1
|
Jia SB, Shamsabadi R, Mogheiseh L, Baghani HR. Assessment of secondary cancer risks within non-target organs during proton therapy for lung cancer: A Monte Carlo study. Appl Radiat Isot 2024; 214:111532. [PMID: 39340980 DOI: 10.1016/j.apradiso.2024.111532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 07/29/2024] [Accepted: 09/24/2024] [Indexed: 09/30/2024]
Abstract
Proton therapy is a rapidly progressing modality with a significant impact on lung cancer treatment. However, there are concerns about the subsequent effects of secondary radiation in out-of-field organs. Thus, the present study aimed to evaluate the risk of subsequent secondary cancers within non-target organs during proton therapy for lung cancer. A Monte Carlo model of the International Commission on Radiological Protection (ICRP) 110 male phantom was employed to calculate the absorbed dose associated with secondary photons and neutrons within out-of-field organs for different tumor locations. The risk of induced secondary cancers was then estimated using the Biological Effects of Ionizing Radiation Committee (BEIR) VII and National Council on Radiation Protection and Measurements (NCRP) 116 risk models. Organs close to the tumor, such as the heart, esophagus, thymus, and liver, received the highest equivalent doses. The calculated equivalent doses increased as the tumor depth increased from 4-8 cm to 12-16 cm. The contribution of neutrons to the total equivalent dose was dominant (up to 90%) in most of the organs studied. The calculated risks of secondary cancers were higher in the liver and esophagus compared with other organs when using the BEIR risk model. The maximum risk value was obtained for the left lung when the NCRP 116 risk model was used. Furthermore, the estimated risks of secondary malignancies increased with the tumor depth using both risk models. The calculated risks of radiation-induced secondary cancers were relatively lower than the baseline cancer risks. However, extra attention is warranted to minimize subsequent secondary cancers after proton therapy for lung cancer.
Collapse
Affiliation(s)
| | - Reza Shamsabadi
- Physics Department, Hakim Sabzevari University, Sabzevar, Iran
| | - Leili Mogheiseh
- Physics Department, Hakim Sabzevari University, Sabzevar, Iran
| | | |
Collapse
|
2
|
Lee KN, Owen D. Advances in Stereotactic Body Radiation Therapy for Lung Cancer. Cancer J 2024; 30:401-406. [PMID: 39589472 DOI: 10.1097/ppo.0000000000000753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
ABSTRACT Stereotactic body radiation therapy (SBRT) delivers curative-intent radiation to patients with early-stage non-small cell lung cancer and inoperable thoracic lesions. With improved techniques in tumor delineation, motion management, and delivery of radiation treatments, the therapeutic window within the thorax is able to be maximized. Ongoing technological advances enable highly targeted ablative radiation therapy while sparing adjacent sensitive organs at risk. Further applications of SBRT with combinatorial immunotherapy, the usage of particle therapy, and for patients with more advanced stages of lung cancer and other histologies mark exciting possibilities for the role of SBRT within the thorax.
Collapse
Affiliation(s)
- Katie N Lee
- From the Department of Radiation Oncology, Mayo Clinic, Rochester, MN
| | | |
Collapse
|
3
|
Costin IC, Cinezan C, Marcu LG. Cardio-oncology concerns in radiotherapy: Heart and cardiac substructure toxicities from modern delivery techniques. Crit Rev Oncol Hematol 2024; 204:104538. [PMID: 39427839 DOI: 10.1016/j.critrevonc.2024.104538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024] Open
Abstract
Cardio-oncology is lately gaining more attention due to radiation-induced cardiac events reported by a very large number of studies. In view of this, the current overview of the literature aimed to encompass all studies from the past 15 years to assess changes in cardiac dose due to treatment evolution, as well as the changes in treatment planning customs to incorporate not only the heart as a whole but also cardiac substructures. Modern treatment techniques, particularly proton therapy, offers superior cardiac sparing compared to more established radiotherapy, for all evaluated tumor sites. Intensity modulation, particularly coupled with respiratory gating shows significant improvement in dose-volume parameters pertaining to the heart. While past studies considered mean heart dose as the only reference for cardiac toxicities, recommendations for the other cardiac substructures to be dosimetrically assessed during planning are becoming more common.
Collapse
Affiliation(s)
- Ioana-Claudia Costin
- West University of Timisoara, Faculty of Physics, Timisoara 300223, Romania; Clinical Emergency County Hospital Bihor, Oradea 410169, Romania
| | - Corina Cinezan
- Clinical Emergency County Hospital Bihor, Oradea 410169, Romania; Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410087, Romania
| | - Loredana G Marcu
- Faculty of Informatics & Science, University of Oradea, Oradea 410087, Romania; UniSA Allied Health and Human Performance, University of South Australia, Adelaide, SA 5001, Australia.
| |
Collapse
|
4
|
Bedford JL. Inverse planning of lung radiotherapy with photon and proton beams using a discrete ordinates Boltzmann solver. Phys Med Biol 2024; 69:035021. [PMID: 38198720 DOI: 10.1088/1361-6560/ad1cf7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/10/2024] [Indexed: 01/12/2024]
Abstract
Objective. A discrete ordinates Boltzmann solver has recently been developed for use as a fast and accurate dose engine for calculation of photon and proton beams. The purpose of this study is to apply the algorithm to the inverse planning process for photons and protons and to evaluate the impact that this has on the quality of the final solution.Approach.The method was implemented into an iterative least-squares inverse planning optimiser, with the Boltzmann solver used every 20 iterations over the total of 100 iterations. Elemental dose distributions for the intensity modulation and the dose changes at the intermediate iterations were calculated by a convolution algorithm for photons and a simple analytical model for protons. The method was evaluated for 12 patients in the heterogeneous tissue environment encountered in radiotherapy of lung tumours. Photon arc and proton arc treatments were considered in this study. The results were compared with those for use of the Boltzmann solver solely at the end of inverse planning or not at all.Main results.Application of the Boltzmann solver at the end of inverse planning shows the dose heterogeneity in the planning target volume to be greater than calculated by convolution and empirical methods, with the median root-mean-square dose deviation increasing from 3.7 to 5.3 for photons and from 1.9 to 3.4 for proton arcs. Use of discrete ordinates throughout inverse planning enables homogeneity of target coverage to be maintained throughout, the median root-mean-square dose deviation being 3.6 for photons and 2.3 for protons. Dose to critical structures is similar with discrete ordinates and conventional methods. Time for inverse planning with discrete ordinates takes around 1-2 h using a contemporary computing environment.Significance.By incorporating the Boltzmann solver into an iterative least squares inverse planning optimiser, accurate dose calculation in a heterogeneous medium is obtained throughout inverse planning, with the result that the final dose distribution is of the highest quality.
Collapse
Affiliation(s)
- James L Bedford
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5PT, United Kingdom
| |
Collapse
|
5
|
Bedford JL. A discrete ordinates Boltzmann solver for application to inverse planning of photons and protons. Phys Med Biol 2023; 68:185019. [PMID: 37643625 PMCID: PMC10498099 DOI: 10.1088/1361-6560/acf4de] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/09/2023] [Accepted: 08/29/2023] [Indexed: 08/31/2023]
Abstract
The aim of this work is to develop a discrete ordinates Boltzmann solver that can be used for calculation of absorbed dose from both photons and protons within an inverse planning optimiser, so as to perform accurate dose calculation throughout the whole of the inverse planning process. With photons, five transport sweeps were performed to obtain scattered photon fluence, and unscattered electron fluence was then obtained and used as a fixed source for solution of the electron transport equations. With protons, continuous slowing down was treated as a fixed source, and five transport sweeps were used to calculate scattered fluence. The total electron or proton fluence was multiplied by the stopping power ratio for the transport medium to obtain absorbed dose. The method was evaluated in homogeneous media and in a lung case where the planning target volume was surrounded by low-density lung material. Photon arc, proton passive scattering and proton arc treatments were considered. The results were compared to a clinically validated convolution dose calculation for photons, and with an analytical method for protons. In water-equivalent media, the discrete ordinates method agrees with the alternative algorithms to within 2%. Convergence is found to be sufficiently complete for water-, lung- and bone-equivalent materials after five iterations. The dose calculated by the relatively simple angular quadrature is seen to be very close to that calculated by a more comprehensive quadrature. For inhomogeneous lung plans, the method shows more heterogeneity of dose to the planning target volume than the comparative methods. The discrete ordinates Boltzmann solver provides a general framework for dose calculation with both photons and protons. The method is suitable for incorporation into an inverse planning optimiser, so that accurate dose calculation in a heterogeneous medium can be obtained throughout inverse planning, with the result that the final dose distribution is as predicted by the optimiser.
