1
|
Schlegel J, Liew H, Rein K, Dzyubachyk O, Debus J, Abdollahi A, Niklas M. Biosensor Cell-Fit-HD4D for correlation of single-cell fate and microscale energy deposition in complex ion beams. STAR Protoc 2022; 3:101798. [PMID: 36340882 PMCID: PMC9627659 DOI: 10.1016/j.xpro.2022.101798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We present a protocol for the biosensor Cell-Fit-HD4D. It enables long-term monitoring and correlation of single-cell fate with subcellular-deposited energy of ionizing radiation. Cell fate tracking using widefield time-lapse microscopy is uncoupled in time from confocal ion track imaging. Registration of both image acquisition steps allows precise ion track assignment to cells and correlation with cellular readouts. For complete details on the use and execution of this protocol, please refer to Niklas et al. (2022). Cell-Fit-HD4D is an in vitro biosensor for clinical ion beams Cell-Fit-HD4D combines single-cell dosimetry with individual tracking of tumor cells Cell-Fit-HD4D visualizes variability in radiation response in tumor cell population
Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
Collapse
|
2
|
Muneem A, Yoshida J, Ekawa H, Hino M, Hirota K, Ichikawa G, Kasagi A, Kitaguchi M, Kodaira S, Mishima K, Nabi JU, Nakagawa M, Sakashita M, Saito N, Saito TR, Wada S, Yasuda N. Study on the reusability of fluorescent nuclear track detectors using optical bleaching. RADIAT MEAS 2022. [DOI: 10.1016/j.radmeas.2022.106863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Niklas M, Schlegel J, Liew H, Zimmermann F, Rein K, Walsh DW, Dzyubachyk O, Holland-Letz T, Rahmanian S, Greilich S, Runz A, Jäkel O, Debus J, Abdollahi A. Biosensor for deconvolution of individual cell fate in response to ion beam irradiation. CELL REPORTS METHODS 2022; 2:100169. [PMID: 35474967 PMCID: PMC9017136 DOI: 10.1016/j.crmeth.2022.100169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/10/2021] [Accepted: 01/25/2022] [Indexed: 12/25/2022]
Abstract
Clonogenic survival assay constitutes the gold standard method for quantifying radiobiological effects. However, it neglects cellular radiation response variability and heterogeneous energy deposition by ion beams on the microscopic scale. We introduce "Cell-Fit-HD4D" a biosensor that enables a deconvolution of individual cell fate in response to the microscopic energy deposition as visualized by optical microscopy. Cell-Fit-HD4D enables single-cell dosimetry in clinically relevant complex radiation fields by correlating microscopic beam parameters with biological endpoints. Decrypting the ion beam's energy deposition and molecular effects at the single-cell level has the potential to improve our understanding of radiobiological dose concepts as well as radiobiological study approaches in general.
Collapse
Affiliation(s)
- Martin Niklas
- Division of Molecular and Translational Radiation Oncology and Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Research Center (DKFZ) and Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases, German Cancer Consortium, Heidelberg Institute of Radiation Oncology and National Center for Radiation Oncology, 69120 Heidelberg, Germany
| | - Julian Schlegel
- Division of Molecular and Translational Radiation Oncology and Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Research Center (DKFZ) and Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases, German Cancer Consortium, Heidelberg Institute of Radiation Oncology and National Center for Radiation Oncology, 69120 Heidelberg, Germany
| | - Hans Liew
- Division of Molecular and Translational Radiation Oncology and Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Research Center (DKFZ) and Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases, German Cancer Consortium, Heidelberg Institute of Radiation Oncology and National Center for Radiation Oncology, 69120 Heidelberg, Germany
| | - Ferdinand Zimmermann
- Division of Molecular and Translational Radiation Oncology and Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Research Center (DKFZ) and Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases, German Cancer Consortium, Heidelberg Institute of Radiation Oncology and National Center for Radiation Oncology, 69120 Heidelberg, Germany
| | - Katrin Rein
- Division of Molecular and Translational Radiation Oncology and Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Research Center (DKFZ) and Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases, German Cancer Consortium, Heidelberg Institute of Radiation Oncology and National Center for Radiation Oncology, 69120 Heidelberg, Germany
| | - Dietrich W.M. Walsh
- Division of Molecular and Translational Radiation Oncology and Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Research Center (DKFZ) and Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases, German Cancer Consortium, Heidelberg Institute of Radiation Oncology and National Center for Radiation Oncology, 69120 Heidelberg, Germany
| | - Oleh Dzyubachyk
- Department of Radiology and Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
| | - Tim Holland-Letz
- Division of Biostatistics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Shirin Rahmanian
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Steffen Greilich
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Armin Runz
