1
|
Kuchařová Z, Glasow A, Kortmann RD, Patties I. Antitumor Activity of Radiation Therapy Combined with Checkpoint Kinase Inhibition in SHH/ p53-Mutated Human Medulloblastoma. Int J Mol Sci 2025; 26:2577. [PMID: 40141218 PMCID: PMC11942233 DOI: 10.3390/ijms26062577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/11/2025] [Accepted: 03/01/2025] [Indexed: 03/28/2025] Open
Abstract
Medulloblastoma (MB) is one of the most common malignant pediatric brain tumors. Current therapy results in a poor prognosis for high-risk SHH/p53-mutated MB, emphasizing the importance of more effective therapeutic strategies. Here, we investigated the potential radiosensitizing effects of the checkpoint kinase inhibitors (Chk-is) prexasertib (Chk1/2) and SAR-020106 (Chk1) in human SHH/p53-mutated MB in vitro and in vivo. UW228 and DAOY cells were treated with Chk-is and irradiation (RT). Metabolic activity, proliferation, and apoptosis were determined at d3, and long-term clonogenicity was determined at d14. DNA damage was assessed after 1, 24, and 72 h. Patient-derived SHH/p53-mutated, luciferase-transfected MB cells were implanted orthotopically into NSG mice (d0). Fractionated therapy (daily, d7-11) was applied. Body weight (BW) was documented daily, tumor growth weekly, and proliferation at d42. In vitro, Chk-is exhibited a dose-dependent reduction in metabolic activity, proliferation, and clonogenicity and increased apoptosis. A combination of Chk-is with RT enhanced these antitumor effects, including proliferation, apoptosis, and clonogenicity, and increased residual DNA damage compared to RT alone. In vivo, tumor growth was delayed by Chk-is alone. Low-dose prexasertib enhanced RT-induced tumor growth inhibition. High-dose prexasertib and SAR-020106 showed opposite effects, at least at later time points (n = 3). BW assessments revealed that the treatment was well tolerated. Our data indicate a potential benefit of Chk-is in combination with RT in SHH/p53-mutated MB. However, high-dose Chk-is may compromise the RT effect, possibly through anti-proliferative activity. Furthermore, we demonstrate, for the first time, the intracranial antitumor activity of the Chk1-specific inhibitor SAR-020106.
Collapse
Affiliation(s)
- Zuzana Kuchařová
- Department of Radiation Oncology, Leipzig University, Stephanstraße 9A, 04103 Leipzig, Germany; (Z.K.); (A.G.); (R.-D.K.)
| | - Annegret Glasow
- Department of Radiation Oncology, Leipzig University, Stephanstraße 9A, 04103 Leipzig, Germany; (Z.K.); (A.G.); (R.-D.K.)
- Comprehensive Cancer Center Central Germany (CCCG), Liebigstraße 22, 04103 Leipzig, Germany
| | - Rolf-Dieter Kortmann
- Department of Radiation Oncology, Leipzig University, Stephanstraße 9A, 04103 Leipzig, Germany; (Z.K.); (A.G.); (R.-D.K.)
| | - Ina Patties
- Department of Radiation Oncology, Leipzig University, Stephanstraße 9A, 04103 Leipzig, Germany; (Z.K.); (A.G.); (R.-D.K.)
- Comprehensive Cancer Center Central Germany (CCCG), Liebigstraße 22, 04103 Leipzig, Germany
| |
Collapse
|
2
|
Melia E, Fisch AS, Tinhofer I, Parsons JL. Targeting Chk1 and Wee1 kinases enhances radiosensitivity of 2D and 3D head and neck cancer models to X-rays and low/high-LET protons. Cell Death Dis 2025; 16:128. [PMID: 39994186 PMCID: PMC11850709 DOI: 10.1038/s41419-025-07435-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 01/23/2025] [Accepted: 02/06/2025] [Indexed: 02/26/2025]
Abstract
Ionising radiation causes the introduction of DNA damage, more specifically double strand breaks (DSBs) and complex DNA damage (CDD), that induces cancer cell death leading to the therapeutic effect. To combat this, cells activate arrest at the G2/M checkpoint to allow for effective DNA damage repair, coordinated by the Chk1 and Wee1 protein kinases. Therefore, Chk1 and Wee1 are considered promising therapeutic targets to enhance the effectiveness of radiotherapy in cancer cell killing. Here, we have analysed the response of head and neck squamous cell carcinoma (HNSCC) cell lines, spheroids and patient-derived organoids to X-rays and proton beam therapy (PBT) in the presence of either a Chk1 (MK-8776) or a Wee1 (MK-1775) inhibitor. We demonstrate that inhibitors of Chk1 or Wee1 can significantly enhance the radiosensitivity of both 2D and 3D models of HNSCC to X-rays and PBT (performed at both low and high ionisation densities), and that this effect is caused through abrogation of the G2/M checkpoint causing the persistence of DSBs. Our results therefore suggest that targeting Chk1 and Wee1 kinases in combination with X-rays and PBT could represent a promising therapeutic avenue to enhance the clinical efficacy of HNSCC treatment.
Collapse
Affiliation(s)
- Emma Melia
- Department of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Anne-Sophie Fisch
- Department of Radiooncology and Radiotherapy, Translational Radiation Oncology Research Laboratory, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Ingeborg Tinhofer
- Department of Radiooncology and Radiotherapy, Translational Radiation Oncology Research Laboratory, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Jason L Parsons
- Department of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
3
|
de Bakker T, Maes A, Dragan T, Martinive P, Penninckx S, Van Gestel D. Strategies to Overcome Intrinsic and Acquired Resistance to Chemoradiotherapy in Head and Neck Cancer. Cells 2024; 14:18. [PMID: 39791719 PMCID: PMC11719474 DOI: 10.3390/cells14010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/18/2024] [Accepted: 12/25/2024] [Indexed: 01/12/2025] Open
Abstract
Definitive chemoradiotherapy (CRT) is a cornerstone of treatment for locoregionally advanced head and neck cancer (HNC). Research is ongoing on how to improve the tumor response to treatment and limit normal tissue toxicity. A major limitation in that regard is the growing occurrence of intrinsic or acquired treatment resistance in advanced cases. In this review, we will discuss how overexpression of efflux pumps, perturbation of apoptosis-related factors, increased expression of antioxidants, glucose metabolism, metallotheionein expression, increased DNA repair, cancer stem cells, epithelial-mesenchymal transition, non-coding RNA and the tumour microenvironment contribute towards resistance of HNC to chemotherapy and/or radiotherapy. These mechanisms have been investigated for years and been exploited for therapeutic gain in resistant patients, paving the way to the development of new promising drugs. Since in vitro studies on resistance requires a suitable model, we will also summarize published techniques and treatment schedules that have been shown to generate acquired resistance to chemo- and/or radiotherapy that most closely mimics the clinical scenario.
Collapse
Affiliation(s)
- Tycho de Bakker
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
| | - Anouk Maes
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
| | - Tatiana Dragan
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
| | - Philippe Martinive
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
| | - Sébastien Penninckx
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
- Medical Physics Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Dirk Van Gestel
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
| |
Collapse
|
4
|
Melia E, Parsons JL. The Potential for Targeting G 2/M Cell Cycle Checkpoint Kinases in Enhancing the Efficacy of Radiotherapy. Cancers (Basel) 2024; 16:3016. [PMID: 39272874 PMCID: PMC11394570 DOI: 10.3390/cancers16173016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Radiotherapy is one of the main cancer treatments being used for ~50% of all cancer patients. Conventional radiotherapy typically utilises X-rays (photons); however, there is increasing use of particle beam therapy (PBT), such as protons and carbon ions. This is because PBT elicits significant benefits through more precise dose delivery to the cancer than X-rays, but also due to the increases in linear energy transfer (LET) that lead to more enhanced biological effectiveness. Despite the radiotherapy type, the introduction of DNA damage ultimately drives the therapeutic response through stimulating cancer cell death. To combat this, cells harbour cell cycle checkpoints that enables time for efficient DNA damage repair. Interestingly, cancer cells frequently have mutations in key genes such as TP53 and ATM that drive the G1/S checkpoint, whereas the G2/M checkpoint driven through ATR, Chk1 and Wee1 remains intact. Therefore, targeting the G2/M checkpoint through specific inhibitors is considered an important strategy for enhancing the efficacy of radiotherapy. In this review, we focus on inhibitors of Chk1 and Wee1 kinases and present the current biological evidence supporting their utility as radiosensitisers with different radiotherapy modalities, as well as clinical trials that have and are investigating their potential for cancer patient benefit.
Collapse
Affiliation(s)
- Emma Melia
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Jason L Parsons
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
5
|
Tam A, Mercier BD, Thomas RM, Tizpa E, Wong IG, Shi J, Garg R, Hampel H, Gray SW, Williams T, Bazan JG, Li YR. Moving the Needle Forward in Genomically-Guided Precision Radiation Treatment. Cancers (Basel) 2023; 15:5314. [PMID: 38001574 PMCID: PMC10669735 DOI: 10.3390/cancers15225314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 11/26/2023] Open
Abstract
Radiation treatment (RT) is a mainstay treatment for many types of cancer. Recommendations for RT and the radiation plan are individualized to each patient, taking into consideration the patient's tumor pathology, staging, anatomy, and other clinical characteristics. Information on germline mutations and somatic tumor mutations is at present rarely used to guide specific clinical decisions in RT. Many genes, such as ATM, and BRCA1/2, have been identified in the laboratory to confer radiation sensitivity. However, our understanding of the clinical significance of mutations in these genes remains limited and, as individual mutations in such genes can be rare, their impact on tumor response and toxicity remains unclear. Current guidelines, including those from the National Comprehensive Cancer Network (NCCN), provide limited guidance on how genetic results should be integrated into RT recommendations. With an increasing understanding of the molecular underpinning of radiation response, genomically-guided RT can inform decisions surrounding RT dose, volume, concurrent therapies, and even omission to further improve oncologic outcomes and reduce risks of toxicities. Here, we review existing evidence from laboratory, pre-clinical, and clinical studies with regard to how genetic alterations may affect radiosensitivity. We also summarize recent data from clinical trials and explore potential future directions to utilize genetic data to support clinical decision-making in developing a pathway toward personalized RT.
Collapse
Affiliation(s)
- Andrew Tam
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (A.T.); (B.D.M.); (R.M.T.); (E.T.); (I.G.W.); (J.S.); (R.G.); (T.W.)
| | - Benjamin D. Mercier
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (A.T.); (B.D.M.); (R.M.T.); (E.T.); (I.G.W.); (J.S.); (R.G.); (T.W.)