Collapse
Affiliation(s)
- James L Bedford
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5PT, United Kingdom
| |
Collapse
|
6
|
Clinical Outcomes Following Proton and Photon Stereotactic Body Radiation Therapy for Early-Stage Lung Cancer. Cancers (Basel) 2022; 14:cancers14174152. [PMID: 36077688 PMCID: PMC9454659 DOI: 10.3390/cancers14174152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 12/25/2022] Open
Abstract
Simple Summary The current study reports the clinical outcomes of proton and photon stereotactic body radiation therapy (SBRT) for early-stage lung cancer. Out of 202 patients who met the inclusion criteria, 34 received proton SBRT and 168 received photon SBRT. Patients at high risk of developing post-SBRT radiation pneumonitis tended to receive proton SBRT. Oncologic outcomes and toxicity profiles were comparable between treatment modalities. Proton SBRT could be considered for patients with high risk of radiation pneumonitis. Abstract We aimed to report the clinical outcomes following stereotactic body radiation therapy (SBRT) using photon or proton equipment in early-stage lung cancer. We retrospectively reviewed 202 cT1-2N0M0 lung cancer patients who underwent SBRT with 60 Gy in four consecutive fractions between 2010 and 2019 at our institution: 168 photon SBRT and 34 proton SBRT. Patients who underwent proton SBRT had relatively poor baseline lung condition compared to those who underwent photon SBRT. Clinical outcomes were comparable between treatment modalities: 5-year local control (90.8% vs. 83.6%, p = 0.602); progression-free survival (61.6% vs. 57.8%, p = 0.370); overall survival (51.7% vs. 51.9%, p = 0.475); and cause-specific survival (70.3% vs. 62.6%, p = 0.618). There was no statistically significant difference in grade ≥ 2 toxicities: radiation pneumonitis (19.6% vs. 26.4%, p = 0.371); musculoskeletal (13.7% vs. 5.9%, p = 0.264); and skin (3.6% vs. 0.0%, p = 0.604). In the binary logistic regression analysis of grade ≥3 radiation pneumonitis, poor performance status and poor baseline diffusion capacity of lung for carbon monoxide were significant. To summarize, though patients with high risk of developing lung toxicity underwent proton SBRT more frequently, the SBRT techniques resulted in comparable oncologic outcomes with similar toxicity profiles. Proton SBRT could be considered for patients at high risk of radiation pneumonitis.
Collapse
|
7
|
Spautz S, Jakobi A, Meijers A, Peters N, Löck S, Knopf AC, Troost EGC, Richter C, Stützer K. Experimental validation of 4D log file-based proton dose reconstruction for interplay assessment considering amplitude-sorted 4DCTs. Med Phys 2022; 49:3538-3549. [PMID: 35342943 DOI: 10.1002/mp.15625] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 02/01/2022] [Accepted: 03/13/2022] [Indexed: 11/06/2022] Open
Abstract
PURPOSE The unpredictable interplay between dynamic proton therapy delivery and target motion in the thorax can lead to severe dose distortions. A fraction-wise four-dimensional (4D) dose reconstruction workflow allows for the assessment of the applied dose after patient treatment while considering the actual beam delivery sequence extracted from machine log files, the recorded breathing pattern and the geometric information from a 4D computed tomography scan (4DCT). Such an algorithm capable of accounting for amplitude-sorted 4DCTs was implemented and its accuracy as well as its sensitivity to input parameter variations was experimentally evaluated. METHODS An anthropomorphic thorax phantom with a movable insert containing a target surrogate and a radiochromic film was irradiated with a monoenergetic field for various 1D target motion forms (sin, sin4) and peak-to-peak amplitudes (5/10/15/20/30 mm). The measured characteristic film dose distributions were compared to the respective sections in the 4D reconstructed doses using a 2D γ-analysis (3mm, 3%); γ-pass rates were derived for different dose grid resolutions (1mm/3mm) and deformable image registrations (DIR, automatic/manual) applied during the 4D dose reconstruction process. In an additional analysis, the sensitivity of reconstructed dose distributions against potential asynchronous timing of the motion and machine log files was investigated for both a monoenergetic field and more realistic 4D robustly optimized fields by artificially introduced offsets of ± 1/5/25/50/250 ms. The resulting dose distributions with asynchronized log files were compared to those with synchronized log files by means of a 3D γ-analysis (1mm, 1%) and the evaluation of absolute dose differences. RESULTS The induced characteristic interplay patterns on the films were well reproduced by the 4D dose reconstruction with 2D γ-pass rates ≥95% for almost all cases with motion magnitudes ≤15 mm. In general, the 2D γ-pass rates showed a significant decrease for larger motion amplitudes and increase when using a finer dose grid resolution but were not affected by the choice of motion form (sin, sin4). There was also a trend, though not statistically significant, towards the manually defined DIR for better quality of the reconstructed dose distributions in the area imaged by the film. The 4D dose reconstruction results for the monoenergetic as well as the 4D robustly optimized fields were robust against small asynchronies between motion and machine log files of up to 5 ms, which is in the order of potential network latencies. CONCLUSIONS We have implemented a 4D log file-based proton dose reconstruction that accounts for amplitude-sorted 4DCTs. Its accuracy was proven to be clinically acceptable for target motion magnitudes of up to 15 mm. Particular attention should be paid to the synchronization of the log file generating systems as the reconstructed dose distribution may vary with log file asynchronies larger than those caused by realistic network delays. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Saskia Spautz
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
| | - Annika Jakobi
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.,Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Arturs Meijers
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Nils Peters
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.,Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Steffen Löck
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Antje-Christin Knopf
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Department 1 of Internal Medicine, Center for Integrated Oncology Cologne, University Hospital of Cologne, Cologne, Germany
| | - Esther G C Troost
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.,Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Christian Richter
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.,Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kristin Stützer
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.,Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| |
Collapse
|
8
|
Finazzi T, Schneiders FL, Senan S. Developments in radiation techniques for thoracic malignancies. Eur Respir Rev 2021; 30:200224. [PMID: 33952599 PMCID: PMC9488563 DOI: 10.1183/16000617.0224-2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/27/2020] [Indexed: 12/25/2022] Open
Abstract
Radiation therapy is a cornerstone of modern lung cancer treatment alongside surgery, chemotherapy, immunotherapy and targeted therapies. Advances in radiotherapy techniques have enhanced the accuracy of radiation delivery, which has contributed to the evolution of radiation therapy into a guideline-recommended treatment in both early-stage and locally advanced nonsmall cell lung cancer. Furthermore, although radiotherapy has long been used for palliation of disease in advanced lung cancer, it is increasingly having a role as a locally ablative treatment in patients with oligometastatic disease.This review provides an overview of recent developments in radiation techniques, particularly for non-radiation oncologists who are involved in the care of lung cancer patients. Technical advances are discussed, and findings of recent clinical trials are highlighted, all of which have led to a changing perception of the role of radiation therapy in multidisciplinary care.
Collapse
Affiliation(s)
- Tobias Finazzi
- Clinic of Radiotherapy and Radiation Oncology, University Hospital Basel, Basel, Switzerland
| | - Famke L Schneiders
- Dept of Radiation Oncology, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Suresh Senan
- Dept of Radiation Oncology, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Wong SL, Alshaikhi J, Grimes H, Amos RA, Poynter A, Rompokos V, Gulliford S, Royle G, Liao Z, Sharma RA, Mendes R. Retrospective Planning Study of Patients with Superior Sulcus Tumours Comparing Pencil Beam Scanning Protons to Volumetric-Modulated Arc Therapy. Clin Oncol (R Coll Radiol) 2021; 33:e118-e131. [PMID: 32798157 PMCID: PMC7883303 DOI: 10.1016/j.clon.2020.07.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/30/2020] [Accepted: 07/22/2020] [Indexed: 12/25/2022]
Abstract
AIMS Twenty per cent of patients with non-small cell lung cancer present with stage III locally advanced disease. Precision radiotherapy with pencil beam scanning (PBS) protons may improve outcomes. However, stage III is a heterogeneous group and accounting for complex tumour motion is challenging. As yet, it remains unclear as to whom will benefit. In our retrospective planning study, we explored if patients with superior sulcus tumours (SSTs) are a select cohort who might benefit from this treatment. MATERIALS AND METHODS Patients with SSTs treated with radical radiotherapy using four-dimensional planning computed tomography between 2010 and 2015 were identified. Tumour motion was assessed and excluded if greater than 5 mm. Photon volumetric-modulated arc therapy (VMAT) and PBS proton single-field optimisation plans, with and without inhomogeneity corrections, were generated retrospectively. Robustness analysis was assessed for VMAT and PBS plans involving: (i) 5 mm geometric uncertainty, with an additional 3.5% range uncertainty for proton plans; (ii) verification plans at maximal inhalation and exhalation. Comparative dosimetric and robustness analyses were carried out. RESULTS Ten patients were suitable. The mean clinical target volume D95 was 98.1% ± 0.4 (97.5-98.8) and 98.4% ± 0.2 (98.1-98.9) for PBS and VMAT plans, respectively. All normal tissue tolerances were achieved. The same four PBS and VMAT plans failed robustness assessment. Inhomogeneity corrections minimally impacted proton plan robustness and made it worse in one case. The most important factor affecting target coverage and robustness was the clinical target volume entering the spinal canal. Proton plans significantly reduced the mean lung dose (by 21.9%), lung V5, V10, V20 (by 47.9%, 36.4%, 12.1%, respectively), mean heart dose (by 21.4%) and thoracic vertebra dose (by 29.2%) (P < 0.05). CONCLUSIONS In this planning study, robust PBS plans were achievable in carefully selected patients. Considerable dose reductions to the lung, heart and thoracic vertebra were possible without compromising target coverage. Sparing these lymphopenia-related organs may be particularly important in this era of immunotherapy.