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Oliver Jäkel
- National Center for Tumor Diseases, German Cancer Consortium, Heidelberg Institute of Radiation Oncology and National Center for Radiation Oncology, 69120 Heidelberg, Germany
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
| | - Jürgen Debus
- Division of Molecular and Translational Radiation Oncology and Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Research Center (DKFZ) and Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases, German Cancer Consortium, Heidelberg Institute of Radiation Oncology and National Center for Radiation Oncology, 69120 Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
| | - Amir Abdollahi
- Division of Molecular and Translational Radiation Oncology and Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Research Center (DKFZ) and Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases, German Cancer Consortium, Heidelberg Institute of Radiation Oncology and National Center for Radiation Oncology, 69120 Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
| |
Collapse
|
4
|
Walsh DWM, Liew H, Schlegel J, Mairani A, Abdollahi A, Niklas M. Carbon ion dosimetry on a fluorescent nuclear track detector using widefield microscopy. Phys Med Biol 2020; 65:21NT02. [PMID: 32916672 DOI: 10.1088/1361-6560/abb7c5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Fluorescent nuclear track detectors (FNTDs) are solid-state dosimeters used in a wide range of dosimetric and biomedical applications in research worldwide. FNTDs are a core but currently underutilized dosimetry tool in the field of radiation biology which are inherently capable of visualizing the tracks of ions used in hadron therapy. The ions that traverse the FNTD deposit their energy according to their linear energy transfer and transform colour centres to form trackspots around their trajectory. These trackspots have fluorescent properties which can be visualized by fluorescence microscopy enabling a well-defined dosimetric readout with a spatial component indicating the trajectory of individual ions. The current method used to analyse the FNTDs is laser scanning confocal microscopy (LSM). LSM enables a precise localization of track spots in x, y and z however due to the scanning of the laser spot across the sample, requires a long time for large samples. This body of work conclusively shows for the first time that the readout of the trackspots present after 0.5 Gy carbon ion irradiation in the FNTD can be captured with a widefield microscope (WF). The WF readout of the FNTD is a factor ∼10 faster, for an area 2.97 times the size making the method nearly a factor 19 faster in track acquisition than LSM. The dramatic decrease in image acquisition time in WF presents an alternative to LSM in FNTD workflows which are limited by time, such as biomedical sensors which combine FNTDs with live cell imaging.
Collapse
Affiliation(s)
- Dietrich W M Walsh
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
5
|
Kodaira S, Kusumoto T, Kitamura H, Yanagida Y, Koguchi Y. Characteristics of fluorescent nuclear track detection with Ag+-activated phosphate glass. RADIAT MEAS 2020. [DOI: 10.1016/j.radmeas.2020.106252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
6
|
McFadden CH, Rahmanian S, Flint DB, Bright SJ, Yoon DS, O'Brien DJ, Asaithamby A, Abdollahi A, Greilich S, Sawakuchi GO. Isolation of time-dependent DNA damage induced by energetic carbon ions and their fragments using fluorescent nuclear track detectors. Med Phys 2019; 47:272-281. [PMID: 31677156 DOI: 10.1002/mp.13897] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/14/2019] [Accepted: 10/22/2019] [Indexed: 12/17/2022] Open
Abstract
PURPOSE High energetic carbon (C-) ion beams undergo nuclear interactions with tissue, producing secondary nuclear fragments. Thus, at depth, C-ion beams are composed of a mixture of different particles with different linear energy transfer (LET) values. We developed a technique to enable isolation of DNA damage response (DDR) in mixed radiation fields using beam line microscopy coupled with fluorescence nuclear track detectors (FNTDs). METHODS We imaged live cells on a coverslip made of FNTDs right after C-ion, proton or photon irradiation using an in-house built confocal microscope placed in the beam path. We used the FNTD to link track traversals with DNA damage and separated DNA damage induced by primary particles from fragments. RESULTS We were able to spatially link physical parameters of radiation tracks to DDR in live cells to investigate spatiotemporal DDR in multi-ion radiation fields in real time, which was previously not possible. We demonstrated that the response of lesions produced by the high-LET primary particles associates most strongly with cell death in a multi-LET radiation field, and that this association is not seen when analyzing radiation induced foci in aggregate without primary/fragment classification. CONCLUSIONS We report a new method that uses confocal microscopy in combination with FNTDs to provide submicrometer spatial-resolution measurements of radiation tracks in live cells. Our method facilitates expansion of the radiation-induced DDR research because it can be used in any particle beam line including particle therapy beam lines. CATEGORY Biological Physics and Response Prediction.