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (H.H.); (S.W.G.)
| | - Reeny M. Thomas
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (A.T.); (B.D.M.); (R.M.T.); (E.T.); (I.G.W.); (J.S.); (R.G.); (T.W.)
| | - Eemon Tizpa
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (A.T.); (B.D.M.); (R.M.T.); (E.T.); (I.G.W.); (J.S.); (R.G.); (T.W.)
| | - Irene G. Wong
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (A.T.); (B.D.M.); (R.M.T.); (E.T.); (I.G.W.); (J.S.); (R.G.); (T.W.)
| | - Juncong Shi
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (A.T.); (B.D.M.); (R.M.T.); (E.T.); (I.G.W.); (J.S.); (R.G.); (T.W.)
| | - Rishabh Garg
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (A.T.); (B.D.M.); (R.M.T.); (E.T.); (I.G.W.); (J.S.); (R.G.); (T.W.)
| | - Heather Hampel
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (H.H.); (S.W.G.)
| | - Stacy W. Gray
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (H.H.); (S.W.G.)
| | - Terence Williams
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (A.T.); (B.D.M.); (R.M.T.); (E.T.); (I.G.W.); (J.S.); (R.G.); (T.W.)
| | - Jose G. Bazan
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (A.T.); (B.D.M.); (R.M.T.); (E.T.); (I.G.W.); (J.S.); (R.G.); (T.W.)
| | - Yun R. Li
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (A.T.); (B.D.M.); (R.M.T.); (E.T.); (I.G.W.); (J.S.); (R.G.); (T.W.)
- Department of Cancer Genetics and Epigenetics, City of Hope National Medical Center, Duarte, CA 91010, USA
- Division of Quantitative Medicine & Systems Biology, Translational Genomics Research Institute, 445 N. Fifth Street, Phoenix, AZ 85022, USA
| |
Collapse
|
6
|
Disulfiram Acts as a Potent Radio-Chemo Sensitizer in Head and Neck Squamous Cell Carcinoma Cell Lines and Transplanted Xenografts. Cells 2021; 10:cells10030517. [PMID: 33671083 PMCID: PMC7999545 DOI: 10.3390/cells10030517] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 02/23/2021] [Indexed: 01/10/2023] Open
Abstract
The poor prognosis of locally advanced and metastatic head and neck squamous cell carcinoma (HNSCC) is primarily mediated by the functional properties of cancer stem cells (CSCs) and resistance to chemoradiotherapy. We investigated whether the aldehyde dehydrogenase (ALDH) inhibitor disulfiram (DSF) can enhance the sensitivity of therapy. Cell viability was assessed by the 1-(4,5-dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT) and apoptosis assays, and the cell cycle and reactive oxygen species (ROS) levels were evaluated by fluorescence-activated cell sorting (FACS). The radio-sensitizing effect was measured by a colony formation assay. The synergistic effects were calculated by combination index (CI) analyses. The DSF and DSF/Cu2+ inhibited the cell proliferation (inhibitory concentration 50 (IC50) of DSF and DSF/Cu2+ were 13.96 μM and 0.24 μM). DSF and cisplatin displayed a synergistic effect (CI values were <1). DSF or DSF/Cu2+ abolished the cisplatin-induced G2/M arrest (from 52.9% to 40.7% and 41.1%), and combining irradiation (IR) with DSF or DSF/Cu2+ reduced the colony formation and attenuated the G2/M arrest (from 53.6% to 40.2% and 41.9%). The combination of cisplatin, DSF or DSF/Cu2+, and IR enhanced the radio-chemo sensitivity by inducing apoptosis (42.04% and 32.21%) and ROS activity (46.3% and 37.4%). DSF and DSF/Cu2+ enhanced the sensitivity of HNSCC to cisplatin and IR. Confirming the initial data from patient-derived tumor xenograft (PDX) supported a strong rationale to repurpose DSF as a radio-chemosensitizer and to assess its therapeutic potential in a clinical setting.
Collapse
|
7
|
Zhou C, Parsons JL. The radiobiology of HPV-positive and HPV-negative head and neck squamous cell carcinoma. Expert Rev Mol Med 2020; 22:e3. [PMID: 32611474 PMCID: PMC7754878 DOI: 10.1017/erm.2020.4] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/04/2020] [Accepted: 05/28/2020] [Indexed: 12/24/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide, with reported incidences of ~800 000 cases each year. One of the critical determinants in patient response to radiotherapy, particularly for oropharyngeal cancers, is human papillomavirus (HPV) status where HPV-positive patients display improved survival rates and outcomes particularly because of increased responsiveness to radiotherapy. The increased radiosensitivity of HPV-positive HNSCC has been largely linked with defects in the signalling and repair of DNA double-strand breaks. Therefore, strategies to further radiosensitise HPV-positive HNSCC, but also radioresistant HPV-negative HNSCC, have focussed on targeting key DNA repair proteins including PARP, DNA-Pk, ATM and ATR. However, inhibitors against CHK1 and WEE1 involved in cell-cycle checkpoint activation have also been investigated as targets for radiosensitisation in HNSCC. These studies, largely conducted using established HNSCC cell lines in vitro, have demonstrated variability in the response dependent on the specific inhibitors and cell models utilised. However, promising results are evident targeting specifically PARP, DNA-Pk, ATR and CHK1 in synergising with radiation in HNSCC cell killing. Nevertheless, these preclinical studies require further expansion and investigation for translational opportunities for the effective treatment of HNSCC in combination with radiotherapy.
Collapse
Affiliation(s)
- Chumin Zhou
- Cancer Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, 200 London Road, LiverpoolL3 9TA, UK
| | - Jason L. Parsons
- Cancer Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, 200 London Road, LiverpoolL3 9TA, UK
| |
Collapse
|
8
|
Patties I, Kallendrusch S, Böhme L, Kendzia E, Oppermann H, Gaunitz F, Kortmann RD, Glasow A. The Chk1 inhibitor SAR-020106 sensitizes human glioblastoma cells to irradiation, to temozolomide, and to decitabine treatment. J Exp Clin Cancer Res 2019; 38:420. [PMID: 31639020 PMCID: PMC6805470 DOI: 10.1186/s13046-019-1434-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/01/2019] [Indexed: 12/30/2022] Open
Abstract
Background Glioblastoma is the most common and aggressive brain tumour in adults with a median overall survival of only 14 months after standard therapy with radiation therapy (IR) and temozolomide (TMZ). In a novel multimodal treatment approach we combined the checkpoint kinase 1 (Chk1) inhibitor SAR-020106 (SAR), disrupting homologue recombination, with standard DNA damage inducers (IR, TMZ) and the epigenetic/cytotoxic drug decitabine (5-aza-2′-deoxycitidine, 5-aza-dC). Different in vitro glioblastoma models are monitored to evaluate if the impaired DNA damage repair may chemo/radiosensitize the tumour cells. Methods Human p53-mutated (p53-mut) and -wildtype (p53-wt) glioblastoma cell lines (p53-mut: LN405, T98G; p53-wt: A172, DBTRG) and primary glioblastoma cells (p53-mut: P0297; p53-wt: P0306) were treated with SAR combined with TMZ, 5-aza-dC, and/or IR and analysed for induction of apoptosis (AnnexinV and sub-G1 assay), cell cycle distribution (nuclear PI staining), DNA damage (alkaline comet or gH2A.X assay), proliferation inhibition (BrdU assay), reproductive survival (clonogenic assay), and potential tumour stem cells (nestinpos/GFAPneg fluorescence staining). Potential treatment-induced neurotoxicity was evaluated on nestin-positive neural progenitor cells in a murine entorhinal-hippocampal slice culture model. Results SAR showed radiosensitizing effects on the induction of apoptosis and on the reduction of long-term survival in p53-mut and p53-wt glioblastoma cell lines and primary cells. In p53-mut cells, this effect was accompanied by an abrogation of the IR-induced G2/M arrest and an enhancement of IR-induced DNA damage by SAR treatment. Also TMZ and 5-aza-dC acted radioadditively albeit to a lesser extent. The multimodal treatment achieved the most effective reduction of clonogenicity in all tested cell lines and did not affect the ratio of nestinpos/GFAPneg cells. No neurotoxic effects were detected when the number of nestin-positive neural progenitor cells remained unchanged after multimodal treatment. Conclusion The Chk1 inhibitor SAR-020106 is a potent sensitizer for DNA damage-induced cell death in glioblastoma therapy strongly reducing clonogenicity of tumour cells. Selectively enhanced p53-mut cell death may provide stronger responses in tumours defective of non-homologous end joining (NHEJ). Our results suggest that a multimodal therapy involving DNA damage inducers and DNA repair inhibitors might be an effective anti-tumour strategy with a low risk of neurotoxicity.
Collapse
|
9
|
Minten EV, Yu DS. DNA Repair: Translation to the Clinic. Clin Oncol (R Coll Radiol) 2019; 31:303-310. [PMID: 30876709 DOI: 10.1016/j.clon.2019.02.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 12/18/2022]
Abstract
It has been well established that an accumulation of mutations in DNA, whether caused by external sources (e.g. ultraviolet light, radioactivity) or internal sources (e.g. metabolic by-products, such as reactive oxygen species), has the potential to cause a cell to undergo carcinogenesis and increase the risk for the development of cancer. Therefore, it is critically important for a cell to have the capacity to properly respond to and repair DNA damage as it occurs. The DNA damage response (DDR) describes a collection of DNA repair pathways that aid in the protection of genomic integrity by detecting myriad types of DNA damage and initiating the correct DNA repair pathway. In many instances, a deficiency in the DDR, whether inherited or spontaneously assumed, can increase the risk of carcinogenesis and ultimately tumorigenesis through the accumulation of mutations that fail to be properly repaired. Interestingly, although disruption of the DDR can lead to the initial genomic instability that can ultimately cause carcinogenesis, the DDR has also proven to be an invaluable target for anticancer drugs and therapies. Making matters more complicated, the DDR is also involved in the resistance to first-line cancer therapy. In this review, we will consider therapies already in use in the clinic and ongoing research into other avenues of treatment that target DNA repair pathways in cancer.