Collapse
Affiliation(s)
- S-L Wong
- University College London Cancer Institute, London, UK; Department of Clinical Oncology, University College London Hospitals NHS Foundation Trust, London, UK.
| | - J Alshaikhi
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK; Department of Radiotherapy Physics, University College London Hospitals NHS Foundation Trust, London, UK; Saudi Particle Therapy Centre, Riyadh, Saudi Arabia
| | - H Grimes
- Department of Radiotherapy Physics, University College London Hospitals NHS Foundation Trust, London, UK
| | - R A Amos
- Department of Clinical Oncology, University College London Hospitals NHS Foundation Trust, London, UK; Department of Radiotherapy Physics, University College London Hospitals NHS Foundation Trust, London, UK; Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - A Poynter
- Department of Radiotherapy Physics, University College London Hospitals NHS Foundation Trust, London, UK
| | - V Rompokos
- Department of Radiotherapy Physics, University College London Hospitals NHS Foundation Trust, London, UK
| | - S Gulliford
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK; Department of Radiotherapy Physics, University College London Hospitals NHS Foundation Trust, London, UK
| | - G Royle
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Z Liao
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - R A Sharma
- University College London Cancer Institute, London, UK; Department of Clinical Oncology, University College London Hospitals NHS Foundation Trust, London, UK; NIHR University College London Hospitals Biomedical Research Centre, London, UK
| | - R Mendes
- Department of Clinical Oncology, University College London Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
10
|
Diwanji T, Sawant A, Sio TT, Patel NV, Mohindra P. Proton stereotactic body radiation therapy for non-small cell lung cancer. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1198. [PMID: 33241047 PMCID: PMC7576051 DOI: 10.21037/atm-20-2975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Tejan Diwanji
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Amit Sawant
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA.,Maryland Proton Treatment Center Baltimore, MD, USA
| | - Terence T Sio
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona, USA
| | - Nirav V Patel
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Pranshu Mohindra
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA.,Maryland Proton Treatment Center Baltimore, MD, USA
| |
Collapse
|
11
|
Haseai S, Arimura H, Asai K, Yoshitake T, Shioyama Y. Similar-cases-based planning approaches with beam angle optimizations using water equivalent path length for lung stereotactic body radiation therapy. Radiol Phys Technol 2020; 13:119-127. [PMID: 32172525 DOI: 10.1007/s12194-020-00558-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 12/30/2022]
Abstract
This study aimed to propose automated treatment planning approaches based on similar cases with beam angle optimizations using water equivalent path length (WEPL) to avoid lung and rib doses for lung stereotactic body radiation therapy (SBRT). Similar cases to an objective case were defined as cases, which were close to the objective case with respect to the Euclidean distances based on geometrical features. Initial similar-case-based (ISC) plans were generated by applying lung SBRT plans of similar cases to objective cases. Similar cases were selected using the Euclidean distances based on lung shape and geometrical features from a radiation treatment planning database with 174 cases. Beam angles of the ISC plans were optimized using a greedy algorithm based on a cost function to include absorbed doses in the lung and ribs in the WEPL. The 12 dose evaluation indices for the planning target volume, lung, spinal cord, and ribs were evaluated in the original plans, ISC plans, and optimized similar-case-based (OSC) plans with and without WEPL for 20 test cases to investigate its dosimetric impact. These findings revealed that V10 and the mean dose for the lung and V20, V30, and V40 for the ribs in the OSC plan with WEPL improved more significantly than those in the original and ISC plans. This study indicates a potential of similar cases, whose beam angle configurations were optimized with WEPL to avoid lung and rib doses in lung SBRT plans.
Collapse
Affiliation(s)
- Shu Haseai
- SAGA Heavy Ion Medical Accelerator in Tosu, 3049, Harakogamachi, Tosu, 841-0071, Japan
| | - Hidetaka Arimura
- Division of Medical Quantum Science, Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Kaori Asai
- Division of Medical Quantum Science, Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tadamasa Yoshitake
- Division of Medical Quantum Science, Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshiyuki Shioyama
- Division of Medical Quantum Science, Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
12
|
Spadea MF, Pileggi G, Zaffino P, Salome P, Catana C, Izquierdo-Garcia D, Amato F, Seco J. Deep Convolution Neural Network (DCNN) Multiplane Approach to Synthetic CT Generation From MR images—Application in Brain Proton Therapy. Int J Radiat Oncol Biol Phys 2019; 105:495-503. [DOI: 10.1016/j.ijrobp.2019.06.2535] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 06/18/2019] [Accepted: 06/21/2019] [Indexed: 10/26/2022]
|
13
|
Brooks ED, Ning MS, Verma V, Zhu XR, Chang JY. Proton therapy for non-small cell lung cancer: the road ahead. Transl Lung Cancer Res 2019; 8:S202-S212. [PMID: 31673525 PMCID: PMC6795573 DOI: 10.21037/tlcr.2019.07.08] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/17/2019] [Indexed: 12/14/2022]
Abstract
Proton therapy is an evolving radiotherapy modality with indication for numerous cancer types. With the benefits of reducing dose and sparing normal tissue, protons offer a clear physical and dosimetric advantage over photon radiotherapy for many patients. However, its impact on one type of disease, non-small cell lung cancer (NSCLC), is still not fully understood. Our review aims to highlight the data for using proton therapy in NSCLC, with a focus on the clinical data-or lack thereof-supporting proton treatment for early and advanced stage disease. In evaluating these data, we consider how future directions and advances in proton technology give rise for hope in defining a role for protons in improving NSCLC outcomes. We close with considerations for next steps and the challenges ahead in using proton therapy for this unique patient population.
Collapse
Affiliation(s)
- Eric D. Brooks
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matthew S. Ning
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vivek Verma
- Department of Radiation Oncology, Allegheny General Hospital, Pittsburgh, PA, USA
| | - X. Ronald Zhu
- Proton Therapy Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joe Y. Chang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
14
|
Pileggi G, Speier C, Sharp GC, Izquierdo Garcia D, Catana C, Pursley J, Amato F, Seco J, Spadea MF. Proton range shift analysis on brain pseudo-CT generated from T1 and T2 MR. Acta Oncol 2018; 57:1521-1531. [PMID: 29842815 DOI: 10.1080/0284186x.2018.1477257] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND In radiotherapy, MR imaging is only used because it has significantly better soft tissue contrast than CT, but it lacks electron density information needed for dose calculation. This work assesses the feasibility of using pseudo-CT (pCT) generated from T1w/T2w MR for proton treatment planning, where proton range comparisons are performed between standard CT and pCT. MATERIAL AND METHODS MR and CT data from 14 glioblastoma patients were used in this study. The pCT was generated by using conversion libraries obtained from tissue segmentation and anatomical regioning of the T1w/T2w MR. For each patient, a plan consisting of three 18 Gy beams was designed on the pCT, for a total of 42 analyzed beams. The plan was then transferred onto the CT that represented the ground truth. Range shift (RS) between pCT and CT was computed at R80 over 10 slices. The acceptance threshold for RS was according to clinical guidelines of two institutions. A γ-index test was also performed on the total dose for each patient. RESULTS Mean absolute error and bias for the pCT were 124 ± 10 and -16 ± 26 Hounsfield Units (HU), respectively. The median and interquartile range of RS was 0.5 and 1.4 mm, with highest absolute value being 4.4 mm. Of the 42 beams, 40 showed RS less than the clinical range margin. The two beams with larger RS were both in the cranio-caudal direction and had segmentation errors due to the partial volume effect, leading to misassignment of the HU. CONCLUSIONS This study showed the feasibility of using T1w and T2w MRI to generate a pCT for proton therapy treatment, thus avoiding the use of a planning CT and allowing better target definition and possibilities for online adaptive therapies. Further improvements of the methodology are still required to improve the conversion from MRI intensities to HUs.
Collapse
Affiliation(s)
- Giampaolo Pileggi
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
- Radiation Oncology Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Christoph Speier
- Radiation Oncology Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Radiation Oncology, Universitätsklinikum Erlangen Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Gregory C. Sharp
- Radiation Oncology Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - David Izquierdo Garcia
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Ciprian Catana
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Jennifer Pursley
- Radiation Oncology Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Francesco Amato
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Joao Seco
- Biomedical Physics in Radiation Oncology, DKFZ – Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Maria Francesca Spadea
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
15
|
Huang Q, Jabbour SK, Xiao Z, Yue N, Wang X, Cao H, Kuang Y, Zhang Y, Nie K. Dosimetric feasibility of 4DCT-ventilation imaging guided proton therapy for locally advanced non-small-cell lung cancer. Radiat Oncol 2018; 13:78. [PMID: 29695284 PMCID: PMC5918906 DOI: 10.1186/s13014-018-1018-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 04/05/2018] [Indexed: 12/18/2022] Open
Abstract
Background The principle aim of this study is to incorporate 4DCT ventilation imaging into functional treatment planning that preserves high-functioning lung with both double scattering and scanning beam techniques in proton therapy. Methods Eight patients with locally advanced non-small-cell lung cancer were included in this study. Deformable image registration was performed for each patient on their planning 4DCTs and the resultant displacement vector field with Jacobian analysis was used to identify the high-, medium- and low-functional lung regions. Five plans were designed for each patient: a regular photon IMRT vs. anatomic proton plans without consideration of functional ventilation information using double scattering proton therapy (DSPT) and intensity modulated proton therapy (IMPT) vs. functional proton plans with avoidance of high-functional lung using both DSPT and IMPT. Dosimetric parameters were compared in terms of tumor coverage, plan heterogeneity, and avoidance of normal tissues. Results Our results showed that both DSPT and IMPT plans gave superior dose advantage to photon IMRTs in sparing low dose regions of the total lung in terms of V5 (volume receiving 5Gy). The functional DSPT only showed marginal benefit in sparing high-functioning lung in terms of V5 or V20 (volume receiving 20Gy) compared to anatomical plans. Yet, the functional planning in IMPT delivery, can further reduce the low dose in high-functioning lung without degrading the PTV dosimetric coverages, compared to anatomical proton planning. Although the doses to some critical organs might increase during functional planning, the necessary constraints were all met. Conclusions Incorporating 4DCT ventilation imaging into functional proton therapy is feasible. The functional proton plans, in intensity modulated proton delivery, are effective to further preserve high-functioning lung regions without degrading the PTV coverage.