Collapse
Affiliation(s)
- Conor H McFadden
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Shirin Rahmanian
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center, 69120, Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology, National Center for Radiation Research in Oncology, 69120, Heidelberg, Germany
| | - David B Flint
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Graduate School of Biomedical Sciences, The University of Texas, Houston, TX, 77030, USA
| | - Scott J Bright
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - David S Yoon
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Daniel J O'Brien
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Aroumougame Asaithamby
- Division of Molecular Radiation Biology, Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Amir Abdollahi
- Heidelberg Institute for Radiation Oncology, National Center for Radiation Research in Oncology, 69120, Heidelberg, Germany.,Division of Molecular and Translational Radiation Oncology, Heidelberg Ion-Beam Therapy Center, Heidelberg University Hospital, 69120, Heidelberg, Germany.,German Cancer Consortium, 69120, Heidelberg, Germany.,Translational Radiation Oncology, National Center for Tumor Diseases, German Cancer Research Center, 69120, Heidelberg, Germany
| | - Steffen Greilich
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center, 69120, Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology, National Center for Radiation Research in Oncology, 69120, Heidelberg, Germany
| | - Gabriel O Sawakuchi
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Graduate School of Biomedical Sciences, The University of Texas, Houston, TX, 77030, USA
| |
Collapse
|
7
|
Verkhovtsev A, Zimmer L, Greilich S. Calibration of intensity spectra from fluorescent nuclear track detectors in clinical ion beams. RADIAT MEAS 2019. [DOI: 10.1016/j.radmeas.2018.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Zhou C, Jones B, Moustafa M, Yang B, Brons S, Cao L, Dai Y, Schwager C, Chen M, Jaekel O, Chen L, Debus J, Abdollahi A. Determining RBE for development of lung fibrosis induced by fractionated irradiation with carbon ions utilizing fibrosis index and high-LET BED model. Clin Transl Radiat Oncol 2019; 14:25-32. [PMID: 30511024 PMCID: PMC6257927 DOI: 10.1016/j.ctro.2018.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 10/31/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSES Carbon ion radiotherapy (CIRT) with raster scanning technology is a promising treatment for lung cancer and thoracic malignancies. Determining normal tissue tolerance of organs at risk is of utmost importance for the success of CIRT. Here we report the relative biological effectiveness (RBE) of CIRT as a function of dose and fractionation for development of pulmonary fibrosis using well established fibrosis index (FI) model. MATERIALS AND METHODS Dose series of fractionated clinical quality CIRT versus conventional photon irradiation to the whole thorax were compared in C57BL6 mice. Quantitative assessment of pulmonary fibrosis was performed by applying the FI to computed tomography (CT) data acquired 24-weeks post irradiation. RBE was calculated as the ratio of photon to CIRT dose required for the same level of FI. Further RBE predictions were performed using the derived equation from high-linear energy transfer biologically effective dose (high-LET BED) model. RESULTS The averaged lung fibrosis RBE of 5-fraction CIRT schedule was determined as 2.75 ± 0.55. The RBE estimate at the half maximum effective dose (RBEED50) was estimated at 2.82 for clinically relevant fractional sizes of 1-6 Gy. At the same dose range, an RBE value of 2.81 ± 0.40 was predicted by the high-LET BED model. The converted biologically effective dose (BED) of CIRT for induction of half maximum FI (BEDED50) was identified to be 58.12 Gy3.95. In accordance, an estimated RBE of 2.88 was obtained at the BEDED50 level. The LQ model radiosensitivity parameters for 5-fraction was obtained as αH = 0.3030 ± 0.0037 Gy-1 and βH = 0.0056 ± 0.0007 Gy-2. CONCLUSION This is the first report of RBE estimation for CIRT with the endpoint of pulmonary fibrosis in-vivo. We proposed in present study a novel way to mathematically modeling RBE by integrating RBEmax and α/βL based on conventional high-LET BED conception. This model well predicted RBE in the clinically relevant dose range but is sensitive to the uncertainties of α/β estimates from the reference photon irradiation (α/βL). These findings will assist to eliminate current uncertainties in prediction of CIRT induced normal tissue complications and builds a solid foundation for development of more accurate in-vivo data driven RBE estimates.