Collapse
Affiliation(s)
- E V Minten
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - D S Yu
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
10
|
Dillon M, Boylan Z, Smith D, Guevara J, Mohammed K, Peckitt C, Saunders M, Banerji U, Clack G, Smith S, Spicer J, Forster M, Harrington K. PATRIOT: A phase I study to assess the tolerability, safety and biological effects of a specific ataxia telangiectasia and Rad3-related (ATR) inhibitor (AZD6738) as a single agent and in combination with palliative radiation therapy in patients with solid tumours. Clin Transl Radiat Oncol 2018; 12:16-20. [PMID: 30073210 PMCID: PMC6068075 DOI: 10.1016/j.ctro.2018.06.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 06/06/2018] [Indexed: 12/19/2022] Open
Abstract
PATRIOT is a phase I study of the ATR inhibitor, AZD6738, as monotherapy, and in combination with palliative radiotherapy. Here, we describe the protocol for this study, which opened in 2014 and is currently recruiting and comprises dose escalation of both drug and radiotherapy, and expansion cohorts.
Collapse
Affiliation(s)
- M.T. Dillon
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | | | - D. Smith
- The Royal Marsden NHS Foundation Trust, London, UK
| | - J. Guevara
- The Royal Marsden NHS Foundation Trust, London, UK
| | - K. Mohammed
- The Royal Marsden NHS Foundation Trust, London, UK
| | - C. Peckitt
- The Royal Marsden NHS Foundation Trust, London, UK
| | | | - U. Banerji
- The Royal Marsden NHS Foundation Trust, London, UK
| | - G. Clack
- Department of Oncology and Metabolism, University of Sheffield Medical School, Beech Hill Road, SHEFFIELD S10 2RX, UK
| | | | | | - M.D. Forster
- University College London Hospitals NHS Foundation Trust and UCL Cancer Centre, London UK
| | - K.J. Harrington
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| |
Collapse
|
11
|
Hafsi H, Dillon MT, Barker HE, Kyula JN, Schick U, Paget JT, Smith HG, Pedersen M, McLaughlin M, Harrington KJ. Combined ATR and DNA-PK Inhibition Radiosensitizes Tumor Cells Independently of Their p53 Status. Front Oncol 2018; 8:245. [PMID: 30057890 PMCID: PMC6053502 DOI: 10.3389/fonc.2018.00245] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 06/18/2018] [Indexed: 02/02/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a significant cause of cancer deaths. Cisplatin-based chemoradiotherapy is a standard of care for locally advanced disease. ATR and DNA-PK inhibition (DNA-PKi) are actively being investigated in clinical trials with preclinical data supporting clinical translation as radiosensitizers. Here, we hypothesized that targeting both ATR and DNA-PK with small molecule inhibitors would increase radiosensitization of HNSCC cell lines. Radiosensitization was assessed by Bliss independence analysis of colony survival data. Strong cell cycle perturbing effects were observed with ATR inhibition reversing the G2/M arrest observed for radiation-DNA-PKi. Increased apoptosis in combination groups was measured by Sub-G1 DNA populations. DNA-PKi increased radiation-induced RAD51 and gamma-H2Ax foci, with the addition of ATR inhibition reducing levels of both. A sharp increase in nuclear fragmentation after aberrant mitotic transit appears to be the main driver of decreased survival due to irradiation and dual ATR/DNA-PKi. Dual inhibition of DNA-PK and ATR represents a novel approach in combination with radiation, with efficacy appearing to be independent of p53 status. Due to toxicity concerns, careful assessment is necessary in any future translation of single or dual radiosensitization approaches. Ongoing clinical trials into the ATR inhibitor AZD6738 plus radiation, and the phenotypically similar combination of AZD6738 and the PARP inhibitor olaparib, are likely to be key in ascertaining the toxicity profile of such combinations.
Collapse
Affiliation(s)
- Hind Hafsi
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Magnus T. Dillon
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital, London, United Kingdom
| | - Holly E. Barker
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Joan N. Kyula
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Ulrike Schick
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
- Radiation Oncology Department, University Hospital Morvan, Brest, France
| | - James T. Paget
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital, London, United Kingdom
| | - Henry G. Smith
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital, London, United Kingdom
| | - Malin Pedersen
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Martin McLaughlin
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Kevin J. Harrington
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital, London, United Kingdom
| |
Collapse
|
12
|
MK-8776, a novel chk1 kinase inhibitor, radiosensitizes p53-defective human tumor cells. Oncotarget 2018; 7:71660-71672. [PMID: 27690219 PMCID: PMC5342109 DOI: 10.18632/oncotarget.12311] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 09/20/2016] [Indexed: 12/20/2022] Open
Abstract
Radiotherapy is commonly used to treat a variety of solid tumors but improvements in the therapeutic ratio are sorely needed. The aim of this study was to assess the Chk1 kinase inhibitor, MK-8776, for its ability to radiosensitize human tumor cells. Cells derived from NSCLC and HNSCC cancers were tested for radiosensitization by MK-8776. The ability of MK-8776 to abrogate the radiation-induced G2 block was determined using flow cytometry. Effects on repair of radiation-induced DNA double strand breaks (DSBs) were determined on the basis of rad51, γ-H2AX and 53BP1 foci. Clonogenic survival analyses indicated that MK-8776 radiosensitized p53-defective tumor cells but not lines with wild-type p53. Abrogation of the G2 block was evident in both p53-defective cells and p53 wild-type lines indicating no correlation with radiosensitization. However, only p53-defective cells entered mitosis harboring unrepaired DSBs. MK-8776 appeared to inhibit repair of radiation-induced DSBs at early times after irradiation. A comparison of MK-8776 to the wee1 inhibitor, MK-1775, suggested both similarities and differences in their activities. In conclusion, MK-8776 radiosensitizes tumor cells by mechanisms that include abrogation of the G2 block and inhibition of DSB repair. Our findings support the clinical evaluation of MK-8776 in combination with radiation.
Collapse
|
13
|
Jiang Y, Liu Y, Hu H. Studies on DNA Damage Repair and Precision Radiotherapy for Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1026:105-123. [PMID: 29282681 DOI: 10.1007/978-981-10-6020-5_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Radiotherapy acts as an important component of breast cancer management, which significantly decreases local recurrence in patients treated with conservative surgery or with radical mastectomy. On the foundation of technological innovation of radiotherapy setting, precision radiotherapy of cancer has been widely applied in recent years. DNA damage and its repair mechanism are the vital factors which lead to the formation of tumor. Moreover, the status of DNA damage repair in cancer cells has been shown to influence patient response to the therapy, including radiotherapy. Some genes can affect the radiosensitivity of tumor cell by regulating the DNA damage repair pathway. This chapter will describe the potential application of DNA damage repair in precision radiotherapy of breast cancer.
Collapse
Affiliation(s)
- Yanhui Jiang
- Department of Radiotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yimin Liu
- Department of Radiotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Hai Hu
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| |
Collapse
|
14
|
Qiu Z, Oleinick NL, Zhang J. ATR/CHK1 inhibitors and cancer therapy. Radiother Oncol 2017; 126:450-464. [PMID: 29054375 DOI: 10.1016/j.radonc.2017.09.043] [Citation(s) in RCA: 226] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 08/01/2017] [Accepted: 09/30/2017] [Indexed: 02/06/2023]
Abstract
The cell cycle checkpoint proteins ataxia-telangiectasia-mutated-and-Rad3-related kinase (ATR) and its major downstream effector checkpoint kinase 1 (CHK1) prevent the entry of cells with damaged or incompletely replicated DNA into mitosis when the cells are challenged by DNA damaging agents, such as radiation therapy (RT) or chemotherapeutic drugs, that are the major modalities to treat cancer. This regulation is particularly evident in cells with a defective G1 checkpoint, a common feature of cancer cells, due to p53 mutations. In addition, ATR and/or CHK1 suppress replication stress (RS) by inhibiting excess origin firing, particularly in cells with activated oncogenes. Those functions of ATR/CHK1 make them ideal therapeutic targets. ATR/CHK1 inhibitors have been developed and are currently used either as single agents or paired with radiotherapy or a variety of genotoxic chemotherapies in preclinical and clinical studies. Here, we review the status of the development of ATR and CHK1 inhibitors. We also discuss the potential mechanisms by which ATR and CHK1 inhibition induces cell killing in the presence or absence of exogenous DNA damaging agents, such as RT and chemotherapeutic agents. Lastly, we discuss synthetic lethality interactions between the inhibition of ATR/CHK1 and defects in other DNA damage response (DDR) pathways/genes.
Collapse
Affiliation(s)
- Zhaojun Qiu
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, Cleveland, USA
| | - Nancy L Oleinick
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, Cleveland, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, USA
| | - Junran Zhang
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, Cleveland, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, USA.
| |
Collapse
|
15
|
Borst GR, Kumareswaran R, Yücel H, Telli S, Do T, McKee T, Zafarana G, Jonkers J, Verheij M, O'Connor MJ, Rottenberg S, Bristow RG. Neoadjuvant olaparib targets hypoxia to improve radioresponse in a homologous recombination-proficient breast cancer model. Oncotarget 2017; 8:87638-87646. [PMID: 29152107 PMCID: PMC5675659 DOI: 10.18632/oncotarget.20936] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 07/09/2017] [Indexed: 12/31/2022] Open
Abstract
Clinical trials are studying the benefits of combining the PARP-1 inhibitor olaparib with chemotherapy and radiotherapy treatment in a variety of cancer increasing the therapeutic ratio for olaparib may come from its ability to modify the tumour microenvironment by targeting homologous recombination-deficient, hypoxic tumour clonogens, and/or increasing tumour-associated vasodilation to improve oxygenation. Herein, we investigated the effect of prolonged neoadjuvant exposure to olaparib on the tumor microenvironment using a genetically-engineered mouse p53−/− syngeneic breast cancer model, which is proficient in homology-directed DNA repair. We observed increased in vivo growth delay and decreased ex vivo clonogenic survival following pre-treatment with olaparib 50 mg/kg bid Olaparib for 7 days ending 48 hours prior to a radiation dose of 12Gy. This increased in vivo radioresponse was associated with a decreased hypoxic fraction. This study suggests that the radiation response in patients can be improved with limited toxicity if olaparib is given in a purely neoadjuvant setting to modify the tumor microenviroment prior to the start of the radiotherapy treatment. Consequently a significant gain can be achieved in therapeutic window and clinical studies are needed to confirm this preclinical data.
