N2, M0 disease. Forty-five fractions were analysed in total. The median motion across all planes was 0 mm, demonstrating minimal intrafraction motion. A PTV margin of 3 and 5mm was found to be acceptable in 96 and 98% of fractions, respectively. When comparing to the computed tomography reference scan, the analysis found that PTV margins to 5 and 10 mm only acceptably covered 51 and 76% of fractions, respectively. CONCLUSION PTV margins can be reduced to 3-5 mm in MRgART for rectal cancer treatment on MR-linac within an simultaneous integrated boost protocol.
Collapse
Affiliation(s)
- M Ingle
- The Royal Marsden Hospital NHS Trust, London, UK; The Institute of Cancer Research, London, UK.
| | - I White
- Guys and St Thomas NHS Trust, London, UK
| | - J Chick
- The Royal Marsden Hospital NHS Trust, London, UK
| | | | - A Mitchell
- The Royal Marsden Hospital NHS Trust, London, UK
| | - H Barnes
- The Royal Marsden Hospital NHS Trust, London, UK
| | - T Herbert
- The Royal Marsden Hospital NHS Trust, London, UK
| | - S Nill
- The Institute of Cancer Research, London, UK
| | - U Oelfke
- The Institute of Cancer Research, London, UK
| | - R Huddart
- The Royal Marsden Hospital NHS Trust, London, UK; The Institute of Cancer Research, London, UK
| | | | - S Hafeez
- The Royal Marsden Hospital NHS Trust, London, UK; The Institute of Cancer Research, London, UK
| | - S Lalondrelle
- The Royal Marsden Hospital NHS Trust, London, UK; The Institute of Cancer Research, London, UK
| | - A Dunlop
- The Royal Marsden Hospital NHS Trust, London, UK
| | - S Bhide
- The Royal Marsden Hospital NHS Trust, London, UK; The Institute of Cancer Research, London, UK
| |
Collapse
|
6
|
Boldrini L, Chiloiro G, Cusumano D, Romano A, Placidi L, Turco G, Antonelli MV, Nardini M, Galetto M, Indovina L, Gambacorta MA. Mesorectal motion evaluation in rectal cancer MR-guided radiotherapy: an exploratory study to quantify treatment margins. Radiat Oncol 2023; 18:4. [PMID: 36604699 PMCID: PMC9817323 DOI: 10.1186/s13014-022-02193-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/28/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Mesorectal motion (MM) is a source of uncertainty during neoadjuvant chemoradiotherapy (nCRT) delivery for locally advanced rectal cancer (LARC). Previously published experiences using cone-beam computed tomography imaging have already described significant movement. Aim of this analysis is to assess inter-fraction MM using the higher tissue contrast provided by hybrid magnetic resonance imaging (MRI) in LARC patients (pts) treated with MRI guided radiation therapy (MRgRT). METHODS The total mesorectum, its superior (Msup), middle (Mmid) and lower (Mlow) regions were contoured on the positioning MRIs acquired on simulation day and on each treatment day. Six PTVs were obtained adding 0.5, 0.7, 1, 1.3, 1.5 and 2 cm margin to the whole mesorectum, starting from the simulation MRI. Margins including 95% of the mesorectal structures during whole treatment in 95% of patients (pts) were considered adequate. RESULTS A total number of 312 fractions of 12 consecutive pts was retrospectively analyzed. The different mesorectum regions show specific motion variability. In particular, Msup shows larger variability in left, right and anterior directions, while the Mlow in caudal and posterior ones. The anterior margin is significantly larger in the Msup than in the other regions. CONCLUSION Different mesorectal regions move differently throughout the radiotherapy treatment, with the largest MM in the Msup anterior direction. Asymmetrical margins are recommended.
Collapse
Affiliation(s)
- Luca Boldrini
- grid.414603.4Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Giuditta Chiloiro
- grid.414603.4Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Davide Cusumano
- grid.513825.80000 0004 8503 7434Mater Olbia Hospital, Strada Statale Orientale Sarda 125, Olbia, SS Italy
| | - Angela Romano
- grid.414603.4Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Lorenzo Placidi
- grid.414603.4Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Gabriele Turco
- grid.414603.4Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Marco Valerio Antonelli
- grid.414603.4Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Matteo Nardini
- grid.414603.4Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Matteo Galetto
- grid.8142.f0000 0001 0941 3192Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Luca Indovina
- grid.414603.4Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Maria Antonietta Gambacorta
- grid.414603.4Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| |
Collapse
|
7
|
Nugent K, O'Neill B, Brennan V, Lynch J, Higgins M, Dunne M, Skourou C. Quantification of organ motion in male and female patients undergoing long course radiotherapy for rectal cancer in the supine position. Adv Radiat Oncol 2022; 8:101109. [DOI: 10.1016/j.adro.2022.101109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 10/02/2022] [Indexed: 11/07/2022] Open
|
8
|
[Impact of IMRT for neoadjuvant rectal cancer?]. Cancer Radiother 2022; 26:865-870. [PMID: 36064531 DOI: 10.1016/j.canrad.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/22/2022]
Abstract
The standard management of locally advanced rectal tumors as cT3-T4 and/or N0/N1 is based on preoperative treatment combining radiotherapy of 45 to 50Gy and chemotherapy based on 5-fluorouracil. Intensity-modulated radiotherapy has already shown its interest compared to conformal radiotherapy in other locations, like in pelvic cancer. The role of intensity-modulated radiotherapy in the pre/postoperative treatment of rectal cancers is not a standard of care. Published studies showed its feasibility with the objective of less toxicity with equivalent efficacy.