Collapse
Affiliation(s)
- Qijie Huang
- Department of Radiation Oncology, Rutgers-Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ, USA.,Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Salma K Jabbour
- Department of Radiation Oncology, Rutgers-Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Zhiyan Xiao
- Department of Radiation Oncology, Rutgers-Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ, USA.,Proton Therapy Center, University of Cincinnati Medical Center, Cincinnati, OH, 45044, USA
| | - Ning Yue
- Department of Radiation Oncology, Rutgers-Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Xiao Wang
- Department of Radiation Oncology, Rutgers-Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Hongbin Cao
- Department of Radiation Oncology, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Yu Kuang
- Department of Medical Physics, University of Nevada, Las Vegas, NV, USA
| | - Yin Zhang
- Department of Radiation Oncology, Rutgers-Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Ke Nie
- Department of Radiation Oncology, Rutgers-Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
| |
Collapse
|
16
|
Abstract
Proton therapy is a promising but challenging treatment modality for the management of lung cancer. The technical challenges are due to respiratory motion, low dose tolerance of adjacent normal tissue and tissue density heterogeneity. Different imaging modalities are applied at various steps of lung proton therapy to provide information on target definition, target motion, proton range, patient setup and treatment outcome assessment. Imaging data is used to guide treatment design, treatment delivery, and treatment adaptation to ensure the treatment goal is achieved. This review article will summarize and compare various imaging techniques that can be used in every step of lung proton therapy to address these challenges.
Collapse
Affiliation(s)
- Miao Zhang
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wei Zou
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Boon-Keng Kevin Teo
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
17
|
Harada H, Murayama S. Proton beam therapy in non-small cell lung cancer: state of the art. LUNG CANCER-TARGETS AND THERAPY 2017; 8:141-145. [PMID: 28883747 PMCID: PMC5574682 DOI: 10.2147/lctt.s117647] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review summarizes the past and present status of proton beam therapy (PBT) for lung cancer. PBT has a unique characteristic called the Bragg peak that enables a reduction in the dose of normal tissue around the tumor, but is sensitive to the uncertainties of density changes. The heterogeneity in electron density for thoracic lesions, such as those in the lung and mediastinum, and tumor movement according to respiration necessitates respiratory management for PBT to be applied in lung cancer patients. There are two types of PBT - a passively scattered approach and a scanning approach. Typically, a passively scattered approach is more robust for respiratory movement and a scanning approach could result in a more conformal dose distribution even when the tumor shape is complex. Large tumors of centrally located lung cancer may be more suitably irradiated than with intensity-modulated radiotherapy (IMRT) or stereotactic body radiotherapy (SBRT). For a locally advanced lung cancer, PBT can spare the lung and heart more than photon IMRT. However, no randomized controlled trial has reported differences between PBT and IMRT or SBRT for early-stage and locally advanced lung cancers. Therefore, a well-designed controlled trial is warranted.
Collapse
Affiliation(s)
- Hideyuki Harada
- Radiation and Proton Therapy Center, Shizuoka Cancer Center Hospital, Nagaizumi, Shizuoka, Japan
| | - Shigeyuki Murayama
- Radiation and Proton Therapy Center, Shizuoka Cancer Center Hospital, Nagaizumi, Shizuoka, Japan
| |
Collapse
|
18
|
Doolan PJ, Collins-Fekete CA, Dias MF, Ruggieri TA, D’Souza D, Seco J. Inter-comparison of relative stopping power estimation models for proton therapy. Phys Med Biol 2016; 61:8085-8104. [DOI: 10.1088/0031-9155/61/22/8085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
19
|
Sakurai H, Ishikawa H, Okumura T. Proton beam therapy in Japan: current and future status. Jpn J Clin Oncol 2016; 46:885-892. [PMID: 27534798 DOI: 10.1093/jjco/hyw102] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/29/2016] [Indexed: 12/25/2022] Open
Abstract
The number of patients treated by proton beam therapy in Japan since 2000 has increased; in 2016, 11 proton facilities were available to treat patients. Notably, proton beam therapy is very useful for pediatric cancer; since the pediatric radiation dose to normal tissues should be reduced as much as possible because of the effect of radiation on growth, intellectual development, endocrine organ function and secondary cancer development. Hepatocellular carcinoma is common in Asia, and most of the studies of proton beam therapy for liver cancer have been reported by Japanese investigators. Proton beam therapy is also a standard treatment for nasal and paranasal lesions and lesions at the base of the skull, because the radiation dose to critical organs such as the eyes, optic nerves and central nervous system can be reduced with proton beam therapy. For prostate cancer, comparative studies that address adverse effects, safety, patient quality of life and socioeconomic issues should be performed to determine the appropriate use of proton beam therapy for prostate cancer. Regarding new proton beam therapy applications, experience with proton beam therapy combined with chemotherapy is limited, although favorable outcomes have been recently reported for locally advanced lung cancer, esophageal cancer and pancreatic cancer. Therefore, 'chemoproton' therapy appears to be a very attractive field for further clinical investigations. In conclusion, there are cost issues and considerations regarding national insurance for the use of proton beam therapy in Japan. Further studies and discussions are needed to address the use of proton beam therapy for several types of cancers, and for maintaining the quality of life of patients while retaining a high cure rate.
Collapse
Affiliation(s)
- Hideyuki Sakurai
- Department of Radiation Oncology and Proton Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hitoshi Ishikawa
- Department of Radiation Oncology and Proton Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Toshiyuki Okumura
- Department of Radiation Oncology and Proton Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
20
|
Treatment of Peripheral Non-Small Cell Lung Carcinoma with Stereotactic Body Radiation Therapy. J Thorac Oncol 2016; 10:1261-1267. [PMID: 26291009 DOI: 10.1097/jto.0000000000000610] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Stereotactic body radiation therapy (SBRT) is an effective and well-tolerated noninvasive treatment for medically inoperable patients with peripheral non-small cell lung carcinoma. The term "peripheral" refers to lesions that lie 2 cm or more from the mediastinum and proximal bronchial tree and was instituted based on results from a specific dose and fractionation schedule. Improvements in immobilization, respiratory motion management, and image guidance have allowed for SBRT's highly conformal and accurate delivery of large radiation doses per fraction. Results from prospective and retrospective studies suggest that lung SBRT has superior outcomes when compared with conventionally fractionated treatments and is comparable with surgical resection. Investigations into the optimal SBRT dosing regimen for peripheral lesions are ongoing, with recent trials suggesting comparable efficacy between single and multiple fraction schedules. Chest wall toxicity after peripheral treatment is common, but it usually resolves with conservative management. Pneumonitis is less often observed after treatment of peripheral lesions, and changes in pulmonary function tests are minimal. Studies in the frail and elderly suggest that neither baseline pulmonary function tests nor age should preclude treatment. Recent technical developments have reduced delivery time and resulted in more conformal treatments. This review is on behalf of the IASLC Advanced Radiation Technology Committee.
Collapse
|
21
|
Cai W, Hurwitz MH, Williams CL, Dhou S, Berbeco RI, Seco J, Mishra P, Lewis JH. 3D delivered dose assessment using a 4DCT-based motion model. Med Phys 2016; 42:2897-907. [PMID: 26127043 DOI: 10.1118/1.4921041] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
PURPOSE The purpose of this work is to develop a clinically feasible method of calculating actual delivered dose distributions for patients who have significant respiratory motion during the course of stereotactic body radiation therapy (SBRT). METHODS A novel approach was proposed to calculate the actual delivered dose distribution for SBRT lung treatment. This approach can be specified in three steps. (1) At the treatment planning stage, a patient-specific motion model is created from planning 4DCT data. This model assumes that the displacement vector field (DVF) of any respiratory motion deformation can be described as a linear combination of some basis DVFs. (2) During the treatment procedure, 2D time-varying projection images (either kV or MV projections) are acquired, from which time-varying "fluoroscopic" 3D images of the patient are reconstructed using the motion model. The DVF of each timepoint in the time-varying reconstruction is an optimized linear combination of basis DVFs such that the 2D projection of the 3D volume at this timepoint matches the projection image. (3) 3D dose distribution is computed for each timepoint in the set of 3D reconstructed fluoroscopic images, from which the total effective 3D delivered dose is calculated by accumulating deformed dose distributions. This approach was first validated using two modified digital extended cardio-torso (XCAT) phantoms with lung tumors and different respiratory motions. The estimated doses were compared to the dose that would be calculated for routine 4DCT-based planning and to the actual delivered dose that was calculated using "ground truth" XCAT phantoms at all timepoints. The approach was also tested using one set of patient data, which demonstrated the application of our method in a clinical scenario. RESULTS For the first XCAT phantom that has a mostly regular breathing pattern, the errors in 95% volume dose (D95) are 0.11% and 0.83%, respectively for 3D fluoroscopic images reconstructed from kV and MV projections compared to the ground truth, which is clinically comparable to 4DCT (0.093%). For the second XCAT phantom that has an irregular breathing pattern, the errors are 0.81% and 1.75% for kV and MV reconstructions, both of which are better than that of 4DCT (4.01%). In the case of real patient, although it is impossible to obtain the actual delivered dose, the dose estimation is clinically reasonable and demonstrates differences between 4DCT and MV reconstruction-based dose estimates. CONCLUSIONS With the availability of kV or MV projection images, the proposed approach is able to assess delivered doses for all respiratory phases during treatment. Compared to the planning dose based on 4DCT, the dose estimation using reconstructed 3D fluoroscopic images was as good as 4DCT for regular respiratory pattern and was a better dose estimation for the irregular respiratory pattern.