Collapse
Affiliation(s)
- Gerben R Borst
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.,Departments of Medical Biophysics and Radiation Oncology, University of Toronto, Toronto, Canada.,Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Radiation Oncology, Amsterdam, The Netherlands
| | - Ramya Kumareswaran
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.,Departments of Medical Biophysics and Radiation Oncology, University of Toronto, Toronto, Canada
| | - Hatice Yücel
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.,Departments of Medical Biophysics and Radiation Oncology, University of Toronto, Toronto, Canada.,Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Radiation Oncology, Amsterdam, The Netherlands
| | - Seyda Telli
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.,Departments of Medical Biophysics and Radiation Oncology, University of Toronto, Toronto, Canada
| | - Trevor Do
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.,Departments of Medical Biophysics and Radiation Oncology, University of Toronto, Toronto, Canada
| | - Trevor McKee
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.,Departments of Medical Biophysics and Radiation Oncology, University of Toronto, Toronto, Canada
| | - Gaetano Zafarana
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.,Departments of Medical Biophysics and Radiation Oncology, University of Toronto, Toronto, Canada
| | - Jos Jonkers
- Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Molecular Biology, Amsterdam, The Netherlands
| | - Marcel Verheij
- Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Radiation Oncology, Amsterdam, The Netherlands
| | - Mark J O'Connor
- Oncology, Innovative Medicines and Early Development, AstraZeneca, Cambridge, United Kingdom
| | - Sven Rottenberg
- Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Molecular Biology, Amsterdam, The Netherlands.,Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Robert G Bristow
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.,Departments of Medical Biophysics and Radiation Oncology, University of Toronto, Toronto, Canada
| |
Collapse
|
16
|
Suzuki M, Yamamori T, Bo T, Sakai Y, Inanami O. MK-8776, a novel Chk1 inhibitor, exhibits an improved radiosensitizing effect compared to UCN-01 by exacerbating radiation-induced aberrant mitosis. Transl Oncol 2017; 10:491-500. [PMID: 28550769 PMCID: PMC5447387 DOI: 10.1016/j.tranon.2017.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/27/2017] [Accepted: 04/03/2017] [Indexed: 11/08/2022] Open
Abstract
Checkpoint kinase 1 (Chk1) is an evolutionarily conserved serine/threonine kinase that plays an important role in G2/M checkpoint signaling. Here, we evaluate the radiosensitizing effects of a novel selective Chk1 inhibitor MK-8776, comparing its efficacy with a first-generation Chk1 inhibitor UCN-01, and attempt to elucidate the mechanism of radiosensitization. In a clonogenic survival assay, MK-8776 demonstrated a more pronounced radiosensitizing effect than UCN-01, with lower cytotoxicity. Importantly, radiosensitization by MK-8776 can be achieved at doses as low as 2.5 Gy, which is a clinically applicable irradiation dose. MK-8776, but not UCN-01, exacerbated mitotic catastrophe (MC) and centrosome abnormalities, without affecting repair kinetics of DNA double strand breaks. Furthermore, live-cell imaging revealed that MK-8776 significantly abrogated the radiation-induced G2/M checkpoint, prolonged the mitotic phase, and enhanced aberrant mitosis. This suggests that Chk1 inhibition by MK-8776 activates a spindle assembly checkpoint and increases mitotic defects in irradiated EMT6 cells. In conclusion, we have shown that, at minimally toxic concentrations, MK-8776 enhances radiation-induced cell death through the enhancement of aberrant mitosis and MC, without affecting DNA damage repair.
Collapse
|
17
|
Wang Y, Hu L, Zhang X, Zhao H, Xu H, Wei Y, Jiang H, Xie C, Zhou Y, Zhou F. Downregulation of Mitochondrial Single Stranded DNA Binding Protein (SSBP1) Induces Mitochondrial Dysfunction and Increases the Radiosensitivity in Non-Small Cell Lung Cancer Cells. J Cancer 2017. [PMID: 28638454 PMCID: PMC5479245 DOI: 10.7150/jca.18170] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Radiotherapy is one of the major therapeutic strategies for human non-small cell lung cancer (NSCLC), but intrinsic radioresistance of cancer cells makes a further improvement of radiotherapy for NSCLC challenging. Mitochondrial function is frequently dysregulated in cancer cells for adaptation to the changes of tumor microenvironment after exposure to radiation. Therefore, targeting mitochondrial biogenesis and bioenergetics is an attractive strategy to sensitize cancer cells to radiation therapy. In this study, we found that downregulation of single-strand DNA-binding protein 1 (SSBP1) in H1299 cells was associated with inducing mitochondrial dysfunction and increasing radiosensitivity to ionizing radiation. Mechanistically, SSBP1 loss induced mitochondrial dysfunction via decreasing mitochondrial DNA copy number and ATP generation, enhancing the mitochondrial-derived ROS accumulation and downregulating key glycolytic enzymes expression. SSBP1 knockdown increased the radiosensitivity of H1299 cells by inducing increased apoptosis, prolonged G2/M phase arrest and defective homologous recombination repair of DNA double-strand breaks. Our findings identified SSBP1 as a radioresistance-related protein, providing potential novel mitochondrial target for sensitizing NSCLC to radiotherapy.
Collapse
Affiliation(s)
- You Wang
- Hubei Key Laboratory of Tumor Biological Behavior, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Liu Hu
- Hubei Key Laboratory of Tumor Biological Behavior, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ximei Zhang
- Hubei Key Laboratory of Tumor Biological Behavior, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hong Zhao
- Hubei Key Laboratory of Tumor Biological Behavior, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hui Xu
- Hubei Key Laboratory of Tumor Biological Behavior, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuehua Wei
- Hubei Key Laboratory of Tumor Biological Behavior, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Huangang Jiang
- Hubei Key Laboratory of Tumor Biological Behavior, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Conghua Xie
- Hubei Key Laboratory of Tumor Biological Behavior, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yunfeng Zhou
- Hubei Key Laboratory of Tumor Biological Behavior, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fuxiang Zhou
- Hubei Key Laboratory of Tumor Biological Behavior, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
18
|
Zhang M, Singh R, Peng S, Mazumdar T, Sambandam V, Shen L, Tong P, Li L, Kalu NN, Pickering CR, Frederick M, Myers JN, Wang J, Johnson FM. Mutations of the LIM protein AJUBA mediate sensitivity of head and neck squamous cell carcinoma to treatment with cell-cycle inhibitors. Cancer Lett 2017; 392:71-82. [PMID: 28126323 PMCID: PMC5404895 DOI: 10.1016/j.canlet.2017.01.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/13/2017] [Accepted: 01/16/2017] [Indexed: 01/22/2023]
Abstract
The genomic alterations identified in head and neck squamous cell carcinoma (HNSCC) tumors have not resulted in any changes in clinical care, making the development of biomarker-driven targeted therapy for HNSCC a major translational gap in knowledge. To fill this gap, we used 59 molecularly characterized HNSCC cell lines and found that mutations of AJUBA, SMAD4 and RAS predicted sensitivity and resistance to treatment with inhibitors of polo-like kinase 1 (PLK1), checkpoint kinases 1 and 2, and WEE1. Inhibition or knockdown of PLK1 led to cell-cycle arrest at the G2/M transition and apoptosis in sensitive cell lines and decreased tumor growth in an orthotopic AJUBA-mutant HNSCC mouse model. AJUBA protein expression was undetectable in most AJUBA-mutant HNSCC cell lines, and total PLK1 and Bora protein expression were decreased. Exogenous expression of wild-type AJUBA in an AJUBA-mutant cell line partially rescued the phenotype of PLK1 inhibitor-induced apoptosis and decreased PLK1 substrate inhibition, suggesting a threshold effect in which higher drug doses are required to affect PLK1 substrate inhibition. PLK1 inhibition was an effective therapy for HNSCC in vitro and in vivo. However, biomarkers to guide such therapy are lacking. We identified AJUBA, SMAD4 and RAS mutations as potential candidate biomarkers of response of HNSCC to treatment with these mitotic inhibitors.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Otolaryngology-Head & Neck Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, People's Republic of China
| | - Ratnakar Singh
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shaohua Peng
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tuhina Mazumdar
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vaishnavi Sambandam
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Li Shen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pan Tong
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lerong Li
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nene N Kalu
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Curtis R Pickering
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Mitchell Frederick
- Department of Otolaryngology, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey N Myers
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Faye M Johnson
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
| |
Collapse
|
19
|
Patel R, Barker HE, Kyula J, McLaughlin M, Dillon MT, Schick U, Hafsi H, Thompson A, Khoo V, Harrington K, Zaidi S. An orally bioavailable Chk1 inhibitor, CCT244747, sensitizes bladder and head and neck cancer cell lines to radiation. Radiother Oncol 2017; 122:470-475. [DOI: 10.1016/j.radonc.2016.12.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 12/14/2016] [Accepted: 12/22/2016] [Indexed: 11/24/2022]
|
20
|
Personalised Medicine: Genome Maintenance Lessons Learned from Studies in Yeast as a Model Organism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1007:157-178. [PMID: 28840557 DOI: 10.1007/978-3-319-60733-7_9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Yeast research has been tremendously contributing to the understanding of a variety of molecular pathways due to the ease of its genetic manipulation, fast doubling time as well as being cost-effective. The understanding of these pathways did not only help scientists learn more about the cellular functions but also assisted in deciphering the genetic and cellular defects behind multiple diseases. Hence, yeast research not only opened the doors for transforming basic research into applied research, but also paved the roads for improving diagnosis and innovating personalized therapy of different diseases. In this chapter, we discuss how yeast research has contributed to understanding major genome maintenance pathways such as the S-phase checkpoint activation pathways, repair via homologous recombination and non-homologous end joining as well as topoisomerases-induced protein linked DNA breaks repair. Defects in these pathways lead to neurodegenerative diseases and cancer. Thus, the understanding of the exact genetic defects underlying these diseases allowed the development of personalized medicine, improving the diagnosis and treatment and overcoming the detriments of current conventional therapies such as the side effects, toxicity as well as drug resistance.
Collapse
|
21
|
Yamamoto VN, Thylur DS, Bauschard M, Schmale I, Sinha UK. Overcoming radioresistance in head and neck squamous cell carcinoma. Oral Oncol 2016; 63:44-51. [PMID: 27938999 DOI: 10.1016/j.oraloncology.2016.11.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 08/29/2016] [Accepted: 11/06/2016] [Indexed: 12/28/2022]
Abstract
Radiation therapy plays an essential role in the treatment of head and neck squamous cell carcinoma (HNSCC), yet therapeutic efficacy is hindered by treatment-associated toxicity and tumor recurrence. In comparison to other cancers, innovation has proved challenging, with the epidermal growth factor receptor (EGFR) antibody cetuximab being the only new radiosensitizing agent approved by the FDA in over half a century. This review examines the physiological mechanisms that contribute to radioresistance in HNSCC as well as preclinical and clinical data regarding novel radiosensitizing agents, with an emphasis on those with highest translational promise.