Collapse
|
9
|
Kensen CM, Janssen TM, Betgen A, Wiersema L, Peters FP, Remeijer P, Marijnen CAM, van der Heide UA. Effect of intrafraction adaptation on PTV margins for MRI guided online adaptive radiotherapy for rectal cancer. Radiat Oncol 2022; 17:110. [PMID: 35729587 PMCID: PMC9215022 DOI: 10.1186/s13014-022-02079-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022] Open
Abstract
Purpose To determine PTV margins for intrafraction motion in MRI-guided online adaptive radiotherapy for rectal cancer and the potential benefit of performing a 2nd adaptation prior to irradiation. Methods Thirty patients with rectal cancer received radiotherapy on a 1.5 T MR-Linac. On T2-weighted images for adaptation (MRIadapt), verification prior to (MRIver) and after irradiation (MRIpost) of 5 treatment fractions per patient, the primary tumor GTV (GTVprim) and mesorectum CTV (CTVmeso) were delineated. The structures on MRIadapt were expanded to corresponding PTVs. We determined the required expansion margins such that on average over 5 fractions, 98% of CTVmeso and 95% of GTVprim on MRIpost was covered in 90% of the patients. Furthermore, we studied the benefit of an additional adaptation, just prior to irradiation, by evaluating the coverage between the structures on MRIver and MRIpost. A threshold to assess the need for a secondary adaptation was determined by considering the overlap between MRIadapt and MRIver. Results PTV margins for intrafraction motion without 2nd adaptation were 6.4 mm in the anterior direction and 4.0 mm in all other directions for CTVmeso and 5.0 mm isotropically for GTVprim. A 2nd adaptation, applied for all fractions where the motion between MRIadapt and MRIver exceeded 1 mm (36% of the fractions) would result in a reduction of the PTVmeso margin to 3.2 mm/2.0 mm. For PTVprim a margin reduction to 3.5 mm is feasible when a 2nd adaptation is performed in fractions where the motion exceeded 4 mm (17% of the fractions). Conclusion We studied the potential benefit of intrafraction motion monitoring and a 2nd adaptation to reduce PTV margins in online adaptive MRIgRT in rectal cancer. Performing 2nd adaptations immediately after online replanning when motion exceeded 1 mm and 4 mm for CTVmeso and GTVprim respectively, could result in a 30–50% margin reduction with limited reduction of dose to the bowel.
Collapse
Affiliation(s)
- Chavelli M Kensen
- Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Tomas M Janssen
- Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Anja Betgen
- Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Lisa Wiersema
- Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Femke P Peters
- Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Peter Remeijer
- Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Corrie A M Marijnen
- Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Uulke A van der Heide
- Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| |
Collapse
|
10
|
Evaluation of the ITV-margin and variables affecting bladder and mesorectal deformation during long course neoadjuvant radiotherapy for rectal cancer. Med Dosim 2022; 47:236-241. [DOI: 10.1016/j.meddos.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/27/2022] [Accepted: 03/18/2022] [Indexed: 11/20/2022]
|
11
|
Zhao J, Chen Z, Wang J, Xia F, Peng J, Hu Y, Hu W, Zhang Z. MV CBCT-Based Synthetic CT Generation Using a Deep Learning Method for Rectal Cancer Adaptive Radiotherapy. Front Oncol 2021; 11:655325. [PMID: 34136391 PMCID: PMC8201514 DOI: 10.3389/fonc.2021.655325] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/26/2021] [Indexed: 01/04/2023] Open
Abstract
Due to image quality limitations, online Megavoltage cone beam CT (MV CBCT), which represents real online patient anatomy, cannot be used to perform adaptive radiotherapy (ART). In this study, we used a deep learning method, the cycle-consistent adversarial network (CycleGAN), to improve the MV CBCT image quality and Hounsfield-unit (HU) accuracy for rectal cancer patients to make the generated synthetic CT (sCT) eligible for ART. Forty rectal cancer patients treated with the intensity modulated radiotherapy (IMRT) were involved in this study. The CT and MV CBCT images of 30 patients were used for model training, and the images of the remaining 10 patients were used for evaluation. Image quality, autosegmentation capability and dose calculation capability using the autoplanning technique of the generated sCT were evaluated. The mean absolute error (MAE) was reduced from 135.84 ± 41.59 HU for the CT and CBCT comparison to 52.99 ± 12.09 HU for the CT and sCT comparison. The structural similarity (SSIM) index for the CT and sCT comparison was 0.81 ± 0.03, which is a great improvement over the 0.44 ± 0.07 for the CT and CBCT comparison. The autosegmentation model performance on sCT for femoral heads was accurate and required almost no manual modification. For the CTV and bladder, although modification was needed for autocontouring, the Dice similarity coefficient (DSC) indices were high, at 0.93 and 0.94 for the CTV and bladder, respectively. For dose evaluation, the sCT-based plan has a much smaller dose deviation from the CT-based plan than that of the CBCT-based plan. The proposed method solved a key problem for rectal cancer ART realization based on MV CBCT. The generated sCT enables ART based on the actual patient anatomy at the treatment position.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Zhi Chen
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Jiazhou Wang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Fan Xia
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Jiayuan Peng
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Yiwen Hu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Weigang Hu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Zhen Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| |
Collapse
|
12
|
Intven M, de Mol van Otterloo S, Mook S, Doornaert P, de Groot-van Breugel E, Sikkes G, Willemsen-Bosman M, van Zijp H, Tijssen R. Online adaptive MR-guided radiotherapy for rectal cancer; feasibility of the workflow on a 1.5T MR-linac: clinical implementation and initial experience. Radiother Oncol 2021; 154:172-178. [DOI: 10.1016/j.radonc.2020.09.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 10/23/2022]
|
13
|
Ingle M, Lalondrelle S. Current Status of Anatomical Magnetic Resonance Imaging in Brachytherapy and External Beam Radiotherapy Planning and Delivery. Clin Oncol (R Coll Radiol) 2020; 32:817-827. [PMID: 33169690 DOI: 10.1016/j.clon.2020.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023]
Abstract
Radiotherapy planning and delivery have dramatically improved in recent times. Imaging is key to a successful three-dimensional and increasingly four-dimensional based pathway with computed tomography embedded as the backbone modality. Computed tomography has significant limitations for many tumour sites where soft-tissue discrimination is suboptimal, and where magnetic resonance imaging (MRI) has largely superseded in the diagnostic arena. MRI is increasingly used together with computed tomography in the radiotherapy planning pathway and is now established as a prerequisite for several tumours. With the advent of combined MRI and linear accelerator (MR-linac) systems, a transition to MRI-based radiotherapy planning is becoming reality, with increasing experience and research involving these new platforms. In this overview, we aim to highlight how magnetic resonance-guided imaging has improved radiotherapy, using gynaecological malignancies to illustrate, in both external beam radiotherapy and image-guided brachytherapy, and will assess the early evidence for magnetic resonance-guided radiotherapy using combined MR-linac systems.