Collapse
Key Words
- BED, biologically effective dose
- Biologically effective dose (BED)
- CPFE, combined pulmonary fibrosis and emphysema syndrome
- CT, computed tomography
- Carbon ion radiotherapy (CIRT)
- FI, fibrosis index
- Fractionation
- HU, Hounsfield unit
- High-linear energy transfer (high-LET)
- LET, linear energy transfer
- LQ model, linear quadratic model
- Lung fibrosis
- NSCLC, non-small cell lung cancer
- Normal tissue response
- PMMA, Polymethylmethacrylat
- RBE, relative biological effectiveness
- RILF, Radiation-induced lung fibrosis
- RP, radiation pneumonitis
- Relative biological effectiveness (RBE)
- SBRT or SABR, hypofractionated stereotactic body or ablative radiation therapy
- V5, volume of lung receiving ≥5 Gy (RBE)
- α/β, alpha/beta ratio
Collapse
Affiliation(s)
- Cheng Zhou
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- German Cancer Consortium (DKTK), Translational Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Centre (HIT), Department of Radiation Oncology, University of Heidelberg Medical School, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Corresponding authors at: Translational Radiation Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), INF 460, Heidelberg 69120, Germany.
| | - Bleddyn Jones
- Gray Laboratory, CRUK/MRC Oxford Oncology Institute, Radiation Oncology, University of Oxford, Oxford, UK
| | - Mahmoud Moustafa
- German Cancer Consortium (DKTK), Translational Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Centre (HIT), Department of Radiation Oncology, University of Heidelberg Medical School, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Department of Clinical Pathology, Suez Canal University, Ismailia, Egypt
| | - Bing Yang
- Physics Institute University of Heidelberg, Heidelberg, Germany
| | - Stephan Brons
- Heidelberg Ion-Beam Therapy Centre (HIT), Department of Radiation Oncology, University of Heidelberg Medical School, Heidelberg, Germany
| | - Liji Cao
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ying Dai
- German Cancer Consortium (DKTK), Translational Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Centre (HIT), Department of Radiation Oncology, University of Heidelberg Medical School, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Department of Oncology, the 1st Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Christian Schwager
- German Cancer Consortium (DKTK), Translational Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Centre (HIT), Department of Radiation Oncology, University of Heidelberg Medical School, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Ming Chen
- Zhejiang Key Lab of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Oliver Jaekel
- Heidelberg Ion-Beam Therapy Centre (HIT), Department of Radiation Oncology, University of Heidelberg Medical School, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Division for Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Longhua Chen
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Juergen Debus
- German Cancer Consortium (DKTK), Translational Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Centre (HIT), Department of Radiation Oncology, University of Heidelberg Medical School, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Amir Abdollahi
- German Cancer Consortium (DKTK), Translational Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Centre (HIT), Department of Radiation Oncology, University of Heidelberg Medical School, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Corresponding authors at: Translational Radiation Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), INF 460, Heidelberg 69120, Germany.
| |
Collapse
|
9
|
Akselrod M, Kouwenberg J. Fluorescent nuclear track detectors – Review of past, present and future of the technology. RADIAT MEAS 2018. [DOI: 10.1016/j.radmeas.2018.07.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
10
|
Dokic I, Mairani A, Niklas M, Zimmermann F, Chaudhri N, Krunic D, Tessonnier T, Ferrari A, Parodi K, Jäkel O, Debus J, Haberer T, Abdollahi A. Next generation multi-scale biophysical characterization of high precision cancer particle radiotherapy using clinical proton, helium-, carbon- and oxygen ion beams. Oncotarget 2018; 7:56676-56689. [PMID: 27494855 PMCID: PMC5302944 DOI: 10.18632/oncotarget.10996] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/19/2016] [Indexed: 12/22/2022] Open
Abstract
The growing number of particle therapy facilities worldwide landmarks a novel era of precision oncology. Implementation of robust biophysical readouts is urgently needed to assess the efficacy of different radiation qualities. This is the first report on biophysical evaluation of Monte Carlo simulated predictive models of prescribed dose for four particle qualities i.e., proton, helium-, carbon- or oxygen ions using raster-scanning technology and clinical therapy settings at HIT. A high level of agreement was found between the in silico simulations, the physical dosimetry and the clonogenic tumor cell survival. The cell fluorescence ion track hybrid detector (Cell-Fit-HD) technology was employed to detect particle traverse per cell nucleus. Across a panel of radiobiological surrogates studied such as late ROS accumulation and apoptosis (caspase 3/7 activation), the relative biological effectiveness (RBE) chiefly correlated with the radiation species-specific spatio-temporal pattern of DNA double strand break (DSB) formation and repair kinetic. The size and the number of residual nuclear γ-H2AX foci increased as a function of linear energy transfer (LET) and RBE, reminiscent of enhanced DNA-damage complexity and accumulation of non-repairable DSB. These data confirm the high relevance of complex DSB formation as a central determinant of cell fate and reliable biological surrogates for cell survival/ RBE. The multi-scale simulation, physical and radiobiological characterization of novel clinical quality beams presented here constitutes a first step towards development of high precision biologically individualized radiotherapy.