Collapse
Affiliation(s)
- Vicky N Yamamoto
- USC Tina and Rick Caruso Department of Otolaryngology-Head & Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.
| | - David S Thylur
- USC Tina and Rick Caruso Department of Otolaryngology-Head & Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Michael Bauschard
- USC Tina and Rick Caruso Department of Otolaryngology-Head & Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Isaac Schmale
- Department of Otolaryngology-Head & Neck Surgery, University of Rochester Medical Center, Rochester, NY, United States
| | - Uttam K Sinha
- USC Tina and Rick Caruso Department of Otolaryngology-Head & Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
22
|
Barker HE, Patel R, McLaughlin M, Schick U, Zaidi S, Nutting CM, Newbold KL, Bhide S, Harrington KJ. CHK1 Inhibition Radiosensitizes Head and Neck Cancers to Paclitaxel-Based Chemoradiotherapy. Mol Cancer Ther 2016; 15:2042-54. [PMID: 27422809 DOI: 10.1158/1535-7163.mct-15-0998] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 06/10/2016] [Indexed: 11/16/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a leading cause of cancer-related deaths, with increasingly more cases arising due to high-risk human papillomavirus (HPV) infection. Cisplatin-based chemoradiotherapy is a standard-of-care for locally advanced head and neck cancer but is frequently ineffective. Research into enhancing radiation responses as a means of improving treatment outcomes represents a high priority. Here, we evaluated a CHK1 inhibitor (CCT244747) as a radiosensitiser and investigated whether a mechanistically rational triple combination of radiation/paclitaxel/CHK1 inhibitor delivered according to an optimized schedule would provide added benefit. CCT244747 abrogated radiation-induced G2 arrest in the p53-deficient HNSCC cell lines, HN4 and HN5, causing cells to enter mitosis with unrepaired DNA damage. The addition of paclitaxel further increased cell kill and significantly reduced tumor growth in an HN5 xenograft model. Importantly, a lower dose of paclitaxel could be used when CCT244747 was included, therefore potentially limiting toxicity. Triple therapy reduced the expression of several markers of radioresistance. Moreover, the more radioresistant HN5 cell line exhibited greater radiation-mediated CHK1 activation and was more sensitive to triple therapy than HN4 cells. We analyzed CHK1 expression in a panel of head and neck tumors and observed that primary tumors from HPV(+) patients, who went on to recur postradiotherapy, exhibited significantly stronger expression of total, and activated CHK1. CHK1 may serve as a biomarker for identifying tumors likely to recur and, therefore, patients who may benefit from concomitant treatment with a CHK1 inhibitor and paclitaxel during radiotherapy. Clinical translation of this strategy is under development. Mol Cancer Ther; 15(9); 2042-54. ©2016 AACR.
Collapse
Affiliation(s)
- Holly E Barker
- Targeted Therapy Team, Division of Cancer Biology, The Institute of Cancer Research, Chester Beatty Laboratories, London, United Kingdom.
| | - Radhika Patel
- Targeted Therapy Team, Division of Cancer Biology, The Institute of Cancer Research, Chester Beatty Laboratories, London, United Kingdom
| | - Martin McLaughlin
- Targeted Therapy Team, Division of Cancer Biology, The Institute of Cancer Research, Chester Beatty Laboratories, London, United Kingdom
| | - Ulrike Schick
- Targeted Therapy Team, Division of Cancer Biology, The Institute of Cancer Research, Chester Beatty Laboratories, London, United Kingdom. Radiation Oncology Unit, University Hospital, Brest, France
| | - Shane Zaidi
- Targeted Therapy Team, Division of Cancer Biology, The Institute of Cancer Research, Chester Beatty Laboratories, London, United Kingdom. Head and Neck Unit, The Royal Marsden NHS Foundation Trust, London and Surrey, United Kingdom
| | - Christopher M Nutting
- Head and Neck Unit, The Royal Marsden NHS Foundation Trust, London and Surrey, United Kingdom
| | - Katie L Newbold
- Head and Neck Unit, The Royal Marsden NHS Foundation Trust, London and Surrey, United Kingdom
| | - Shreerang Bhide
- Targeted Therapy Team, Division of Cancer Biology, The Institute of Cancer Research, Chester Beatty Laboratories, London, United Kingdom. Head and Neck Unit, The Royal Marsden NHS Foundation Trust, London and Surrey, United Kingdom
| | - Kevin J Harrington
- Targeted Therapy Team, Division of Cancer Biology, The Institute of Cancer Research, Chester Beatty Laboratories, London, United Kingdom. Head and Neck Unit, The Royal Marsden NHS Foundation Trust, London and Surrey, United Kingdom
| |
Collapse
|
23
|
Patties I, Kortmann RD, Menzel F, Glasow A. Enhanced inhibition of clonogenic survival of human medulloblastoma cells by multimodal treatment with ionizing irradiation, epigenetic modifiers, and differentiation-inducing drugs. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:94. [PMID: 27317342 PMCID: PMC4912728 DOI: 10.1186/s13046-016-0376-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 06/13/2016] [Indexed: 12/17/2022]
Abstract
Background Medulloblastoma (MB) is the most common pediatric brain tumor. Current treatment regimes consisting of primary surgery followed by radio- and chemotherapy, achieve 5-year overall survival rates of only about 60 %. Therapy-induced endocrine and neurocognitive deficits are common late adverse effects. Thus, improved antitumor strategies are urgently needed. In this study, we combined irradiation (IR) together with epigenetic modifiers and differentiation inducers in a multimodal approach to enhance the efficiency of tumor therapy in MB and also assessed possible late adverse effects on neurogenesis. Methods In three human MB cell lines (DAOY, MEB-Med8a, D283-Med) short-time survival (trypan blue exclusion assay), apoptosis, autophagy, cell cycle distribution, formation of gH2AX foci, and long-term reproductive survival (clonogenic assay) were analyzed after treatment with 5-aza-2′-deoxycytidine (5-azadC), valproic acid (VPA), suberanilohydroxamic acid (SAHA), abacavir (ABC), all-trans retinoic acid (ATRA) and resveratrol (RES) alone or combined with 5-aza-dC and/or IR. Effects of combinatorial treatments on neurogenesis were evaluated in cultured murine hippocampal slices from transgenic nestin-CFPnuc C57BL/J6 mice. Life imaging of nestin-positive neural stem cells was conducted at distinct time points for up to 28 days after treatment start. Results All tested drugs showed a radiosynergistic action on overall clonogenic survival at least in two-outof-three MB cell lines. This effect was pronounced in multimodal treatments combining IR, 5-aza-dC and a second drug. Hereby, ABC and RES induced the strongest reduction of clongenic survival in all three MB cell lines and led to the induction of apoptosis (RES, ABC) and/or autophagy (ABC). Additionally, 5-aza-dC, RES, and ABC increased the S phase cell fraction and induced the formation of gH2AX foci at least in oneout-of-three cell lines. Thereby, the multimodal treatment with 5-aza-dC, IR, and RES or ABC did not change the number of normal neural progenitor cells in murine slice cultures. Conclusion In conclusion, the radiosensitizing capacities of epigenetic and differentiation-inducing drugs presented here suggest that their adjuvant administration might improve MB therapy. Thereby, the combination of 5-aza-dC/IR with ABC and RES seemed to be the most promising to enhance tumor control without affecting the normal neural precursor cells.
Collapse
Affiliation(s)
- Ina Patties
- Department of Radiation Therapy, University of Leipzig, Stephanstraße 9a, Leipzig, 04103, Germany.
| | - Rolf-Dieter Kortmann
- Department of Radiation Therapy, University of Leipzig, Stephanstraße 9a, Leipzig, 04103, Germany
| | - Franziska Menzel
- Institute of Anatomy, University of Leipzig, Liebigstraße 13, 04103, Leipzig, Germany
| | - Annegret Glasow
- Department of Radiation Therapy, University of Leipzig, Stephanstraße 9a, Leipzig, 04103, Germany
| |
Collapse
|
24
|
Yang H, Wu L, Ke S, Wang W, Yang L, Gao X, Fang H, Yu H, Zhong Y, Xie C, Zhou F, Zhou Y. Downregulation of Ubiquitin-conjugating Enzyme UBE2D3 Promotes Telomere Maintenance and Radioresistance of Eca-109 Human Esophageal Carcinoma Cells. J Cancer 2016; 7:1152-62. [PMID: 27326259 PMCID: PMC4911883 DOI: 10.7150/jca.14745] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/26/2016] [Indexed: 12/28/2022] Open
Abstract
Ubiquitin-conjugating enzyme UBE2D3 is an important member of the ubiquitin-proteasome pathways. Our previous study showed that the expression of UBE2D3 was negatively related to human telomerase reverse transcriptase (hTERT) and radioresistance in human breast cancer cells. However, in esophageal carcinoma, the exact effects and mechanisms of UBE2D3 in radioresistance remain unclear. This study shows that UBE2D3 knockdown was associated with significant increases in radioresistance to X-rays, telomerase activity, telomere length, and telomere shelterins. UBE2D3 knockdown-mediated radioresistance was related to a decrease in the spontaneous and ionizing radiation-induced apoptosis, resulting from a decrease in the Bax/Bcl-2 ratio. Furthermore, UBE2D3 downregulation was associated with increased G1-S phase transition and prolonged IR-induced G2/M arrest through over expression of cyclin D1, decrease of CDC25A expression and promotion of the ATM/ATR-Chk1-CDC25C pathway. Moreover, UBE2D3 downregulation reduced spontaneous DNA double-strand breaks and accelerated the repair of DNA damage induced by IR. The current data thus demonstrate that UBE2D3 downregulation enhances radioresistance by increased telomere homeostasis and prolonged IR-induced G2/M arrest, but decreases the IR-induced apoptosis and the number of DNA damage foci. These results suggest that UBE2D3 might be a potential molecular target to improve radiotherapy effects in esophageal carcinoma.