Collapse
Affiliation(s)
- M Ingle
- Royal Marsden NHS Foundation Trust, Sutton, Surrey, UK; Institute of Cancer Research, London, UK
| | - S Lalondrelle
- Royal Marsden NHS Foundation Trust, Sutton, Surrey, UK; Institute of Cancer Research, London, UK.
| |
Collapse
|
14
|
Pandey D, Rohila J, Sukumar V, Saklani A. The impact of circumferential tumor location on the clinical outcomes of rectal cancers receiving neoadjuvant chemoradiation and surgery-does it really matter? EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2020; 46:2339-2340. [PMID: 32771250 DOI: 10.1016/j.ejso.2020.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Diwakar Pandey
- Division of Colorectal Services, Department of Surgical Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, 400012, India
| | - Jitender Rohila
- Division of Colorectal Services, Department of Surgical Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, 400012, India
| | - Vivek Sukumar
- Division of Colorectal Services, Department of Surgical Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, 400012, India
| | - Avanish Saklani
- Division of Colorectal Services, Department of Surgical Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, 400012, India.
| |
Collapse
|
15
|
Reply to: The impact of circumferential tumor location on the clinical outcomes of rectal cancers receiving neoadjuvant chemoradiation and surgery-does is really matter? Eur J Surg Oncol 2020; 46:2341-2342. [PMID: 32771249 DOI: 10.1016/j.ejso.2020.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 11/23/2022] Open
|
16
|
Randrian V, Biau J, Benoît C, Pezet D, Lapeyre M, Moreau J. [Preoperative intensity-modulated radiotherapy of rectal cancers: Relevance and modalities]. Cancer Radiother 2020; 24:345-353. [PMID: 32360094 DOI: 10.1016/j.canrad.2019.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/27/2019] [Accepted: 11/06/2019] [Indexed: 12/18/2022]
Abstract
Preoperative radiotherapy boosted by chemotherapy is a recommended treatment in locally advanced rectal cancers. This treatment is delivered by three dimensional conformal irradiation, which is usually well tolerated but can induce potential toxicity such as rectitis, cystitis and hematologic adverse effects. Intensity-modulated radiotherapy, widely available nowadays, allows optimization of volume covering and sparing of organs at risk such as bladder and bone marrow. This review presents relevant clinical situations and requirements for a beneficial and safe preoperative irradiation of rectal cancers by intensity-modulated technique. This technique is compared to three-dimensional conformal radiotherapy.
Collapse
Affiliation(s)
- V Randrian
- Département de médecine digestive et hépatobiliaire, CHU de l'hôpital Estaing, 63003 Clermont-Ferrand cedex 1, France
| | - J Biau
- Département de radiothérapie, centre Jean-Perrin, 58, rue Montalembert, BP 5026, 63011 Clermont-Ferrand cedex 1, France
| | - C Benoît
- Département de radiothérapie, centre Jean-Perrin, 58, rue Montalembert, BP 5026, 63011 Clermont-Ferrand cedex 1, France
| | - D Pezet
- Département de chirurgie digestive et hépatobiliaire, CHU de l'hôpital Estaing, 63003 Clermont-Ferrand cedex 1, France
| | - M Lapeyre
- Département de radiothérapie, centre Jean-Perrin, 58, rue Montalembert, BP 5026, 63011 Clermont-Ferrand cedex 1, France
| | - J Moreau
- Département de radiothérapie, centre Jean-Perrin, 58, rue Montalembert, BP 5026, 63011 Clermont-Ferrand cedex 1, France.
| |
Collapse
|
17
|
Cone-beam computed tomography for organ motion evaluation in locally advanced rectal cancer patients. Radiol Med 2020; 126:147-154. [PMID: 32297096 DOI: 10.1007/s11547-020-01193-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/30/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE Due to a reported dose-response relationship in rectal cancer radiotherapy, a greater interest in dose intensification on small boost volume arises. Considering the need of an appropriate target movements evaluation, this retrospective study aimed to use cone-beam computed tomography (CBCT) for GTV and mesorectum organ motion (OM) evaluation, in locally advanced rectal cancer (LARC) patients treated with neoadjuvant chemo-radiotherapy, in prone and supine position. METHODS Thirty-two LARC patients were analyzed. GTV and mesorectum were delineated on MRI co-registrated with CT simulation. GTV and mesorectum OM was estimated on all CBCTs, performed during treatment, co-registrated with CT simulation. OM evaluation was obtained, as mean shift in left and right (L-R), postero-anterior (P-A) and cranio-caudal (Cr-C) directions. Volumes variability was calculated by DICE index. RESULTS A total of 296 CBCTs were analyzed. Mean shifts of the GTV and mesorectum in prone position were - 0.16 cm and 0.15 cm in L-R direction, 0.28 cm and - 0.40 cm in P-A direction, and 0.14 cm and - 0.21 cm, in Cr-C direction; for supine position the mean shifts of the GTV were - 0.10 cm and 0.17 cm in R-L direction, 0.26 cm and - 0.23 cm in A-P direction, 0.09 cm and - 0.11 cm in Cr-C direction. Mean DICE index for GTV and mesorectum was 0.74 and 0.86, in prone position, and 0.78 and 0.89 in supine position, respectively. CONCLUSION GTV and mesorectum OM was less than 4 mm in all directions in both positions, with a 1 mm less deviation in supine position. CBCTs resulted effective for OM assessment, and it could be an appropriate method for the implementation on an intensification treatment.
Collapse
|
18
|
van den Ende RPJ, Kerkhof EM, Rigter LS, van Leerdam ME, Peters FP, van Triest B, Staring M, Marijnen CAM, van der Heide UA. Feasibility of Gold Fiducial Markers as a Surrogate for Gross Tumor Volume Position in Image-Guided Radiation Therapy of Rectal Cancer. Int J Radiat Oncol Biol Phys 2019; 105:1151-1159. [PMID: 31476419 DOI: 10.1016/j.ijrobp.2019.08.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 08/16/2019] [Accepted: 08/26/2019] [Indexed: 11/29/2022]
Abstract
PURPOSE To evaluate the feasibility of fiducial markers as a surrogate for gross tumor volume (GTV) position in image-guided radiation therapy of rectal cancer. METHODS AND MATERIALS We analyzed 35 fiducials in 19 patients with rectal cancer who received short-course radiation therapy or long-course chemoradiation therapy. Magnetic resonance imaging examinations were performed before and after the first week of radiation therapy, and daily pre- and postirradiation cone beam computed tomography scans were acquired in the first week of radiation therapy. Between the 2 magnetic resonance imaging examinations, the fiducial displacement relative to the center of gravity of the GTV (COGGTV) and the COGGTV displacement relative to bony anatomy were determined. Using the cone beam computed tomography scans, inter- and intrafraction fiducial displacement relative to bony anatomy were determined. RESULTS The systematic error of the fiducial displacement relative to the COGGTV was 2.8, 2.4, and 4.2 mm in the left-right, anterior-posterior (AP), and craniocaudal (CC) directions, respectively. Large interfraction systematic errors of up to 8.0 mm and random errors up to 4.7 mm were found for COGGTV and fiducial displacements relative to bony anatomy, mostly in the AP and CC directions. For tumors located in the mid and upper rectum, these errors were up to 9.4 mm (systematic) and 5.6 mm (random) compared with 4.9 mm and 2.9 mm for tumors in the lower rectum. Systematic and random errors of the intrafraction fiducial displacement relative to bony anatomy were ≤2.1 mm in all directions. CONCLUSIONS Large interfraction errors of the COGGTV and the fiducials relative to bony anatomy were found. Therefore, despite the observed fiducial displacement relative to the COGGTV, the use of fiducials as a surrogate for GTV position reduces the required margins in the AP and CC directions for a GTV boost using image-guided radiation therapy of rectal cancer. This reduction in margin may be larger in patients with tumors located in the mid and upper rectum compared with the lower rectum.