Collapse
Affiliation(s)
- Weixing Cai
- Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115
| | - Martina H Hurwitz
- Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115
| | - Christopher L Williams
- Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115
| | - Salam Dhou
- Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115
| | - Ross I Berbeco
- Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115
| | - Joao Seco
- Francis H. Burr Proton Therapy Center, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Pankaj Mishra
- Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115
| | - John H Lewis
- Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
22
|
Cai W, Dhou S, Cifter F, Myronakis M, Hurwitz MH, Williams CL, Berbeco RI, Seco J, Lewis JH. 4D cone beam CT-based dose assessment for SBRT lung cancer treatment. Phys Med Biol 2015; 61:554-68. [DOI: 10.1088/0031-9155/61/2/554] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
Santiago A, Fritz P, Mühlnickel W, Engenhart-Cabillic R, Wittig A. Changes in the radiological depth correlate with dosimetric deterioration in particle therapy for stage I NSCLC patients under high frequency jet ventilation. Acta Oncol 2015; 54:1631-7. [PMID: 26228661 DOI: 10.3109/0284186x.2015.1067716] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Particle dose distributions are highly sensitive to anatomy changes in the beam path, which may lead to substantial dosimetric deviations. Robust planning and dedicated image guidance together with strategies for online decision making to counteract dosimetric deterioration are thus mandatory. We aimed to develop methods to quantify anatomical discrepancies as depicted by repeated computed tomography (CT) imaging and to test whether they can predict deviations in target coverage. MATERIAL AND METHODS Dedicated software tools allowed for voxel-based calculations of changes in the water equivalent path length (WEPL) in beam directions. We prepared proton and carbon ion plans with different coplanar beam angle settings on a series of lung cancer patients, for which planning and localization CT scans under high frequency jet ventilation (HFJV) for tumor fixation were performed. We investigated the reproducibility of target coverage between the optimized and recalculated treatment plans. We then studied how different raster scan and planning settings influence the robustness. Finally, we carried out a systematic analysis of the variations in the WEPL along different coplanar beam angles to find beam directions, which could minimize such variations. RESULTS The Spearman's correlations for the GTV ΔV95 and ΔV98 with the ΔWEPL for the proton plans with a 0° and -45° two-field configuration were 0.701 (p = 0.02) and 0.719 (p = 0.08), respectively. For beam configurations 0° and -90°, or 0° and + 45°, with lower ΔWEPL, the correlations were no significant. The same trends were observed for the carbon ion plans. Increased beam spot overlap reduced dosimetric deterioration in case of large ΔWEPL. CONCLUSION Software tools for fast online analysis of WEPL changes might help supporting clinical decision making of image guidance. Raster scan and treatment planning settings can help to compensate for anatomical deviations.
Collapse
Affiliation(s)
- Alina Santiago
- a Philipps-University Marburg and University Hospital Giessen and Marburg , Department of Radiotherapy and Radiation Oncology , Marburg , Germany
| | - Peter Fritz
- b St Marien-Krankenhaus , Department of Radiotherapy , Siegen , Germany
| | - Werner Mühlnickel
- b St Marien-Krankenhaus , Department of Radiotherapy , Siegen , Germany
| | - Rita Engenhart-Cabillic
- a Philipps-University Marburg and University Hospital Giessen and Marburg , Department of Radiotherapy and Radiation Oncology , Marburg , Germany
| | - Andrea Wittig
- a Philipps-University Marburg and University Hospital Giessen and Marburg , Department of Radiotherapy and Radiation Oncology , Marburg , Germany
| |
Collapse
|
24
|
Kagan AR, Schulz RJ. Treatment Modalities Should Be Based Upon Efficacy and Cost: Early Stage NSCLC, a Case in Point. Int J Radiat Oncol Biol Phys 2015; 93:205-6. [PMID: 26279035 DOI: 10.1016/j.ijrobp.2015.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 03/27/2015] [Accepted: 03/30/2015] [Indexed: 11/28/2022]
Affiliation(s)
- A Robert Kagan
- Radiation Oncology Department, Southern California Permanente Medical Group, Los Angeles, California
| | - Robert J Schulz
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut.
| |
Collapse
|
25
|
Proton Beam Therapy for Non-Small Cell Lung Cancer: Current Clinical Evidence and Future Directions. Cancers (Basel) 2015; 7:1178-90. [PMID: 26147335 PMCID: PMC4586764 DOI: 10.3390/cancers7030831] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/15/2015] [Accepted: 06/15/2015] [Indexed: 11/25/2022] Open
Abstract
Lung cancer is the leading cancer cause of death in the United States. Radiotherapy is an essential component of the definitive treatment of early-stage and locally-advanced lung cancer, and the palliative treatment of metastatic lung cancer. Proton beam therapy (PBT), through its characteristic Bragg peak, has the potential to decrease the toxicity of radiotherapy, and, subsequently improve the therapeutic ratio. Herein, we provide a primer on the physics of proton beam therapy for lung cancer, present the existing data in early-stage and locally-advanced non-small cell lung cancer (NSCLC), as well as in special situations such as re-irradiation and post-operative radiation therapy. We then present the technical challenges, such as anatomic changes and motion management, and future directions for PBT in lung cancer, including pencil beam scanning.
Collapse
|
26
|
Ohno T, Oshiro Y, Mizumoto M, Numajiri H, Ishikawa H, Okumura T, Terunuma T, Sakae T, Sakurai H. Comparison of dose-volume histograms between proton beam and X-ray conformal radiotherapy for locally advanced non-small-cell lung cancer. JOURNAL OF RADIATION RESEARCH 2015; 56:128-33. [PMID: 25368341 PMCID: PMC4572589 DOI: 10.1093/jrr/rru082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/18/2014] [Accepted: 08/19/2014] [Indexed: 05/21/2023]
Abstract
The purpose of this study was to compare the parameters of the dose-volume histogram (DVH) between proton beam therapy (PBT) and X-ray conformal radiotherapy (XCRT) for locally advanced non-small-cell lung cancer (NSCLC), according to the tumor conditions. A total of 35 patients having NSCLC treated with PBT were enrolled in this analysis. The numbers of TNM stage and lymph node status were IIB (n = 3), IIIA (n = 15) and IIIB (n = 17), and N0 (n = 2), N1 (n = 4), N2 (n = 17) and N3 (n = 12), respectively. Plans for XCRT were simulated based on the same CT, and the same clinical target volume (CTV) was used based on the actual PBT plan. The treatment dose was 74 Gy-equivalent dose (GyE) for the primary site and 66 GyE for positive lymph nodes. The parameters were then calculated according to the normal lung dose, and the irradiation volumes of the doses (Vx) were compared. We also evaluated the feasibility of both plans according to criteria: V5 ≥ 42%, V20 ≥ 25%, mean lung dose ≥ 20 Gy. The mean normal lung dose and V5 to V50 were significantly lower in PBT than in XCRT. The differences were greater with the more advanced nodal status and with the larger CTV. Furthermore, 45.7% of the X-ray plans were classified as inadequate according to the criteria, whereas 17.1% of the proton plans were considered unsuitable. The number of inadequate X-ray plans increased in cases with advanced nodal stage. This study indicated that some patients who cannot receive photon radiotherapy may be able to be treated using PBT.
Collapse
Affiliation(s)
- Toshiki Ohno
- Departments of Radiation Oncology and Proton Medical Research Center, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yoshiko Oshiro
- Departments of Radiation Oncology and Proton Medical Research Center, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Masashi Mizumoto
- Departments of Radiation Oncology and Proton Medical Research Center, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Haruko Numajiri
- Departments of Radiation Oncology and Proton Medical Research Center, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Hitoshi Ishikawa
- Departments of Radiation Oncology and Proton Medical Research Center, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Toshiyuki Okumura
- Departments of Radiation Oncology and Proton Medical Research Center, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Toshiyuki Terunuma
- Departments of Radiation Oncology and Proton Medical Research Center, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Takeji Sakae
- Departments of Radiation Oncology and Proton Medical Research Center, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Hideyuki Sakurai
- Departments of Radiation Oncology and Proton Medical Research Center, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan
| |
Collapse
|
27
|
Rana S, Simpson H, Larson G, Zheng Y. Dosimetric impact of number of treatment fields in uniform scanning proton therapy planning of lung cancer. J Med Phys 2014; 39:212-8. [PMID: 25525308 PMCID: PMC4258728 DOI: 10.4103/0971-6203.144483] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/06/2014] [Accepted: 10/12/2014] [Indexed: 12/28/2022] Open
Abstract
The main purpose of this study was to perform a treatment planning study for lung cancer comparing 2-field (2F) versus 3-field (3F) techniques in uniform scanning proton therapy (USPT). Ten clinically approved lung cancer treatment plans delivered using USPT at our proton center were included in this retrospective study. All 10 lung cases included 4D computed tomography (CT) simulation. The delineation of target volumes was done based on the maximum intensity projection (MIP) images. Both the 3F and 2F treatment plans were generated for the total dose of 74 cobalt-gray-equivalent (CGE) with a daily dose of 2 CGE. 3F plan was generated by adding an extra beam in the 2F plan. Various dosimetric parameters between 2F and 3F plans were evaluated. 3F plans produced better target coverage and conformality as well as lower mean dose to the lung, with absolute difference between 3F and 2F plans within 2%. In contrast, the addition of third beam led to increase of low-dose regions (V20 and V5) in the lung in 3F plans compared to the ones in 2F plans with absolute difference within 2%. Maximum dose to the spinal cord was lower in 2F plans. Mean dose to the heart and esophagus were comparable in both 3F and 2F plans. In conclusion, the 3F technique in USPT produced better target coverage and conformality, but increased the low-dose regions in the lung when compared to 2F technique.