Collapse
Affiliation(s)
- Hui Yang
- 1. Hubei Key Laboratory of Tumor Biological Behavior, Hubei Cancer Clinical Study Center, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Lin Wu
- 1. Hubei Key Laboratory of Tumor Biological Behavior, Hubei Cancer Clinical Study Center, Zhongnan Hospital, Wuhan University, Wuhan, China;; 3. Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Shaobo Ke
- 1. Hubei Key Laboratory of Tumor Biological Behavior, Hubei Cancer Clinical Study Center, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Wenbo Wang
- 1. Hubei Key Laboratory of Tumor Biological Behavior, Hubei Cancer Clinical Study Center, Zhongnan Hospital, Wuhan University, Wuhan, China;; 2. Department of Radiation Oncology & Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Lei Yang
- 1. Hubei Key Laboratory of Tumor Biological Behavior, Hubei Cancer Clinical Study Center, Zhongnan Hospital, Wuhan University, Wuhan, China;; 2. Department of Radiation Oncology & Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Xiaojia Gao
- 1. Hubei Key Laboratory of Tumor Biological Behavior, Hubei Cancer Clinical Study Center, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Hongyan Fang
- 1. Hubei Key Laboratory of Tumor Biological Behavior, Hubei Cancer Clinical Study Center, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Haijun Yu
- 1. Hubei Key Laboratory of Tumor Biological Behavior, Hubei Cancer Clinical Study Center, Zhongnan Hospital, Wuhan University, Wuhan, China;; 2. Department of Radiation Oncology & Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yahua Zhong
- 1. Hubei Key Laboratory of Tumor Biological Behavior, Hubei Cancer Clinical Study Center, Zhongnan Hospital, Wuhan University, Wuhan, China;; 2. Department of Radiation Oncology & Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Conghua Xie
- 1. Hubei Key Laboratory of Tumor Biological Behavior, Hubei Cancer Clinical Study Center, Zhongnan Hospital, Wuhan University, Wuhan, China;; 2. Department of Radiation Oncology & Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Fuxiang Zhou
- 1. Hubei Key Laboratory of Tumor Biological Behavior, Hubei Cancer Clinical Study Center, Zhongnan Hospital, Wuhan University, Wuhan, China;; 2. Department of Radiation Oncology & Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yunfeng Zhou
- 1. Hubei Key Laboratory of Tumor Biological Behavior, Hubei Cancer Clinical Study Center, Zhongnan Hospital, Wuhan University, Wuhan, China;; 2. Department of Radiation Oncology & Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
25
|
Therapeutic Implications for Overcoming Radiation Resistance in Cancer Therapy. Int J Mol Sci 2015; 16:26880-913. [PMID: 26569225 PMCID: PMC4661850 DOI: 10.3390/ijms161125991] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/29/2015] [Accepted: 10/29/2015] [Indexed: 12/17/2022] Open
Abstract
Ionizing radiation (IR), such as X-rays and gamma (γ)-rays, mediates various forms of cancer cell death such as apoptosis, necrosis, autophagy, mitotic catastrophe, and senescence. Among them, apoptosis and mitotic catastrophe are the main mechanisms of IR action. DNA damage and genomic instability contribute to IR-induced cancer cell death. Although IR therapy may be curative in a number of cancer types, the resistance of cancer cells to radiation remains a major therapeutic problem. In this review, we describe the morphological and molecular aspects of various IR-induced types of cell death. We also discuss cytogenetic variations representative of IR-induced DNA damage and genomic instability. Most importantly, we focus on several pathways and their associated marker proteins responsible for cancer resistance and its therapeutic implications in terms of cancer cell death of various types and characteristics. Finally, we propose radiation-sensitization strategies, such as the modification of fractionation, inflammation, and hypoxia and the combined treatment, that can counteract the resistance of tumors to IR.
Collapse
|
26
|
Mirghani H, Amen F, Tao Y, Deutsch E, Levy A. Increased radiosensitivity of HPV-positive head and neck cancers: Molecular basis and therapeutic perspectives. Cancer Treat Rev 2015; 41:844-52. [PMID: 26476574 DOI: 10.1016/j.ctrv.2015.10.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/22/2015] [Accepted: 10/04/2015] [Indexed: 12/27/2022]
Abstract
Human papillomavirus driven head and neck squamous cell carcinoma (HNSCC), particularly oropharyngeal squamous cell carcinoma (OPSCC), are characterized by a significant survival advantage over their HPV-negative counterparts. Although the reasons behind this are still not fully elucidated, it is widely accepted that these tumors have a higher response to ionizing radiation that might explain their favorable outcomes. Potential underlying intrinsic mechanisms include impaired DNA repair abilities, differences in activated repopulation-signaling pathways and cell cycle control mechanisms. The role of the microenvironment is increasingly highlighted, particularly tumor oxygenation and the immune response. Recent studies have shown a distinct pattern of intratumoral immune cell infiltrates, according to HPV status, and have suggested that an increased cytotoxic T-cell based antitumor immune response is involved in improved prognosis of patients with HPV-positive OPSCC. These significant milestones, in the understanding of HPV-induced HNSCC, pave the way to new therapeutic opportunities. This article reviews the current evidence on the biological basis of increased radiosensitivity in HPV-positive HNSCC and discusses potential therapeutic implications.
Collapse
Affiliation(s)
- Haïtham Mirghani
- Department of Otolaryngology - Head and Neck Surgery, Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, Villejuif, France.
| | - Furrat Amen
- Department of Otolaryngology, Peterborough City Hospital and Addenbrooke's Hospital, Cambridge, UK
| | - Yungan Tao
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, Villejuif, France
| | - Eric Deutsch
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, Villejuif, France; Université Paris Sud, Faculté de Médecine, Kremlin Bicêtre 94270, France; INSERM U1030 Molecular Radiotherapy, Cancer Research Institute, Villejuif, France
| | - Antonin Levy
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, Villejuif, France; Université Paris Sud, Faculté de Médecine, Kremlin Bicêtre 94270, France; INSERM U1030 Molecular Radiotherapy, Cancer Research Institute, Villejuif, France
| |
Collapse
|
27
|
Manic G, Obrist F, Sistigu A, Vitale I. Trial Watch: Targeting ATM-CHK2 and ATR-CHK1 pathways for anticancer therapy. Mol Cell Oncol 2015; 2:e1012976. [PMID: 27308506 PMCID: PMC4905354 DOI: 10.1080/23723556.2015.1012976] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/25/2015] [Accepted: 01/26/2015] [Indexed: 02/08/2023]
Abstract
The ataxia telangiectasia mutated serine/threonine kinase (ATM)/checkpoint kinase 2 (CHEK2, best known as CHK2) and the ATM and Rad3-related serine/threonine kinase (ATR)/CHEK1 (best known as CHK1) cascades are the 2 major signaling pathways driving the DNA damage response (DDR), a network of processes crucial for the preservation of genomic stability that act as a barrier against tumorigenesis and tumor progression. Mutations and/or deletions of ATM and/or CHK2 are frequently found in tumors and predispose to cancer development. In contrast, the ATR-CHK1 pathway is often upregulated in neoplasms and is believed to promote tumor growth, although some evidence indicates that ATR and CHK1 may also behave as haploinsufficient oncosuppressors, at least in a specific genetic background. Inactivation of the ATM-CHK2 and ATR-CHK1 pathways efficiently sensitizes malignant cells to radiotherapy and chemotherapy. Moreover, ATR and CHK1 inhibitors selectively kill tumor cells that present high levels of replication stress, have a deficiency in p53 (or other DDR players), or upregulate the ATR-CHK1 module. Despite promising preclinical results, the clinical activity of ATM, ATR, CHK1, and CHK2 inhibitors, alone or in combination with other therapeutics, has not yet been fully demonstrated. In this Trial Watch, we give an overview of the roles of the ATM-CHK2 and ATR-CHK1 pathways in cancer initiation and progression, and summarize the results of clinical studies aimed at assessing the safety and therapeutic profile of regimens based on inhibitors of ATR and CHK1, the only 2 classes of compounds that have so far entered clinics.
Collapse
Affiliation(s)
| | - Florine Obrist
- Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre, France
- INSERM, UMRS1138; Paris, France
- Equipe 11 labelisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
| | | | - Ilio Vitale
- Regina Elena National Cancer Institute; Rome, Italy
- Department of Biology, University of Rome “TorVergata”; Rome, Italy
| |
Collapse
|
28
|
Mikami K, Medová M, Nisa L, Francica P, Glück AA, Tschan MP, Blaukat A, Bladt F, Aebersold DM, Zimmer Y. Impact of p53 Status on Radiosensitization of Tumor Cells by MET Inhibition-Associated Checkpoint Abrogation. Mol Cancer Res 2015; 13:1544-53. [PMID: 26358474 DOI: 10.1158/1541-7786.mcr-15-0022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 08/24/2015] [Indexed: 11/16/2022]
Abstract
UNLABELLED Signaling via the MET receptor tyrosine kinase has been implicated in crosstalk with cellular responses to DNA damage. Our group previously demonstrated that MET inhibition in tumor cells with deregulated MET activity results in radiosensitization via downregulation of the ATR-CHK1-CDC25 pathway, a major signaling cascade responsible for intra-S and G2-M cell-cycle arrest following DNA damage. Here we aimed at studying the potential therapeutic application of ionizing radiation in combination with a MET inhibitor, EMD-1214063, in p53-deficient cancer cells that harbor impaired G1-S checkpoint regulation upon DNA damage. We hypothesized that upon MET inhibition, p53-deficient cells would bypass both G1-S and G2-M checkpoints, promoting premature mitotic entry with substantial DNA lesions and cell death in a greater extent than p53-proficient cells. Our data suggest that p53-deficient cells are more susceptible to EMD-1214063 and combined treatment with irradiation than wild-type p53 lines as inferred from elevated γH2AX expression and increased cytotoxicity. Furthermore, cell-cycle distribution profiling indicates constantly lower G1 and higher G2-M population as well as higher expression of a mitotic marker p-histone H3 following the dual treatment in p53 knockdown isogenic variant, compared with the parental counterpart. IMPLICATIONS The concept of MET inhibition-mediated radiosensitization enhanced by p53 deficiency is of high clinical relevance, as p53 is frequently mutated in numerous types of human cancer. The current data point for a therapeutic advantage for an approach combining MET targeting along with DNA-damaging agents for MET-positive/p53-negative tumors.
Collapse
Affiliation(s)
- K Mikami
- Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland. Department of Clinical Research, University of Bern, Bern, Switzerland
| | - M Medová
- Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland. Department of Clinical Research, University of Bern, Bern, Switzerland
| | - L Nisa
- Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland. Department of Clinical Research, University of Bern, Bern, Switzerland
| | - P Francica
- Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland. Department of Clinical Research, University of Bern, Bern, Switzerland
| | - A A Glück
- Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland. Department of Clinical Research, University of Bern, Bern, Switzerland
| | - M P Tschan
- Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - A Blaukat
- Merck Serono Research & Development, Merck KGaA, Darmstadt, Germany
| | - F Bladt
- Merck Serono Research & Development, Merck KGaA, Darmstadt, Germany
| | - D M Aebersold
- Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland. Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Y Zimmer
- Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland. Department of Clinical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
29
|
Olcina MM, O'Dell S, Hammond EM. Targeting chromatin to improve radiation response. Br J Radiol 2015; 88:20140649. [PMID: 25513745 PMCID: PMC4651187 DOI: 10.1259/bjr.20140649] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/09/2014] [Accepted: 12/15/2014] [Indexed: 01/08/2023] Open
Abstract
Chromatin, the structure formed by the wrapping of approximately 146 base pairs of DNA around an octamer of histones, has a profound impact on numerous DNA-based processes. Chromatin modifications and chromatin remodellers have recently been implicated in important aspects of the DNA damage response including facilitating the initial sensing of the damage as well as subsequent recruitment of repair factors. Radiation is an effective cancer therapy for a large number of tumours, and there is considerable interest in finding approaches that might further increase the efficacy of radiotherapy. The use of radiation leads to the generation of DNA damage and, therefore, agents that can affect the sensing and repair of DNA damage may have an impact on overall radiation efficacy. The chromatin modifications as well as chromatin modifiers that have been associated with the DNA damage response will be summarized in this review. An emphasis will be placed on those processes that can be pharmacologically manipulated with currently available inhibitors. The rationale for the use of these inhibitors in combination with radiation will also be described.