Collapse
Affiliation(s)
- Roy P J van den Ende
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, Netherlands.
| | - Ellen M Kerkhof
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, Netherlands
| | - Lisanne S Rigter
- Department of Gastroenterology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Monique E van Leerdam
- Department of Gastroenterology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Femke P Peters
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, Netherlands
| | - Baukelien van Triest
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Marius Staring
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, Netherlands; Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Corrie A M Marijnen
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, Netherlands
| | - Uulke A van der Heide
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, Netherlands; Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
19
|
White IM, Scurr E, Wetscherek A, Brown G, Sohaib A, Nill S, Oelfke U, Dearnaley D, Lalondrelle S, Bhide S. Realizing the potential of magnetic resonance image guided radiotherapy in gynaecological and rectal cancer. Br J Radiol 2019; 92:20180670. [PMID: 30933550 PMCID: PMC6592079 DOI: 10.1259/bjr.20180670] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 02/24/2019] [Accepted: 03/21/2019] [Indexed: 12/25/2022] Open
Abstract
CT-based radiotherapy workflow is limited by poor soft tissue definition in the pelvis and reliance on rigid registration methods. Current image-guided radiotherapy and adaptive radiotherapy models therefore have limited ability to improve clinical outcomes. The advent of MRI-guided radiotherapy solutions provides the opportunity to overcome these limitations with the potential to deliver online real-time MRI-based plan adaptation on a daily basis, a true "plan of the day." This review describes the application of MRI guided radiotherapy in two pelvic tumour sites likely to benefit from this approach.
Collapse
Affiliation(s)
- Ingrid M White
- Institute of Cancer Research and Royal Marsden National Health Service Foundation Trust, Sutton, Surrey, UK
| | - Erica Scurr
- Institute of Cancer Research and Royal Marsden National Health Service Foundation Trust, Sutton, Surrey, UK
| | - Andreas Wetscherek
- Institute of Cancer Research and Royal Marsden National Health Service Foundation Trust, Sutton, Surrey, UK
| | - Gina Brown
- Institute of Cancer Research and Royal Marsden National Health Service Foundation Trust, Sutton, Surrey, UK
| | - Aslam Sohaib
- Institute of Cancer Research and Royal Marsden National Health Service Foundation Trust, Sutton, Surrey, UK
| | - Simeon Nill
- Institute of Cancer Research and Royal Marsden National Health Service Foundation Trust, Sutton, Surrey, UK
| | - Uwe Oelfke
- Institute of Cancer Research and Royal Marsden National Health Service Foundation Trust, Sutton, Surrey, UK
| | - David Dearnaley
- Institute of Cancer Research and Royal Marsden National Health Service Foundation Trust, Sutton, Surrey, UK
| | - Susan Lalondrelle
- Institute of Cancer Research and Royal Marsden National Health Service Foundation Trust, Sutton, Surrey, UK
| | - Shreerang Bhide
- Institute of Cancer Research and Royal Marsden National Health Service Foundation Trust, Sutton, Surrey, UK
| |
Collapse
|
20
|
Masson I, Delpon G, Vendrely V. [Image-guided radiotherapy contribution and patient setup for anorectal cancer treatment]. Cancer Radiother 2018; 22:622-630. [PMID: 30143462 DOI: 10.1016/j.canrad.2018.06.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 06/27/2018] [Indexed: 01/24/2023]
Abstract
Intensity-modulated radiation therapy is recommended in anal squamous cell carcinoma treatment and is increasingly used in rectal cancer. It adapts the dose to target volumes, with a high doses gradient. Intensity-modulated radiation therapy allows to reduce toxicity to critical normal structures and to consider dose-escalation studies or systemic treatment intensification. Image-guided radiation therapy is a warrant of quality for intensity-modulated radiation therapy, especially for successful delivery of the dose as planned. There is no recommended international or national anorectal cancer image-guided radiation therapy protocol currently available. Dose-escalation trials or expert opinions about intensity-modulated/image-guided radiation therapy good practice guidelines recommend daily volumetric imaging throughout the treatment or during the five first fractions and weekly thereafter as a minimum. Image-guided radiation therapy allows to reduce margins related to patient setup errors. Internal margin, related to the internal organ motion, needs to be adapted according to short- or long-course radiotherapy, gender, rectal location; it can be higher than current recommended planning target volume margins, particularly in the upper and anterior part of mesorectum, which has the most significant movement. Image-guided radiation therapy based on volumetric imaging allows to take target volume shrinkage into account and to develop adaptive strategies, in particular for mesorectum shrinkage during rectal cancer treatment. Lastly, the emergence of new image-guided radiation therapy technologies including MRI (which plays a major role in pelvic tumours assessment and diagnosis) opens up interesting perspectives for adaptive radiotherapy, taking into account both organs' movements and tumour shrinkage.
Collapse
Affiliation(s)
- I Masson
- Département de radiothérapie, institut de cancérologie de l'Ouest René-Gauducheau, boulevard Jacques-Monod, 44805 Saint-Herblain, France.