Collapse
Affiliation(s)
- Suresh Rana
- Department of Medical Physics, ProCure Proton Therapy Center, Oklahoma City, Oklahoma, USA
| | - Hilarie Simpson
- Department of Medical Dosimetry, ProCure Proton Therapy Center, Oklahoma City, Oklahoma, USA
| | - Gary Larson
- Department of Radiation Oncology, ProCure Proton Therapy Center, Oklahoma City, Oklahoma, USA
| | - Yuanshui Zheng
- Department of Medical Physics, ProCure Proton Therapy Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
28
|
Wink KCJ, Roelofs E, Solberg T, Lin L, Simone CB, Jakobi A, Richter C, Lambin P, Troost EGC. Particle therapy for non-small cell lung tumors: where do we stand? A systematic review of the literature. Front Oncol 2014; 4:292. [PMID: 25401087 PMCID: PMC4212620 DOI: 10.3389/fonc.2014.00292] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/07/2014] [Indexed: 12/25/2022] Open
Abstract
This review article provides a systematic overview of the currently available evidence on the clinical effectiveness of particle therapy for the treatment of non-small cell lung cancer and summarizes findings of in silico comparative planning studies. Furthermore, technical issues and dosimetric uncertainties with respect to thoracic particle therapy are discussed.
Collapse
Affiliation(s)
- Krista C J Wink
- Department of Radiation Oncology (MAASTRO Clinic), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre , Maastricht , Netherlands
| | - Erik Roelofs
- Department of Radiation Oncology (MAASTRO Clinic), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre , Maastricht , Netherlands
| | - Timothy Solberg
- Department of Radiation Oncology, Hospital of the University of Pennsylvania , Philadelphia, PA , USA
| | - Liyong Lin
- Department of Radiation Oncology, Hospital of the University of Pennsylvania , Philadelphia, PA , USA
| | - Charles B Simone
- Department of Radiation Oncology, Hospital of the University of Pennsylvania , Philadelphia, PA , USA
| | - Annika Jakobi
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf , Dresden , Germany
| | - Christian Richter
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf , Dresden , Germany ; German Cancer Consortium (DKTK) Dresden and German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Philippe Lambin
- Department of Radiation Oncology (MAASTRO Clinic), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre , Maastricht , Netherlands
| | - Esther G C Troost
- Department of Radiation Oncology (MAASTRO Clinic), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre , Maastricht , Netherlands
| |
Collapse
|
29
|
Fattori G, Riboldi M, Scifoni E, Krämer M, Pella A, Durante M, Ronchi S, Bonora M, Orecchia R, Baroni G. Dosimetric effects of residual uncertainties in carbon ion treatment of head chordoma. Radiother Oncol 2014; 113:66-71. [DOI: 10.1016/j.radonc.2014.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 07/19/2014] [Accepted: 08/02/2014] [Indexed: 01/03/2023]
|
30
|
Abstract
Technological advances are a major contributor to rising costs in health care, including radiation oncology. Despite the large amount spent on new technologies, technology assessment remains inadequate, leading to potentially costly and unnecessary use of new technologies. Comparative effectiveness studies have an important role to play in evaluating the benefits and harms of new technologies compared with older technologies and have been identified as a priority area for research by the Radiation Oncology Institute. This article outlines the elements of effective technology assessment, identifies key challenges to comparative effectiveness studies of new radiation oncology technologies, and reviews several examples of comparative effectiveness studies in radiation oncology, including studies on conformal radiation, IMRT, proton therapy, and other concurrent new technologies.
Collapse
|
31
|
Sulaiman NS, Fujii O, Demizu Y, Terashima K, Niwa Y, Akagi T, Daimon T, Murakami M, Sasaki R, Fuwa N. Particle beam radiation therapy using carbon ions and protons for oligometastatic lung tumors. Radiat Oncol 2014; 9:183. [PMID: 25127719 PMCID: PMC4152565 DOI: 10.1186/1748-717x-9-183] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 08/05/2014] [Indexed: 12/25/2022] Open
Abstract
Background A study was undertaken to analyze the efficacy and feasibility of particle beam radiation therapy (PBRT) using carbon ions and protons for the treatment of patients with oligometastatic lung tumors. Methods A total of 47 patients with 59 lesions who underwent PBRT for oligometastatic lung tumors between 2003 and 2011 were included in this study. Patient median age was 66 (range, 39–84) years. The primary tumor site was the colorectum in 11 patients (23.4%), lung in 10 patients (21.3%) and a variety of other sites in 26 patients (55.3%). Thirty-one patients (66%) received chemotherapy prior to PBRT. Thirty-three lesions were treated with 320-MeV carbon ions and 26 were treated with 150- or 210-Mev protons in 1–4 portals. A median total dose of 60 (range, 52.8–70.2) GyE was delivered at the isocenter in 8 (range, 4–26) fractions. Results The median follow-up time was 17 months. The local control, overall survival and progression-free survival rates at 2 years were 79%, 54 and 27% respectively. PBRT-related toxicities were observed; six patients (13%) had grade 2 toxicity (including grade 2 radiation pneumonitis in 2) and six patients (13%) had grade 3 toxicity. Univariate analysis indicated that patients treated with a biologically equivalent dose of 10 (BED10) <110 GyE10, had a significantly higher local recurrence rate. Local control rates were relatively lower in the subsets of patients with the colorectum as the primary tumor site. No local progression was observed in metastases from colorectal cancer irradiated with a BED10 ≥ 110 GyE10. There was no difference in treatment results between proton and carbon ion therapy. Conclusions PRBT is well tolerated and effective in the treatment of oligometastatic lung tumors. To further improve local control, high-dose PBRT with a BED10 ≥ 110 GyE10 may be promising. Further investigation of PBRT for lung oligometastases is warranted.
Collapse
Affiliation(s)
- Nor Shazrina Sulaiman
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Grant JD, Chang JY. Proton-based stereotactic ablative radiotherapy in early-stage non-small-cell lung cancer. BIOMED RESEARCH INTERNATIONAL 2014; 2014:389048. [PMID: 25136582 PMCID: PMC4124720 DOI: 10.1155/2014/389048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/30/2014] [Accepted: 06/21/2014] [Indexed: 12/12/2022]
Abstract
Stereotactic ablative radiotherapy (SABR), a recent implementation in the practice of radiation oncology, has been shown to confer high rates of local control in the treatment of early stage non-small-cell lung cancer (NSCLC). This technique, which involves limited invasive procedures and reduced treatment intervals, offers definitive treatment for patients unable or unwilling to undergo an operation. The use of protons in SABR delivery confers the added physical advantage of normal tissue sparing due to the absence of collateral radiation dose delivered to regions distal to the target. This may translate into clinical benefit and a decreased risk of clinical toxicity in patients with nearby critical structures or limited pulmonary reserve. In this review, we present the rationale for proton-based SABR, principles relating to the delivery and planning of this modality, and a summary of published clinical studies.
Collapse
Affiliation(s)
- Jonathan D. Grant
- Department of Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Joe Y. Chang
- Department of Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
33
|
Mou B, Beltran CJ, Park SS, Olivier KR, Furutani KM. Feasibility of proton transmission-beam stereotactic ablative radiotherapy versus photon stereotactic ablative radiotherapy for lung tumors: a dosimetric and feasibility study. PLoS One 2014; 9:e98621. [PMID: 24887068 PMCID: PMC4041776 DOI: 10.1371/journal.pone.0098621] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 05/06/2014] [Indexed: 12/25/2022] Open
Abstract
Stereotactic ablative radiotherapy is being increasingly adopted in the treatment of lung tumors. The use of proton beam therapy can further reduce dose to normal structures. However, uncertainty exists in proton-based treatment plans, including range uncertainties, large sensitivity to position uncertainty, and calculation of dose deposition in heterogeneous areas. This study investigated the feasibility of proton transmission beams, i.e. without the Bragg peak, to treat lung tumors with stereotactic ablative radiotherapy. We compared three representative treatment plans using proton transmission beams versus conformal static-gantry photon beams. It was found that proton treatment plans using transmission beams passing through the patient were feasible and demonstrated lower dose to normal structures and markedly reduced treatment times than photon plans. This is the first study to demonstrate the feasibility of proton-based stereotactic ablative radiotherapy planning for lung tumors using proton transmission beams alone. Further research using this novel approach for proton-based planning is warranted.