Collapse
Affiliation(s)
- Ivana Dokic
- German Cancer Consortium (DKTK), Translational Radiation Oncology, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Andrea Mairani
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany.,National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Martin Niklas
- German Cancer Consortium (DKTK), Translational Radiation Oncology, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Ferdinand Zimmermann
- German Cancer Consortium (DKTK), Translational Radiation Oncology, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Naved Chaudhri
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
| | - Damir Krunic
- Light Microscopy Facility, German Cancer Research Center, Heidelberg, Germany
| | - Thomas Tessonnier
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Alfredo Ferrari
- European Organization for Nuclear Research CERN, Geneva, Switzerland
| | - Katia Parodi
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany.,Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Oliver Jäkel
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany.,Division of Medical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Jürgen Debus
- German Cancer Consortium (DKTK), Translational Radiation Oncology, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Haberer
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
| | - Amir Abdollahi
- German Cancer Consortium (DKTK), Translational Radiation Oncology, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
11
|
Zhou C, Jones B, Moustafa M, Schwager C, Bauer J, Yang B, Cao L, Jia M, Mairani A, Chen M, Chen L, Debus J, Abdollahi A. Quantitative assessment of radiation dose and fractionation effects on normal tissue by utilizing a novel lung fibrosis index model. Radiat Oncol 2017; 12:172. [PMID: 29116014 PMCID: PMC5678815 DOI: 10.1186/s13014-017-0912-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/27/2017] [Indexed: 01/26/2023] Open
Abstract
Background Normal lung tissue tolerance constitutes a limiting factor in delivering the required dose of radiotherapy to cure thoracic and chest wall malignancies. Radiation-induced lung fibrosis (RILF) is considered a critical determinant for late normal tissue complications. While RILF mouse models are frequently approached e.g., as a single high dose thoracic irradiation to investigate lung fibrosis and candidate modulators, a systematic radiobiological characterization of RILF mouse model is urgently needed to compare relative biological effectiveness (RBE) of particle irradiation with protons, helium-, carbon and oxygen ions now available at HIT. We aimed to study the dose-response relationship and fractionation effect of photon irradiation in development of pulmonary fibrosis in C57BL/6 mouse. Methods Lung fibrosis was evaluated 24 weeks after single and fractionated whole thoracic irradiation by quantitative assessment of lung alterations using CT. The fibrosis index (FI) was determined based on 3D-segmentation of the lungs considering the two key fibrosis parameters affected by ionizing radiation i.e., a dose/fractionation dependent reduction of the total lung volume and increase of the mean lung density. Results The effective dose required to induce 50% of the maximal possible fibrosis (ED50) was 14.55 ± 0.34Gy and 27.7 ± 1.22Gy, for single and five- fractions irradiation, respectively. Applying a deterministic model an α/β = 4.49 ± 0.38 Gy for the late lung radiosensitivity was determined. Intriguingly, we found that a linear-quadratic model could be applied to in-vivo log transformed fibrosis (FI) vs. irradiation doses. The LQ model revealed an α/β for lung radiosensitivity of 4.4879 Gy for single fraction and 3.9474 for 5-fractions. Our FI based data were in good agreement with a meta-analysis of previous lung radiosensitivity data derived from different clinical endpoints and various mouse strains. The effect of fractionation on RILF development was further estimated by the biologically effective dose (BED) model with threshold BED (BEDTr) = 30.33 Gy and BEDED50 = 61.63 Gy, respectively. Conclusion The systematic radiobiological characterization of RILF in the C57BL/6 mouse reported in this study marks an important step towards precise estimation of dose-response for development of lung fibrosis. These radiobiological parameters combined with a large repertoire of genetically engineered C57BL/6 mouse models, build a solid foundation for further biologically individualized risk assessment of RILF and functional RBE prediction on novel of particle qualities. Electronic supplementary material The online version of this article (10.1186/s13014-017-0912-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cheng Zhou