| | - G Delpon
- Département de physique médicale, institut de cancérologie de l'Ouest René-Gauducheau, boulevard Jacques-Monod, 44805 Saint-Herblain, France
| | - V Vendrely
- Service de radiothérapie, hôpital Haut-Lévêque, CHU de Bordeaux, avenue de Magellan, 33604 Pessac, France
| |
Collapse
|
21
|
Brooks CJ, Bernier L, Hansen VN, Tait DM. Target volume motion during anal cancer image guided radiotherapy using cone-beam computed tomography. Br J Radiol 2018; 91:20170654. [PMID: 29393674 PMCID: PMC6190785 DOI: 10.1259/bjr.20170654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE Literature regarding image-guidance and interfractional motion of the anal canal (AC) during anal cancer radiotherapy is sparse. This study investigates interfractional AC motion during anal cancer radiotherapy. METHODS Bone matched cone beam CT (CBCT) images were acquired for 20 patients receiving anal cancer radiotherapy allowing population systematic and random error calculations. 12 were selected to investigate interfractional AC motion. Primary anal gross tumour volume and clinical target volume (CTVa) were contoured on each CBCT. CBCT CTVa volumes were compared to planning CTVa. CBCT CTVa volumes were combined into a CBCT-CTVa envelope for each patient. Maximum distortion between each orthogonal border of the planning CTVa and CBCT-CTVa envelope was measured. Frequency, volume and location of CBCT-CTVa envelope beyond the planning target volume (PTVa) was analysed. RESULTS Population systematic and random errors were 1 and 3 mm respectively. 112 CBCTs were analysed in the interfractional motion study. CTVa varied between each imaging session particularly T location patients of anorectal origin. CTVa border expansions ≥ 1 cm were seen inferiorly, anteriorly, posteriorly and left direction. The CBCT-CTVa envelope fell beyond the PTVa ≥ 50% imaging sessions (n = 5). Of these CBCT CTVa distortions beyond PTVa, 44% and 32% were in the upper and lower thirds of PTVa respectively. CONCLUSION The AC is susceptible to volume changes and shape deformations. Care must be taken when calculating or considering reducing the PTV margin to the anus. Advances in knowledge: Within a limited field of research, this study provides further knowledge of how the AC deforms during anal cancer radiotherapy.
Collapse
Affiliation(s)
- Corrinne J Brooks
- Joint Department of Physics, The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - Laurence Bernier
- Department of Clinical Oncology, The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - Vibeke N Hansen
- Joint Department of Physics, The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - Diana M Tait
- Department of Clinical Oncology, The Royal Marsden NHS Foundation Trust, Sutton, UK
| |
Collapse
|
22
|
Kleijnen JPJE, van Asselen B, Intven M, Burbach JPM, Philippens MEP, Lagendijk JJW, Raaymakers BW. Does setup on rectal wall improve rectal cancer boost radiotherapy? Radiat Oncol 2018; 13:61. [PMID: 29615067 PMCID: PMC5883297 DOI: 10.1186/s13014-018-1011-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 03/26/2018] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Rectal cancer patients that show a pathological complete response (pCR) after neo-adjuvant chemo-radiotherapy, have better prognosis. To increase pCR rates several studies escalate the tumor irradiation dose. However, due to lacking tumor contrast on online imaging techniques, no direct tumor setup can be performed and large boost margins are needed to ensure tumor coverage. The purpose of this study was to evaluate the feasibility of performing a setup on rectal wall for rectal cancer boost radiotherapy, thereby using rectal wall nearby the tumor as tumor position surrogate. METHODS For sixteen patients, daily MRI's were performed during 1 week of radiotherapy. On each of these images, tumor and rectum were delineated. Residual displacements were determined per surface voxel after setup on bony anatomy or nearby rectal wall and setup errors for both setups were compared. Furthermore for every rectal wall voxel nearby the tumor, displacement was compared with the closest tumor point and correlation was determined. RESULTS Mean (SD) setup error was 2.7 mm (3.3 mm) and 2.2 mm (3.2 mm) after setup on bony anatomy and rectal wall respectively. Nevertheless, similar PTV-margin estimates i.e. 95th percentile distances, were found; 8.0 mm. Also, a merely moderate correlation; ρ = 0.66 was found between rectal wall and tumor displacement. Further investigation into tumor and rectal mobility differences showed that the rectal wall lacks appropriate anatomical landmarks to find true displacements, especially to capture motion along the rectal wall. CONCLUSIONS Setup on rectal wall slightly reduces mean setup errors but requires a similar PTV-margin as compared to setup on bony anatomy. Rectal mobility might be similar to tumor mobility, but due the absence of anatomical landmarks in the rectum, displacements along the rectal wall are not detected on current online imaging. Therefore, to further reduce tumor position uncertainties, direct or indirect online tumor visualization is needed.
Collapse
Affiliation(s)
- Jean-Paul J. E. Kleijnen
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Bram van Asselen
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Martijn Intven
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Johannes P. M. Burbach
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Marielle E. P. Philippens
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Jan J. W. Lagendijk
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Bas W. Raaymakers
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
23
|
The normal tissue sparing potential of an adaptive plan selection strategy for re-irradiation of recurrent rectal cancer. PHYSICS & IMAGING IN RADIATION ONCOLOGY 2017. [DOI: 10.1016/j.phro.2017.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Lee HS, Choi DH, Park HC, Park W, Yu JI, Chung K. Correlation between tumor regression grade and rectal volume in neoadjuvant concurrent chemoradiotherapy for rectal cancer. Radiat Oncol J 2016; 34:186-192. [PMID: 27592514 PMCID: PMC5066448 DOI: 10.3857/roj.2016.01746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/31/2016] [Accepted: 06/17/2016] [Indexed: 12/25/2022] Open
Abstract
PURPOSE To determine whether large rectal volume on planning computed tomography (CT) results in lower tumor regression grade (TRG) after neoadjuvant concurrent chemoradiotherapy (CCRT) in rectal cancer patients. MATERIALS AND METHODS We reviewed medical records of 113 patients treated with surgery following neoadjuvant CCRT for rectal cancer between January and December 2012. Rectal volume was contoured on axial images in which gross tumor volume was included. Average axial rectal area (ARA) was defined as rectal volume divided by longitudinal tumor length. The impact of rectal volume and ARA on TRG was assessed. RESULTS Average rectal volume and ARA were 11.3 mL and 2.9 cm². After completion of neoadjuvant CCRT in 113 patients, pathologic results revealed total regression (TRG 4) in 28 patients (25%), good regression (TRG 3) in 25 patients (22%), moderate regression (TRG 2) in 34 patients (30%), minor regression (TRG 1) in 24 patients (21%), and no regression (TRG0) in 2 patients (2%). No difference of rectal volume and ARA was found between each TRG groups. Linear correlation existed between rectal volume and TRG (p = 0.036) but not between ARA and TRG (p = 0.058). CONCLUSION Rectal volume on planning CT has no significance on TRG in patients receiving neoadjuvant CCRT for rectal cancer. These results indicate that maintaining minimal rectal volume before each treatment may not be necessary.