Collapse
Affiliation(s)
- Benjamin Mou
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Chris J. Beltran
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Sean S. Park
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Kenneth R. Olivier
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Keith M. Furutani
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, United States of America
| |
Collapse
|
34
|
Tian G, Li N, Li G. [Dosimetric comparing between protons beam and photons beam
for lung cancer radiotherapy: a meta-analysis]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2014; 16:252-60. [PMID: 23676982 PMCID: PMC6000611 DOI: 10.3779/j.issn.1009-3419.2013.05.07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
背景与目的 由于缺乏质子治疗与传统光子治疗比较的临床随机对照研究,导致质子治疗在肺癌放疗中的应用没有充足的临床证据。本研究旨在探讨质子射线在肺癌放疗中的剂量学优势,以期为临床提供有价值的循证医学依据。 方法 计算机检索Cochrane Library、PubMed、EMbase、中国生物医学文献数据库、中国学术期刊全文数据库和中国科技期刊数据库,同时辅助其它检索,搜集所有比较质子射线与光子射线治疗肺癌的剂量学研究的文章,应用RevMan 5.2软件对满足条件的数据进行meta分析。 结果 6篇文献纳入本次研究。质子射线与光子射线三维适形放疗(three-dimensional conformal radiotherapy, 3D-CRT)技术比较,降低了双肺Dmean(MD=-4.15, 95%CI: -5.56--2.74, P < 0.001)及V20、V10、V5(MD=-10.92, 95%CI: -13.23--8.62, P < 0.001);降低了食管Dmean及心脏Dmean,差异有统计学意义。质子射线与光子射线调强放疗(intensity-modulated radiotherapy, IMRT)技术比较,V20、V10、V5在质子射线治疗组明显降低(MD=-3.70, 95%CI: -5.31--2.10, P < 0.001; MD=-8.86, 95%CI: -10.74--6.98, P < 0.001; MD=-20.13, 95%CI: -27.11--13.14, P < 0.001);而相比于光子射线(IMRT),质子射线治疗肺癌在食管Dmean差异无统计学意义,但心脏Dmean明显降低,差异有统计学意义。 结论 与目前普遍采用的光子射线(3D-CRT技术及IMRT技术)放疗相比,质子射线在治疗肺癌的剂量学方面有明显的优势,具有临床应用价值。
Collapse
Affiliation(s)
- Guangwei Tian
- Department of Radiation Oncology, First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | | | | |
Collapse
|
35
|
Long-term outcome of proton therapy and carbon-ion therapy for large (T2a-T2bN0M0) non-small-cell lung cancer. J Thorac Oncol 2014; 8:726-35. [PMID: 23459403 DOI: 10.1097/jto.0b013e318288ab02] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION : Although many reports have shown the safety and efficacy of stereotactic body radiotherapy (SBRT) for T1N0M0 non-small-cell lung cancer (NSCLC), it is rather difficult to treat T2N0M0 NSCLC, especially T2b (>5 cm) tumor, with SBRT. Our hypothesis was that particle therapy might be superior to SBRT in T2 patients. We evaluated the clinical outcome of particle therapy for T2a/bN0M0 NSCLC staged according to the 7th edition of the International Union Against Cancer (UICC) tumor, node, metastasis classification. METHODS : From April 2003 to December 2009, 70 histologically confirmed patients were treated with proton (n = 43) or carbon-ion (n = 27) therapy according to institutional protocols. Forty-seven patients had a T2a tumor and 23 had a T2b tumor. The total dose and fraction (fr) number were 60 (Gray equivalent) GyE/10 fr in 20 patients, 52.8 GyE/4 fr in 16, 66 GyE/10 fr in 16, 80 GyE/20 fr in 14, and other in four patients, respectively. Toxicities were scored according to the Common Terminology Criteria for Adverse Events, Version 4.0. RESULTS : The median follow-up period for living patients was 51 months (range, 24-103). For all 70 patients, the 4-year overall survival, local control, and progression-free survival rates were 58% (T2a, 53%; T2b, 67%), 75% (T2a, 70%; T2b, 84%), and 46% (T2a, 43%; T2b, 52%), respectively, with no significant differences between the two groups. The 4-year regional recurrence rate was 17%. Grade 3 pulmonary toxicity was observed in only two patients. CONCLUSION : Particle therapy is well tolerated and effective for T2a/bN0M0 NSCLC. To further improve treatment outcome, adjuvant chemotherapy seems a reasonable option, whenever possible.
Collapse
|
36
|
Impact of different beam directions on intensity-modulated radiation therapy dose delivered to functioning lung tissue identified using single-photon emission computed tomography. Contemp Oncol (Pozn) 2014; 18:436-41. [PMID: 25784844 PMCID: PMC4355654 DOI: 10.5114/wo.2014.46237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 01/23/2014] [Accepted: 02/03/2014] [Indexed: 11/17/2022] Open
Abstract
Aim of the study To use different beam arrangements and numbers to plan intensity-modulated radiation therapy (IMRT) and investigate their effects on low and high radiation doses delivered to the functional lung, in order to reduce radiation-induced lung damage. Material and methods Ten patients with stage I–III non-small cell lung carcinoma (NSCLC) underwent IMRT. Beam arrangements were selected on the basis of orientation and dose-volume histograms to create SPECT-guided IMRT plans that spared the functional lung and maintained target coverage. Four different plans, including CT-7, SPECT-7, SPECT-4, SPECT-5 with different beam arrangements, were used. The differences of conformity index (CI), heterogeneity index (HI) between the plans were analyzed, by using a paired t-test. Results The seven-beam SPECT (SPECT-7) plan reduced the volume of the functional lung irradiated with at least 20 Gy (FV20) and 30 Gy (FV30) by 26.02% ±15.45% and 14.41% ±16.66%, respectively, as compared to the seven-beam computed tomography (CT-7) plan. The CI significantly differed between the SPECT-7 and SPECT-4 plans and between the SPECT-5 and SPECT-4 plans, but not between the SPECT-5 and SPECT-7 plans. The CIs in the SPECT-5 and SPECT-7 plans were better than that in the SPECT-4 plan. The heterogeneity index significantly differed among the three SPECT plans and was best in the SPECT-7 plan. Conclusions The incorporation of SPECT images into IMRT planning for NSCLC greatly affected beam angles and number of beams. Fewer beams and modified beam angles achieved similar or better IMRT quality. The low-dose volumes were lower in SPECT-4.
Collapse
|
37
|
Kanemoto A, Okumura T, Ishikawa H, Mizumoto M, Oshiro Y, Kurishima K, Homma S, Hashimoto T, Ohkawa A, Numajiri H, Ohno T, Moritake T, Tsuboi K, Sakae T, Sakurai H. Outcomes and prognostic factors for recurrence after high-dose proton beam therapy for centrally and peripherally located stage I non--small-cell lung cancer. Clin Lung Cancer 2013; 15:e7-12. [PMID: 24365049 DOI: 10.1016/j.cllc.2013.11.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/15/2013] [Accepted: 11/08/2013] [Indexed: 12/25/2022]
Abstract
INTRODUCTION This study was conducted to determine disease control rates and prognostic factors associated with recurrence of centrally and peripherally located stage I NSCLC treated using high-dose PBT. PATIENTS AND METHODS Seventy-four patients with 80 centrally or peripherally located stage I NSCLCs were treated with PBT. A protocol using 72.6 Gy (RBE) in 22 fractions was used for centrally located tumors, and 66 Gy (RBE) in 10 or 12 fractions was used for peripherally located tumors. Data were collected and control rates and prognostic factors for recurrence were evaluated retrospectively. RESULTS The median follow-up period was 31.0 months. The overall survival, disease-specific survival, and progression-free survival rates were 76.7%, 83.0%, and 58.6% at 3 years, respectively. Disease recurrence was noted in 30 patients and local recurrence of 11 tumors occurred. The 3-year local control rate was 86.2% for stage IA tumors and 67.0% for stage IB tumors. Radiation dose was identified as a significant prognostic factor for disease recurrence and local recurrence. Tumor diameter and age were only significantly associated with disease recurrence. The 3-year local control rate was 63.9% for centrally located tumors irradiated with 72.6 Gy (RBE) and 88.4% for peripherally located tumors irradiated with 66 Gy (RBE). CONCLUSION Radiation dose was shown to be the most significant prognostic factor for tumor control in stage I NSCLC treated using high-dose PBT. Tumor diameter was not significant for local control. Further evaluation of PBT for centrally located tumors is warranted.