Collapse
Affiliation(s)
- M M Olcina
- CR-UK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
30
|
Targeting head and neck cancer stem cells to overcome resistance to photon and carbon ion radiation. Stem Cell Rev Rep 2015; 10:114-26. [PMID: 23955575 DOI: 10.1007/s12015-013-9467-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Although promising new radiation therapy techniques such as hadrontherapy are currently being evaluated in the treatment of head and neck malignancies, local control of head and neck squamous cell carcinoma (HNSCC) remains low. Here, we investigated the involvement of cancer stem-like cells (CSCs) in a radioresistant HNSCC cell line (SQ20B). Stem-like cells SQ20B/SidePopulation(SP)/CD44(+)/ALDH(high) were more resistant to both photon and carbon ion irradiation compared with non-CSCs. This was confirmed by a BrdU labeling experiment, which suggests that CSCs were able to proliferate and to induce tumorigenicity after irradiation. SQ20B/SP/CD44(+)/ALDH(high) were capable of an extended G2/M arrest phase in response to photon or carbon ion irradiation compared with non-CSCs. Moreover, our data strongly suggest that resistance of CSCs may result from an imbalance between exacerbated self-renewal and proliferative capacities and the decrease in apoptotic cell death triggering. In order to modulate these processes, two targeted pharmacological strategies were tested. Firstly, UCN-01, a checkpoint kinase (Chk1) inhibitor, induced the relapse of G2/M arrest and radiosensitization of SQ20B-CSCs. Secondly, all-trans retinoic acid (ATRA) resulted in an inhibition of ALDH activity, and induction of the differentiation and radiosensitization of SQ20B/SP/CD44(+)/ALDH(high) cells. The combination of ATRA and UCN-01 treatments with irradiation drastically decreased the surviving fraction at 2Gy of SQ20B-CSCs from 0.85 to 0.38 after photon irradiation, and from 0.45 to 0.21 in response to carbon ions. Taken together, our results suggest that the combination of UCN-01 and ATRA represent a promising pharmacological-targeted strategy that significantly sensitizes CSCs to photon or carbon ion radiation.
Collapse
|
31
|
The checkpoint 1 kinase inhibitor LY2603618 induces cell cycle arrest, DNA damage response and autophagy in cancer cells. Apoptosis 2014; 19:1389-98. [DOI: 10.1007/s10495-014-1010-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
32
|
Dillon MT, Good JS, Harrington KJ. Selective targeting of the G2/M cell cycle checkpoint to improve the therapeutic index of radiotherapy. Clin Oncol (R Coll Radiol) 2014; 26:257-65. [PMID: 24581946 DOI: 10.1016/j.clon.2014.01.009] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/22/2014] [Accepted: 01/30/2014] [Indexed: 12/31/2022]
Abstract
Despite tremendous advances in radiotherapy techniques, allowing dose escalation to tumour tissues and sparing of organs at risk, cure rates from radiotherapy or chemoradiotherapy remain suboptimal for most cancers. In tandem with our growing understanding of tumour biology, we are beginning to appreciate that targeting the molecular response to radiation-induced DNA damage holds great promise for selective tumour radiosensitisation. In particular, approaches that inhibit cell cycle checkpoint controls offer a means of exploiting molecular differences between tumour and normal cells, thereby inducing so-called cancer-specific synthetic lethality. In this overview, we discuss cellular responses to radiation-induced damage and discuss the potential of using G2/M cell cycle checkpoint inhibitors as a means of enhancing tumour control rates.
Collapse
Affiliation(s)
- M T Dillon
- The Institute of Cancer Research, Targeted Therapy Team, Chester Beatty Laboratories, London, UK; The Royal Marsden Hospital, London, UK
| | - J S Good
- The Royal Marsden Hospital, London, UK
| | - K J Harrington
- The Institute of Cancer Research, Targeted Therapy Team, Chester Beatty Laboratories, London, UK; The Royal Marsden Hospital, London, UK.
| |
Collapse
|
33
|
Jekimovs C, Bolderson E, Suraweera A, Adams M, O’Byrne KJ, Richard DJ. Chemotherapeutic compounds targeting the DNA double-strand break repair pathways: the good, the bad, and the promising. Front Oncol 2014; 4:86. [PMID: 24795863 PMCID: PMC4001069 DOI: 10.3389/fonc.2014.00086] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 04/08/2014] [Indexed: 01/09/2023] Open
Abstract
The repair of DNA double-strand breaks (DSBs) is a critical cellular mechanism that exists to ensure genomic stability. DNA DSBs are the most deleterious type of insult to a cell's genetic material and can lead to genomic instability, apoptosis, or senescence. Incorrectly repaired DNA DSBs have the potential to produce chromosomal translocations and genomic instability, potentially leading to cancer. The prevalence of DNA DSBs in cancer due to unregulated growth and errors in repair opens up a potential therapeutic window in the treatment of cancers. The cellular response to DNA DSBs is comprised of two pathways to ensure DNA breaks are repaired: homologous recombination and non-homologous end joining. Identifying chemotherapeutic compounds targeting proteins involved in these DNA repair pathways has shown promise as a cancer therapy for patients, either as a monotherapy or in combination with genotoxic drugs. From the beginning, there have been a number of chemotherapeutic compounds that have yielded successful responses in the clinic, a number that have failed (CGK-733 and iniparib), and a number of promising targets for future studies identified. This review looks in detail at how the cell responds to these DNA DSBs and investigates the chemotherapeutic avenues that have been and are currently being explored to target this repair process.
Collapse
Affiliation(s)
- Christian Jekimovs
- Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Emma Bolderson
- Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Amila Suraweera
- Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Mark Adams
- Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kenneth J. O’Byrne
- Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Derek J. Richard
- Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
34
|
Abstract
Chemoradiation is the standard therapy for the majority of inoperable, locally advanced cancers. Although there is a need to improve chemoradiation efficacy, normal-tissue toxicity limits our ability to give additional chemotherapy or higher doses of radiation. Thus, there is excitement about the addition of molecularly targeted agents, which tend to be less toxic than chemotherapy, to chemoradiation regimens. Unfortunately, initial empiric attempts have not been successful. This review will focus on the evidence that supports rational combinations of targeted agents with chemoradiation, with an emphasis on agents that target the DNA damage response and radiation-induced membrane signaling.
Collapse
Affiliation(s)
- Meredith A. Morgan
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI
| | - Leslie A. Parsels
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI
| | - Jonathan Maybaum
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI
| | - Theodore S. Lawrence
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
35
|
Sankunny M, Parikh RA, Lewis DW, Gooding WE, Saunders WS, Gollin SM. Targeted inhibition of ATR or CHEK1 reverses radioresistance in oral squamous cell carcinoma cells with distal chromosome arm 11q loss. Genes Chromosomes Cancer 2013; 53:129-43. [PMID: 24327542 DOI: 10.1002/gcc.22125] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 10/14/2013] [Accepted: 10/15/2013] [Indexed: 01/08/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC), a subset of head and neck squamous cell carcinoma (HNSCC), is the eighth most common cancer in the U.S.. Amplification of chromosomal band 11q13 and its association with poor prognosis has been well established in OSCC. The first step in the breakage-fusion-bridge (BFB) cycle leading to 11q13 amplification involves breakage and loss of distal 11q. Distal 11q loss marked by copy number loss of the ATM gene is observed in 25% of all Cancer Genome Atlas (TCGA) tumors, including 48% of HNSCC. We showed previously that copy number loss of distal 11q is associated with decreased sensitivity (increased resistance) to ionizing radiation (IR) in OSCC cell lines. We hypothesized that this radioresistance phenotype associated with ATM copy number loss results from upregulation of the compensatory ATR-CHEK1 pathway, and that knocking down the ATR-CHEK1 pathway increases the sensitivity to IR of OSCC cells with distal 11q loss. Clonogenic survival assays confirmed the association between reduced sensitivity to IR in OSCC cell lines and distal 11q loss. Gene and protein expression studies revealed upregulation of the ATR-CHEK1 pathway and flow cytometry showed G2 M checkpoint arrest after IR treatment of cell lines with distal 11q loss. Targeted knockdown of the ATR-CHEK1 pathway using CHEK1 or ATR siRNA or a CHEK1 small molecule inhibitor (SMI, PF-00477736) resulted in increased sensitivity of the tumor cells to IR. Our results suggest that distal 11q loss is a useful biomarker in OSCC for radioresistance that can be reversed by ATR-CHEK1 pathway inhibition.
Collapse
Affiliation(s)
- Madhav Sankunny
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA; University of Pittsburgh Cancer Institute, Pittsburgh, PA
| | | | | | | | | | | |
Collapse
|
36
|
Yang L, Wang W, Hu L, Yang X, Zhong J, Li Z, Yang H, Lei H, Yu H, Liao Z, Zhou F, Xie C, Zhou Y. Telomere-binding protein TPP1 modulates telomere homeostasis and confers radioresistance to human colorectal cancer cells. PLoS One 2013; 8:e81034. [PMID: 24260532 PMCID: PMC3834294 DOI: 10.1371/journal.pone.0081034] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 10/08/2013] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Radiotherapy is one of the major therapeutic strategies in cancer treatment. The telomere-binding protein TPP1 is an important component of the shelterin complex at mammalian telomeres. Our previous reports showed that TPP1 expression was elevated in radioresistant cells, but the exact effects and mechanisms of TPP1 on radiosensitivity is unclear. PRINCIPAL FINDINGS In this study, we found that elevated TPP1 expression significantly correlated with radioresistance and longer telomere length in human colorectal cancer cell lines. Moreover, TPP1 overexpression showed lengthened telomere length and a significant decrease of radiosensitivity to X-rays. TPP1 mediated radioresistance was correlated with a decreased apoptosis rate after IR exposure. Furthermore, TPP1 overexpression showed prolonged G2/M arrest mediated by ATM/ATR-Chk1 signal pathway after IR exposure. Moreover, TPP1 overexpression accelerated the repair kinetics of total DNA damage and telomere dysfunction induced by ionizing radiation. CONCLUSIONS We demonstrated that elevated expressions of TPP1 in human colorectal cancer cells could protect telomere from DNA damage and confer radioresistance. These results suggested that TPP1 may be a potential target in the radiotherapy of colorectal cancer.