Collapse
Affiliation(s)
- Hong Seok Lee
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Doo Ho Choi
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hee Chul Park
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Park
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeong Il Yu
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kwangzoo Chung
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
25
|
Potential dosimetric benefit of an adaptive plan selection strategy for short-course radiotherapy in rectal cancer patients. Radiother Oncol 2016; 119:525-30. [DOI: 10.1016/j.radonc.2016.04.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 03/31/2016] [Accepted: 04/11/2016] [Indexed: 11/20/2022]
|
26
|
Teoh S, Muirhead R. Rectal Radiotherapy--Intensity-modulated Radiotherapy Delivery, Delineation and Doses. Clin Oncol (R Coll Radiol) 2015; 28:93-102. [PMID: 26643092 DOI: 10.1016/j.clon.2015.10.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/28/2015] [Accepted: 10/29/2015] [Indexed: 02/06/2023]
Abstract
The use of intensity-modulated radiotherapy in rectal cancer is attractive in that it may reduce acute and late toxicities and potentially facilitate dose escalation. Intensity-modulated radiotherapy probably has a role in selected patients, but further investigation is required to identify the parameters for selection. Delineation of specific nodal groups allows maximal sparing of bladder and small bowel. In locally advanced tumours a simultaneous integrated boost allows dose escalation incorporating hypofractionation and a shorter overall treatment time. However, due to a sparsity of data on late toxicity in doses ≥ 60 Gy, doses at this level should be used with caution, ideally within prospective trials. Future studies investigating dose escalation must ascertain late toxicity as well as local control, as both can significantly affect quality of life and without both, the risk-benefit ratio cannot be calculated.
Collapse
Affiliation(s)
- S Teoh
- Department of Oncology, Oxford University Hospitals Trust, Oxford, UK
| | - R Muirhead
- The Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK.
| |
Collapse
|
27
|
Kleijnen JPJE, van Asselen B, Burbach JPM, Intven M, Philippens MEP, Reerink O, Lagendijk JJW, Raaymakers BW. Evolution of motion uncertainty in rectal cancer: implications for adaptive radiotherapy. Phys Med Biol 2015; 61:1-11. [DOI: 10.1088/0031-9155/61/1/1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
28
|
Abstract
The use of magnetic resonance imaging (MRI) in radiotherapy (RT) planning is rapidly expanding. We review the wide range of image contrast mechanisms available to MRI and the way they are exploited for RT planning. However a number of challenges are also considered: the requirements that MR images are acquired in the RT treatment position, that they are geometrically accurate, that effects of patient motion during the scan are minimized, that tissue markers are clearly demonstrated, that an estimate of electron density can be obtained. These issues are discussed in detail, prior to the consideration of a number of specific clinical applications. This is followed by a brief discussion on the development of real-time MRI-guided RT.
Collapse
Affiliation(s)
- Maria A Schmidt
- Cancer Research UK Cancer Imaging Centre, Royal Marsden Hospital and the Institute of Cancer Research, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | | |
Collapse
|
29
|
Bonnes pratiques de radiothérapie guidée par l’image. Cancer Radiother 2015; 19:489-500. [DOI: 10.1016/j.canrad.2015.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 06/16/2015] [Indexed: 11/22/2022]
|
30
|
Scaife JE, Thomas SJ, Harrison K, Romanchikova M, Sutcliffe MPF, Forman JR, Bates AM, Jena R, Parker MA, Burnet NG. Accumulated dose to the rectum, measured using dose-volume histograms and dose-surface maps, is different from planned dose in all patients treated with radiotherapy for prostate cancer. Br J Radiol 2015. [PMID: 26204919 PMCID: PMC4730972 DOI: 10.1259/bjr.20150243] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE We sought to calculate accumulated dose (DA) to the rectum in patients treated with radiotherapy for prostate cancer. We were particularly interested in whether dose-surface maps (DSMs) provide additional information to dose-volume histograms (DVHs). METHODS Manual rectal contours were obtained for kilovoltage and daily megavoltage CT scans for 10 participants from the VoxTox study (380 scans). Daily delivered dose recalculation was performed using a ray-tracing algorithm. Delivered DVHs were summated to create accumulated DVHs. The rectum was considered as a cylinder, cut and unfolded to produce daily delivered DSMs; these were summated to produce accumulated DSMs. RESULTS Accumulated dose-volumes were different from planned in all participants. For one participant, all DA levels were higher and all volumes were larger than planned. For four participants, all DA levels were lower and all volumes were smaller than planned. For each of these four participants, ≥1% of pixels on the accumulated DSM received ≥5 Gy more than had been planned. CONCLUSION Differences between accumulated and planned dose-volumes were seen in all participants. DSMs were able to identify differences between DA and planned dose that could not be appreciated from the DVHs. Further work is needed to extract the dose data embedded in the DSMs. These will be correlated with toxicity as part of the VoxTox Programme. ADVANCES IN KNOWLEDGE DSMs are able to identify differences between DA and planned dose that cannot be appreciated from DVHs alone and should be incorporated into future studies investigating links between DA and toxicity.
Collapse
Affiliation(s)
- Jessica E Scaife
- 1 Cancer Research UK VoxTox Research Group, Department of Oncology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.,2 Department of Oncology, University of Cambridge, Cambridge Biomedical Campus, Addenbrooke's Hospital, Cambridge, UK
| | - Simon J Thomas
- 1 Cancer Research UK VoxTox Research Group, Department of Oncology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.,3 Medical Physics Department, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Karl Harrison
- 1 Cancer Research UK VoxTox Research Group, Department of Oncology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.,4 Department of Physics, University of Cambridge, Cavendish Laboratory, Cambridge, UK
| | - Marina Romanchikova
- 1 Cancer Research UK VoxTox Research Group, Department of Oncology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.,3 Medical Physics Department, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Michael P F Sutcliffe
- 1 Cancer Research UK VoxTox Research Group, Department of Oncology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.,5 Department of Engineering, University of Cambridge, Cambridge, UK
| | - Julia R Forman
- 1 Cancer Research UK VoxTox Research Group, Department of Oncology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.,6 Cambridge Clinical Trials Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Amy M Bates
- 1 Cancer Research UK VoxTox Research Group, Department of Oncology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.,2 Department of Oncology, University of Cambridge, Cambridge Biomedical Campus, Addenbrooke's Hospital, Cambridge, UK
| | - Raj Jena
- 1 Cancer Research UK VoxTox Research Group, Department of Oncology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.,2 Department of Oncology, University of Cambridge, Cambridge Biomedical Campus, Addenbrooke's Hospital, Cambridge, UK
| | - M Andrew Parker