Collapse
Affiliation(s)
- Ayae Kanemoto
- Proton Medical Research Center and Department of Radiation Oncology, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | - Toshiyuki Okumura
- Proton Medical Research Center and Department of Radiation Oncology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hitoshi Ishikawa
- Proton Medical Research Center and Department of Radiation Oncology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Masashi Mizumoto
- Proton Medical Research Center and Department of Radiation Oncology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshiko Oshiro
- Proton Medical Research Center and Department of Radiation Oncology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Koichi Kurishima
- Department of Respiratory Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shinsuke Homma
- Department of Respiratory Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takayuki Hashimoto
- Proton Medical Research Center and Department of Radiation Oncology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Ayako Ohkawa
- Proton Medical Research Center and Department of Radiation Oncology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Haruko Numajiri
- Proton Medical Research Center and Department of Radiation Oncology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Toshiki Ohno
- Proton Medical Research Center and Department of Radiation Oncology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takashi Moritake
- Proton Medical Research Center and Department of Radiation Oncology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Koji Tsuboi
- Proton Medical Research Center and Department of Radiation Oncology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takeji Sakae
- Proton Medical Research Center and Department of Radiation Oncology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hideyuki Sakurai
- Proton Medical Research Center and Department of Radiation Oncology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
38
|
Santiago A, Jelen U, Ammazzalorso F, Engenhart-Cabillic R, Fritz P, Mühlnickel W, Enghardt W, Baumann M, Wittig A. Reproducibility of target coverage in stereotactic spot scanning proton lung irradiation under high frequency jet ventilation. Radiother Oncol 2013; 109:45-50. [PMID: 24128803 DOI: 10.1016/j.radonc.2013.09.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 09/13/2013] [Accepted: 09/20/2013] [Indexed: 12/21/2022]
Abstract
PURPOSE To investigate scanned-beam proton dose distribution reproducibility in the lung under high frequency jet ventilation (HFJV). MATERIALS AND METHODS For 11 patients (12 lesions), treated with single-fraction photon stereotactic radiosurgery under HFJV, scanned-beam proton plans were prepared with the TRiP98 treatment planning system using 2, 3-4 and 5-7 beams. The planning objective was to deliver at least 95% of the prescription of 33 Gy (RBE) to 98% of the PTV. Plans were subsequently recomputed on localization CT scans. Additionally, for selected cases, the effects of range uncertainties were investigated. RESULTS Median GTV V(98%) was 98.7% in the original 2-field plans and 93.7% in their recomputation (p=0.039). The respective values were 99.0% and 98.0% (p=0.039) for the 3-4-field plans and 100.0% and 99.6% (p=0.125) for the 5-7-field plans. CT calibration uncertainties of ±3.5% led to a GTV V(98%) reduction below 1.5 percentual points in most cases and reaching 3 percentual points for 2-field plans with beam undershoot. CONCLUSIONS Through jet ventilation, reproducible tumor fixation for proton radiotherapy of lung lesions is achievable, ensuring excellent target coverage in most cases. In few cases, non-optimal patient setup reproducibility induced density changes across beam entrance channels, leading to dosimetric deterioration between planning and delivery.
Collapse
Affiliation(s)
- Alina Santiago
- University of Marburg, Department of Radiotherapy and Radiation Oncology, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
The physical characteristics of proton beams are appealing for cancer therapy. The rapid increase in operational and planned proton therapy facilities may suggest that this technology is a "plug-and-play" valuable addition to the arsenal of the radiation oncologist and medical physicist. In reality, the technology is still evolving, so planning and delivery of proton therapy in patients face many practical challenges. This review article discusses the current status of proton therapy treatment planning and delivery techniques, indicates current limitations in dealing with range uncertainties, and proposes possible developments for proton therapy and supplementary technology to try to realize the actual potential of proton therapy.
Collapse
|
40
|
Proton Arc Reduces Range Uncertainty Effects and Improves Conformality Compared With Photon Volumetric Modulated Arc Therapy in Stereotactic Body Radiation Therapy for Non-Small Cell Lung Cancer. Int J Radiat Oncol Biol Phys 2013; 87:188-94. [DOI: 10.1016/j.ijrobp.2013.04.048] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 04/03/2013] [Accepted: 04/23/2013] [Indexed: 12/25/2022]
|
41
|
Oshiro Y, Sakurai H. The use of proton-beam therapy in the treatment of non-small-cell lung cancer. Expert Rev Med Devices 2013; 10:239-45. [PMID: 23480092 DOI: 10.1586/erd.12.81] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Lung cancer is the most common cause of cancer death worldwide. Surgical resection has played a major role in the treatment of non-small-cell lung cancer (NSCLC); however, the disease is often detected in a progressive and inoperable form. Surgical resection may also be impossible for early-stage NSCLC due to medical conditions, such as pulmonary or cardiovascular disease and old age. Radiotherapy plays an important role for these patients. Proton-beam therapy is a particle radiotherapy with an excellent dose localization that permits treatment of lung cancer by administering a high dose to the tumor while minimizing damage to the surrounding normal tissues. Thus, proton beams are increasingly being used for lung cancer. In this context, the authors review the current knowledge on proton-beam therapy for the treatment of NSCLC.
Collapse
Affiliation(s)
- Yoshiko Oshiro
- Department of Radiation Oncology, Tsukuba University, Ibaraki, Japan.
| | | |
Collapse
|
42
|
Stuschke M, Kaiser A, Abu-Jawad J, Pöttgen C, Levegrün S, Farr J. Re-irradiation of recurrent head and neck carcinomas: comparison of robust intensity modulated proton therapy treatment plans with helical tomotherapy. Radiat Oncol 2013; 8:93. [PMID: 23601204 PMCID: PMC3648492 DOI: 10.1186/1748-717x-8-93] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 04/09/2013] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND To test the hypothesis that the therapeutic ratio of intensity-modulated photon therapy using helical tomotherapy (HT) for retreatment of head and neck carcinomas can be improved by robust intensity-modulated proton therapy (IMPT). METHODS Comparative dose planning with robust IMPT was performed for 7 patients retreated with HT. RESULTS On average, HT yielded dose gradients steeper in a distance ≤ 7.5 mm outside the target (p<0.0001, F-test) and more conformal high dose regions down to the 50% isodose than IMPT. Both methods proved comparably robust against set-up errors of up to 2 mm, and normal tissue exposure was satisfactory. The mean body dose was smaller with IMPT. CONCLUSIONS IMPT was found not to be uniformly superior to HT and the steeper average dose fall-off around the target volume is an argument pro HT under the methodological implementations used. However, looking at single organs at risk, the normal tissue sparing of IMPT can surpass tomotherapy for an individual patient. Therefore, comparative dose planning is recommended, if both methods are available.
Collapse
Affiliation(s)
- Martin Stuschke
- Department of Radiotherapy, University Duisburg-Essen, 45147 Essen, Germany
- Westdeutsches Protonentherapiezentrum Essen, 45147 Essen, Germany
| | - Andreas Kaiser
- Westdeutsches Protonentherapiezentrum Essen, 45147 Essen, Germany
| | - Jehad Abu-Jawad
- Department of Radiotherapy, University Duisburg-Essen, 45147 Essen, Germany
| | - Christoph Pöttgen
- Department of Radiotherapy, University Duisburg-Essen, 45147 Essen, Germany
| | - Sabine Levegrün
- Department of Radiotherapy, University Duisburg-Essen, 45147 Essen, Germany
| | - Jonathan Farr
- Westdeutsches Protonentherapiezentrum Essen, 45147 Essen, Germany
- Current address: Department of Radiologic Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
43
|
Westover KD, Timmerman R. Developments in stereotactic ablative radiotherapy for the treatment of early-stage lung cancer. Lung Cancer Manag 2013. [DOI: 10.2217/lmt.13.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SUMMARY Stereotactic ablative radiotherapy (SABR), also known as stereotactic body radiation therapy, has emerged as an effective treatment for inoperable early-stage non-small-cell lung cancer. SABR differs from conventional radiotherapy by virtue of its tight spatial tolerances and use of oligofractionated radiation. The modern technique is characterized by management of tumor motion, image guidance before each fraction and specialized radiation delivery techniques. The result is a highly conformal target dose with a sharp gradient that spares normal tissues with great accuracy. This enables delivery of very potent (ablative) doses, causing more rapid and durable responses than traditional radiation therapy treatment regimens can achieve. The established techniques, new developments and ongoing questions related to SABR for early-stage non-small-cell lung cancer are reviewed herein.
Collapse
Affiliation(s)
- Kenneth D Westover
- Department of Radiation Oncology, University of Texas, Southwestern Medical Center, Dallas, TX 75390-9183, USA.
| | - Robert Timmerman
- Department of Radiation Oncology, University of Texas, Southwestern Medical Center, Dallas, TX 75390-9183, USA
| |
Collapse
|
44
|
Abstract
INTRODUCTION The physical properties of proton beam radiation may offer advantages for treating patients with non-small-cell lung cancer (NSCLC). However, its utility for the treatment of medically inoperable stage I NSCLC patients with stereotactic body radiation therapy (SBRT) is unknown. METHODS Outcomes for patients with medically inoperable stage I NSCLC treated with proton SBRT were retrospectively analyzed. Proton SBRT was selected as the treatment modality based on pulmonary comorbidities (n = 5), prior chest radiation or/and multiple primary tumors (n = 7), or other reasons (n = 3). Treatments were administered using 2 to 3 proton beams. Treatment toxicity was scored according to common toxicity criteria for adverse events version 4 criteria. RESULTS Fifteen consecutive patients and 20 tumors were treated with proton SBRT to 42 to 50 Gy(relative biological effectiveness) in 3 to 5 fractions between July 2008 and September 2010. Treatments were well tolerated with only one case of grade 2 fatigue, one case of grade 2 dermatitis, three cases of rib fracture (maximum grade 2), and one case of grade 3 pneumonitis in a patient with severe chronic obstructive pulmonary disease. With a median follow-up of 24.1 months, 2-year overall survival and local control rates were 64% (95% confidence limits, 34%-83%) and 100% (83%-100%), respectively. CONCLUSIONS We conclude that proton SBRT is effective and well tolerated in this unfavorable group of patients. Prospective clinical trials testing the utility of proton SBRT in stage I NSCLC are warranted.
Collapse
|
45
|
Potentials of robust intensity modulated scanning proton plans for locally advanced lung cancer in comparison to intensity modulated photon plans. Radiother Oncol 2012; 104:45-51. [DOI: 10.1016/j.radonc.2012.03.017] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/21/2012] [Accepted: 03/26/2012] [Indexed: 12/25/2022]
|