Collapse
Affiliation(s)
- Lei Yang
- Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Wenbo Wang
- Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Liu Hu
- Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Xiaoxi Yang
- Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Juan Zhong
- Department of Oncology, the Fifth Hospital of Wuhan, Wuhan, China
| | - Zheng Li
- Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Hui Yang
- Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Han Lei
- Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
- Department of Radiation Oncology & Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Haijun Yu
- Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
- Department of Radiation Oncology & Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - ZhengKai Liao
- Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
- Department of Radiation Oncology & Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Fuxiang Zhou
- Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
- Department of Radiation Oncology & Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Conghua Xie
- Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
- Department of Radiation Oncology & Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yunfeng Zhou
- Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
- Department of Radiation Oncology & Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China
- * E-mail:
| |
Collapse
|
37
|
Nakadate Y, Kodera Y, Kitamura Y, Tachibana T, Tamura T, Koizumi F. Silencing of poly(ADP-ribose) glycohydrolase sensitizes lung cancer cells to radiation through the abrogation of DNA damage checkpoint. Biochem Biophys Res Commun 2013; 441:793-8. [PMID: 24211580 DOI: 10.1016/j.bbrc.2013.10.134] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 10/25/2013] [Indexed: 10/26/2022]
Abstract
Poly(ADP-ribose) glycohydrolase (PARG) is a major enzyme that plays a role in the degradation of poly(ADP-ribose) (PAR). PARG deficiency reportedly sensitizes cells to the effects of radiation. In lung cancer, however, it has not been fully elucidated. Here, we investigated whether PARG siRNA contributes to an increased radiosensitivity using 8 lung cancer cell lines. Among them, the silencing of PARG induced a radiosensitizing effect in 5 cell lines. Radiation-induced G2/M arrest was largely suppressed by PARG siRNA in PC-14 and A427 cells, which exhibited significantly enhanced radiosensitivity in response to PARG knockdown. On the other hand, a similar effect was not observed in H520 cells, which did not exhibit a radiosensitizing effect. Consistent with a cell cycle analysis, radiation-induced checkpoint signals were not well activated in the PC-14 and A427 cells when treated with PARG siRNA. These results suggest that the increased sensitivity to radiation induced by PARG knockdown occurs through the abrogation of radiation-induced G2/M arrest and checkpoint activation in lung cancer cells. Our findings indicate that PARG could be a potential target for lung cancer treatments when used in combination with radiotherapy.
Collapse
Affiliation(s)
- Yusuke Nakadate
- Shien-Lab, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Department of Bioengineering, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Busch CJ, Kriegs M, Laban S, Tribius S, Knecht R, Petersen C, Dikomey E, Rieckmann T. HPV-positive HNSCC cell lines but not primary human fibroblasts are radiosensitized by the inhibition of Chk1. Radiother Oncol 2013; 108:495-9. [DOI: 10.1016/j.radonc.2013.06.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/18/2013] [Accepted: 06/18/2013] [Indexed: 10/26/2022]
|
39
|
Harrington KJ. From novel insights in molecular biology to targeted treatment approaches in head and neck cancer. EJC Suppl 2013. [PMID: 26217143 PMCID: PMC4041174 DOI: 10.1016/j.ejcsup.2013.07.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
40
|
Lamore SD, Kamendi HW, Scott CW, Dragan YP, Peters MF. Cellular impedance assays for predictive preclinical drug screening of kinase inhibitor cardiovascular toxicity. Toxicol Sci 2013; 135:402-13. [PMID: 23897988 DOI: 10.1093/toxsci/kft167] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular (CV) toxicity is a leading contributor to drug attrition. Implementing earlier testing has successfully reduced human Ether-à-go-go-Related Gene-related arrhythmias. How- ever, analogous assays targeting functional CV effects remain elusive. Demand to address this gap is particularly acute for kinase inhibitors (KIs) that suffer frequent CV toxicity. The drug class also presents some particularly challenging requirements for assessing functional CV toxicity. Specifically, an assay must sense a downstream response that integrates diverse kinase signaling pathways. In addition, sufficient throughput is essential for handling inherent KI nonselectivity. A new opportunity has emerged with cellular impedance technology, which detects spontaneous beating cardiomyocytes. Impedance assays sense morphology changes downstream of cardiomyocyte contraction. To evaluate cardiomyocyte impedance assays for KI screening, we investigated two distinct KI classes where CV toxicity was discovered late and target risks remain unresolved. Microtubule-associated protein/microtubule affinity regulating kinase (MARK) inhibitors decrease blood pressure in dogs, whereas checkpoint kinase (Chk) inhibitors (AZD7762, SCH900776) exhibit dose-limiting CV toxicities in clinical trials. These in vivo effects manifested in vitro as cardiomyocyte beat cessation. MARK effects were deemed mechanism associated because beat inhibition potencies correlated with kinase inhibition, and gene knockdown and microtubule-targeting agents suppressed beating. MARK inhibitor impedance and kinase potencies aligned with rat blood pressure effects. Chk inhibitor effects were judged off-target because Chk and beat inhibition potencies did not correlate and knockdowns did not alter beating. Taken together, the data demonstrate that cardiomyocyte impedance assays can address three unmet needs-detecting KI functional cardiotoxicity in vitro, determining mechanism of action, and supporting safety structure-activity relationships.
Collapse
Affiliation(s)
- Sarah D Lamore
- Molecular Toxicology,Global Safety Assessment, AstraZeneca Pharmaceuticals, Waltham, Massachusetts 02451, USA
| | - Harriet W Kamendi
- Molecular Toxicology and Safety Pharmacology, Global Safety Assessment, AstraZeneca Pharmaceuticals, Waltham, Massachusetts 02451, USA
| | - Clay W Scott
- Molecular Toxicology, Global Safety Assessment, AstraZeneca Pharmaceuticals, Waltham, Massachusetts 02451, USA
| | - Yvonne P Dragan
- Molecular Toxicology, Global Safety Assessment, AstraZeneca Pharmaceuticals, Waltham, Massachusetts 02451, USA
| | - Matthew F Peters
- Molecular Toxicology, Global Safety Assessment, AstraZeneca Pharmaceuticals, Waltham, Massachusetts 02451, USA
| |
Collapse
|
41
|
Touchefeu Y, Khan AA, Borst G, Zaidi SH, McLaughlin M, Roulstone V, Mansfield D, Kyula J, Pencavel T, Karapanagiotou EM, Clayton J, Federspiel MJ, Russell SJ, Garrett M, Collins I, Harrington KJ. Optimising measles virus-guided radiovirotherapy with external beam radiotherapy and specific checkpoint kinase 1 inhibition. Radiother Oncol 2013; 108:24-31. [PMID: 23849174 DOI: 10.1016/j.radonc.2013.05.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Revised: 05/26/2013] [Accepted: 05/28/2013] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND PURPOSE We previously reported a therapeutic strategy comprising replication-defective NIS-expressing adenovirus combined with radioiodide, external beam radiotherapy (EBRT) and DNA repair inhibition. We have now evaluated NIS-expressing oncolytic measles virus (MV-NIS) combined with NIS-guided radioiodide, EBRT and specific checkpoint kinase 1 (Chk1) inhibition in head and neck and colorectal models. MATERIALS AND METHODS Anti-proliferative/cytotoxic effects of individual agents and their combinations were measured by MTS, clonogenic and Western analysis. Viral gene expression was measured by radioisotope uptake and replication by one-step growth curves. Potential synergistic interactions were tested in vitro by Bliss independence analysis and in in vivo therapeutic studies. RESULTS EBRT and MV-NIS were synergistic in vitro. Furthermore, EBRT increased NIS expression in infected cells. SAR-020106 was synergistic with EBRT, but also with MV-NIS in HN5 cells. MV-NIS mediated (131)I-induced cytotoxicity in HN5 and HCT116 cells and, in the latter, this was enhanced by SAR-020106. In vivo studies confirmed that MV-NIS, EBRT and Chk1 inhibition were effective in HCT116 xenografts. The quadruplet regimen of MV-NIS, virally-directed (131)I, EBRT and SAR-020106 had significant anti-tumour activity in HCT116 xenografts. CONCLUSION This study strongly supports translational and clinical research on MV-NIS combined with radiation therapy and radiosensitising agents.
Collapse
Affiliation(s)
- Yann Touchefeu
- The Institute of Cancer Research, Division of Cancer Biology, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Matthews TP, Jones AM, Collins I. Structure-based design, discovery and development of checkpoint kinase inhibitors as potential anticancer therapies. Expert Opin Drug Discov 2013; 8:621-40. [PMID: 23594139 DOI: 10.1517/17460441.2013.788496] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Checkpoint kinase (CHK) inhibitors offer the promise of enhancing the effectiveness of widely prescribed cancer chemotherapies and radiotherapy by inhibiting the DNA damage response, as well as the potential for single agent efficacy. AREAS COVERED This article surveys structural insights into the checkpoint kinases CHK1 and CHK2 that have been exploited to enhance the selectivity and potency of small molecule inhibitors. Furthermore, the authors review the use of mechanistic cellular assays to guide the optimisation of inhibitors. Finally, the authors discuss the status of the current clinical candidates and emerging new clinical contexts for CHK1 and CHK2 inhibitors, including the prospects for single agent efficacy. EXPERT OPINION Protein-bound water molecules play key roles in structural features that can be targeted to gain high selectivity for either enzyme. The results of early phase clinical trials of checkpoint inhibitors have been mixed, but significant progress has been made in testing the combination of CHK1 inhibitors with genotoxic chemotherapy. Second-generation CHK1 inhibitors are likely to benefit from increased selectivity and oral bioavailability. While the optimum therapeutic context for CHK2 inhibition remains unclear, the emergence of single agent preclinical efficacy for CHK1 inhibitors in specific tumour types exhibiting constitutive replication stress represents exciting progress in exploring the therapeutic potential of these agents.
Collapse
Affiliation(s)
- Thomas P Matthews
- Institute of Cancer Research, Cancer Research UK Cancer Therapeutics Unit, London SM2 5NG, UK
| | | | | |
Collapse
|