- 1 Cancer Research UK VoxTox Research Group, Department of Oncology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.,4 Department of Physics, University of Cambridge, Cavendish Laboratory, Cambridge, UK
| | - Neil G Burnet
- 1 Cancer Research UK VoxTox Research Group, Department of Oncology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.,2 Department of Oncology, University of Cambridge, Cambridge Biomedical Campus, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
31
|
Assessment and clinical validation of margins for adaptive simultaneous integrated boost in neo-adjuvant radiochemotherapy for rectal cancer. Phys Med 2015; 31:167-72. [DOI: 10.1016/j.ejmp.2014.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/12/2014] [Accepted: 12/13/2014] [Indexed: 11/19/2022] Open
|
32
|
Yamashita H, Takenaka R, Sakumi A, Haga A, Otomo K, Nakagawa K. Analysis of motion of the rectum during preoperative intensity modulated radiation therapy for rectal cancer using cone-beam computed tomography. Radiat Oncol 2015; 10:2. [PMID: 25566869 PMCID: PMC4312441 DOI: 10.1186/s13014-014-0311-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 12/16/2014] [Indexed: 01/18/2023] Open
Abstract
PURPOSE The purpose of the present study was to quantify the inter-fractional motion of the rectum and the rectal and bladder volumes using CBCT scans taken during chemoradiation therapy (CRT) for rectal cancer. Also, assessment was made for a better margin for simultaneous integrated boost - intensity modulated radiation therapy (SIB-IMRT) for rectal cancer. METHODS AND MATERIALS There were 32 patients in this study undergoing preoperative CRT for rectal cancer. Each rectum and bladder was contoured on all planning CTs and CBCTs (day 1, 7, 13, 19, 25). The target volume was configured by adding margins (0, 3, 5, 7, 10, and 15 mm) to the rectum on planning CT. The respective percentage of rectal volume that exceeds the target volume was calculated for each of these margins. The percentage of bladder volume that exceeds the bladder volume in the planning CT and motion of the center of gravity of rectum were also analyzed. RESULTS Planning CTs and series of each 5 CBCTs for 32 patients were analyzed in this study. The rectal volume tended to shrink week after week. The mean values (± SD) in the 32 series per patient of the percentage of rectum on the CBCTs exceeding target volume in which the margins of 0, 3, 5, 7, 10, and 15 mm were added to the rectum on planning CT were 20.7 ± 12.5%, 7.2 ± 8.3%, 3.9 ± 5.9%, 2.1 ± 3.9%, 0.7 ± 1.8%, and 0.1 ± 0.3%, respectively. No association was seen between the percentage of changes of bladder volume and motion of rectal centroid. CONCLUSIONS In this study, we estimated the motion of the rectum using planning CT and CBCT. Ten to fifteen mm is a sufficient margin for the rectum during SIB-IMRT for rectal cancer in the supine position.
Collapse
Affiliation(s)
- Hideomi Yamashita
- Department of Radiology, University of Tokyo Hospital, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Ryousuke Takenaka
- Department of Radiology, University of Tokyo Hospital, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Akira Sakumi
- Department of Radiology, University of Tokyo Hospital, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Akihiro Haga
- Department of Radiology, University of Tokyo Hospital, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Kuni Otomo
- Department of Radiology, University of Tokyo Hospital, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Keiichi Nakagawa
- Department of Radiology, University of Tokyo Hospital, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| |
Collapse
|
33
|
Scaife J, Harrison K, Romanchikova M, Parker A, Sutcliffe M, Bond S, Thomas S, Freeman S, Jena R, Bates A, Burnet N. Random variation in rectal position during radiotherapy for prostate cancer is two to three times greater than that predicted from prostate motion. Br J Radiol 2014; 87:20140343. [PMID: 25138155 PMCID: PMC4170867 DOI: 10.1259/bjr.20140343] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Objective: Radiotherapy for prostate cancer does not explicitly take into account daily variation in the position of the rectum. It is important to accurately assess accumulated dose (DA) to the rectum in order to understand the relationship between dose and toxicity. The primary objective of this work was to quantify systematic (Σ) and random (σ) variation in the position of the rectum during a course of prostate radiotherapy. Methods: The rectum was manually outlined on the kilo-voltage planning scan and 37 daily mega-voltage image guidance scans for 10 participants recruited to the VoxTox study. The femoral heads were used to produce a fixed point to which all rectal contours were referenced. Results: Σ [standard deviation (SD) of means] between planning and treatment was 4.2 mm in the anteroposterior (AP) direction and 1.3 mm left–right (LR). σ (root mean square of SDs) was 5.2 mm AP and 2.7 mm LR. Superior–inferior variation was less than one slice above and below the planning position. Conclusion: Our results for Σ are in line with published data for prostate motion. σ, however, was approximately twice as great as that seen for prostate motion. This suggests that DA may differ from planned dose in some patients treated with radiotherapy for prostate cancer. Advances in knowledge: This work is the first to use daily imaging to quantify Σ and σ of the rectum in prostate cancer. σ was found to be greater than published data, providing strong rationale for further investigation of individual DA.
Collapse
Affiliation(s)
- J Scaife
- 1 Department of Oncology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kaar M, Figl M, Hoffmann R, Birkfellner W, Stock M, Georg D, Goldner G, Hummel J. Automatic patient alignment system using 3D ultrasound. Med Phys 2013; 40:041714. [PMID: 23556884 DOI: 10.1118/1.4795129] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
PURPOSE Recent developments in radiation therapy such as intensity modulated radiotherapy (IMRT) or dose painting promise to provide better dose distribution on the tumor. For effective application of these methods the exact positioning of the patient and the localization of the irradiated organ and surrounding structures is crucial. Especially with respect to the treatment of the prostate, ultrasound (US) allows for differentiation between soft tissue and was therefore applied by various repositioning systems, such as BAT or Clarity. The authors built a new system which uses 3D US at both sites, the CT room and the intervention room and applied a 3D/3D US/US registration for automatic repositioning. METHODS In a first step the authors applied image preprocessing methods to prepare the US images for an optimal registration process. For the 3D/3D registration procedure five different metrics were evaluated. To find the image metric which fits best for a particular patient three 3D US images were taken at the CT site and registered to each other. From these results an US registration error was calculated. The most successful image metric was then applied for the US/US registration process. The success of the whole repositioning method was assessed by taking the results of an ExacTrac system as golden standard. RESULTS The US/US registration error was found to be 2.99 ± 1.54 mm with respect to the mutual information metric by Mattes (eleven patients) which revealed to be the most suitable of the assessed metrics. For complete repositioning chain the error amounted to 4.15 ± 1.20 mm (ten patients). CONCLUSIONS The authors developed a system for patient repositioning which works automatically without the necessity of user interaction with an accuracy which seems to be suitable for clinical application.
Collapse
Affiliation(s)
- Marcus Kaar
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna A-1090, Austria
| | | | | | | | | | | | | | | |
Collapse
|
35
|
[Preoperative radiotherapy for rectal cancer: target volumes]. Cancer Radiother 2013; 17:477-85. [PMID: 24011671 DOI: 10.1016/j.canrad.2013.06.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 06/23/2013] [Indexed: 12/17/2022]
Abstract
Preoperative radiochemotherapy followed by total mesorectal excision is the standard of care for T3-T4-N0 or TxN1 rectal cancer. Defining target volumes relies on the patterns of nodal and locoregional failures. The lower limit of the clinical target volume depends also on the type of surgery. Conformational radiotherapy with or without intensity-modulated radiotherapy implies an accurate definition of volumes and inherent margins in the context of mobile organs such as the upper rectum. Tumoral staging recently improved with newer imaging techniques such as MRI with or without USPIO and FDG-PET-CT. The role of PET-CT remains unclear despite encouraging results and MRI is a helpful tool for a reliable delineation of the gross tumour volume. Co-registration of such modalities with the planning CT may particularly guide radiation oncologists through the gross tumour volume delineation. Acute digestive toxicity can be reduced with intensity modulation radiation therapy. Different guidelines and CT-based atlas regarding the target volumes in rectal cancer give the radiation oncologist a lot of ground for reproducible contours.
Collapse
|
36
|
Figl M, Kaar M, Hoffman R, Kratochwil A, Hummel J. An error analysis perspective for patient alignment systems. Int J Comput Assist Radiol Surg 2013; 8:849-56. [PMID: 23463386 DOI: 10.1007/s11548-013-0819-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 01/31/2013] [Indexed: 11/30/2022]
Abstract
PURPOSE This paper analyses the effects of error sources which can be found in patient alignment systems. As an example, an ultrasound (US) repositioning system and its transformation chain are assessed. The findings of this concept can also be applied to any navigation system. METHODS AND MATERIALS In a first step, all error sources were identified and where applicable, corresponding target registration errors were computed. By applying error propagation calculations on these commonly used registration/calibration and tracking errors, we were able to analyse the components of the overall error. Furthermore, we defined a special situation where the whole registration chain reduces to the error caused by the tracking system. Additionally, we used a phantom to evaluate the errors arising from the image-to-image registration procedure, depending on the image metric used. We have also discussed how this analysis can be applied to other positioning systems such as Cone Beam CT-based systems or Brainlab's ExacTrac. RESULTS The estimates found by our error propagation analysis are in good agreement with the numbers found in the phantom study but significantly smaller than results from patient evaluations. We probably underestimated human influences such as the US scan head positioning by the operator and tissue deformation. Rotational errors of the tracking system can multiply these errors, depending on the relative position of tracker and probe. CONCLUSIONS We were able to analyse the components of the overall error of a typical patient positioning system. We consider this to be a contribution to the optimization of the positioning accuracy for computer guidance systems.
Collapse
Affiliation(s)
- Michael Figl
- Vienna General Hospital, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, 1090 , Vienna, Austria
| | | | | | | | | |
Collapse
|
37
|
Nijkamp J, Marijnen C, van Herk M, van Triest B, Sonke JJ. Adaptive radiotherapy for long course neo-adjuvant treatment of rectal cancer. Radiother Oncol 2012; 103:353-9. [PMID: 22444244 DOI: 10.1016/j.radonc.2012.02.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 02/14/2012] [Accepted: 02/19/2012] [Indexed: 11/16/2022]
Abstract
PURPOSE To quantify the potential margin reduction with adaptive radiotherapy (ART) during neo-adjuvant treatment of locally-advanced rectal cancer. METHODS AND MATERIALS Repeat CT scans were acquired for 28 patients treated with 25×2 Gy, daily during the first week, and followed by weekly scans. The CTV was delineated on all scans, and shape variation was estimated. Five ART strategies were tested, consisting of an average CTV over the planning CT and one to five repeat CTs. Required PTV margins were calculated for adapted and non-adapted treatment. The strategy with the least PTV volume over the whole treatment was selected and bowel area dose reduction was estimated. RESULTS Substantial systematic and random shape variation demanded for a PTV margin up to 2.4 cm at the upper-anterior part of the CTV. Plan adaptation after fraction 4 resulted in a maximum 0.7 cm margin reduction and a significant PTV reduction from 1185 to 1023 cc (p<0.0001). The bowel area volume receiving 15, 45, and 50 Gy was reduced from 436 to 402 cc, 111 to 81 cc, and 49 to 29 cc, respectively (p<0.0001). CONCLUSIONS With adaptive radiotherapy, maximum required PTV margins can be reduced from 2.4 to 1.7 cm, resulting in significantly less dose to the bowel area.
Collapse
Affiliation(s)
- Jasper Nijkamp
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
38
|
Maggiulli E, Fiorino C, Passoni P, Broggi S, Gianolini S, Salvetti C, Slim N, Di Muzio NG, Calandrino R. Characterisation of rectal motion during neo-adjuvant radiochemotherapy for rectal cancer with image-guided tomotherapy: implications for adaptive dose escalation strategies. Acta Oncol 2012; 51:318-24. [PMID: 22497434 DOI: 10.3109/0284186x.2012.666358] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Interest in boosting the dose to the tumour during neo-adjuvant radiochemotherapy for rectal cancer is ever increasing, especially within the frame of adaptive radiotherapy. Rectal motion remains a potentially important obstacle to the full exploitation of this approach and needs to be carefully investigated. MATERIAL AND METHODS The main purposes of this work were to: a) quantify rectal motion on all fractions of a treatment course; and b) assess margins for adaptive boosting in the second part of the treatment in order to benefit of tumour reduction during treatment. Ten consecutive patients treated with image-guided tomotherapy (41.4 Gy, 18 fractions) were selected. The cranial half of the rectum (subject to motion) was contoured by a single observer on daily MVCTs. The variations of rectal volume and of the envelope of rectum positions were investigated (169 MVCTs). The impact of applying different margins to the rectum in including all its possible positions was also investigated when considering the planning kVCT, the first fraction MVCT, the half-treatment MVCT or the median rectal contours of the whole or second half of treatment as reference volumes. RESULTS Rectal volume reduced during treatment in all patients, with a significant time-trend in 6/10 patients. The median values of the envelope volumes were 129 cm(3) and 87 cm(3) in the first and second half of the treatment, respectively. On average, 95% of the rectal envelope was included by an isotropic expansion of 12 mm and 5 mm of the median contours when considering the whole or the second half of the treatment, respectively. CONCLUSION A significant reduction of rectal volume was found in the second part of the treatment where rectal mobility was limited. As a consequence, relatively small margins may be used around the residual tumour volume when adaptive boost is delivered in the second half of the treatment.
Collapse
|