- German Cancer Consortium (DKTK), Translational Radiation Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), INF 460, 69120, Heidelberg, Germany. .,Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Centre (HIT), University of Heidelberg Medical School, Heidelberg, Germany. .,Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation research in Oncology (NCRO), Heidelberg, Germany. .,Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Bleddyn Jones
- Gray Laboratory, CRUK/MRC Oxford Oncology Institute, Radiation Oncology, University of Oxford, Oxford, UK
| | - Mahmoud Moustafa
- German Cancer Consortium (DKTK), Translational Radiation Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), INF 460, 69120, Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Centre (HIT), University of Heidelberg Medical School, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation research in Oncology (NCRO), Heidelberg, Germany.,Department of Clinical Pathology, Suez Canal University, Ismailia, Egypt
| | - Christian Schwager
- German Cancer Consortium (DKTK), Translational Radiation Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), INF 460, 69120, Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Centre (HIT), University of Heidelberg Medical School, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation research in Oncology (NCRO), Heidelberg, Germany
| | - Julia Bauer
- Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Centre (HIT), University of Heidelberg Medical School, Heidelberg, Germany
| | - Bing Yang
- Physics Institute University of Heidelberg, Heidelberg, Germany
| | - Liji Cao
- Inviscan SAS, Strasbourg, France
| | - Min Jia
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrea Mairani
- Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Centre (HIT), University of Heidelberg Medical School, Heidelberg, Germany.,Italian National Center for Oncological Hadron Therapy (CNAO), Pavia, Italy
| | - Ming Chen
- Zhejiang Key Lab of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Longhua Chen
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Juergen Debus
- German Cancer Consortium (DKTK), Translational Radiation Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), INF 460, 69120, Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Centre (HIT), University of Heidelberg Medical School, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation research in Oncology (NCRO), Heidelberg, Germany
| | - Amir Abdollahi
- German Cancer Consortium (DKTK), Translational Radiation Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), INF 460, 69120, Heidelberg, Germany. .,Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Centre (HIT), University of Heidelberg Medical School, Heidelberg, Germany. .,Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation research in Oncology (NCRO), Heidelberg, Germany.
| |
Collapse
|
12
|
Niklas M, Henrich M, Jäkel O, Engelhardt J, Abdollahi A, Greilich S. STED microscopy visualizes energy deposition of single ions in a solid-state detector beyond diffraction limit. Phys Med Biol 2017; 62:N180-N190. [PMID: 28379846 DOI: 10.1088/1361-6560/aa5edc] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Fluorescent nuclear track detectors (FNTDs) allow for visualization of single-particle traversal in clinical ion beams. The point spread function of the confocal readout has so far hindered a more detailed characterization of the track spots-the ion's characteristic signature left in the FNTD. Here we report on the readout of the FNTD by optical nanoscopy, namely stimulated emission depletion microscopy. It was firstly possible to visualize the track spots of carbon ions and protons beyond the diffraction limit of conventional light microscopy with a resolving power of approximately 80 nm (confocal: 320 nm). A clear discrimination of the spatial width, defined by the full width half maximum of track spots from particles (proton and carbon ions), with a linear energy transfer (LET) ranging from approximately 2-1016 keV µm-1 was possible. Results suggest that the width depends on LET but not on particle charge within the uncertainties. A discrimination of particle type by width thus does not seem possible (as well as with confocal microscopy). The increased resolution, however, could allow for refined determination of the cross-sectional area facing substantial energy deposition. This work could pave the way towards development of optical nanoscopy-based analysis of radiation-induced cellular response using cell-fluorescent ion track hybrid detectors.
Collapse
Affiliation(s)
- M Niklas
- Molecular & Translational Radiation Oncology, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany. German Cancer Consortium (DKTK), D-69120 Heidelberg, Germany. Heidelberg Institute of Radiation Oncology (HIRO), German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Sawakuchi GO, Ferreira FA, McFadden CH, Hallacy TM, Granville DA, Sahoo N, Akselrod MS. Nanoscale measurements of proton tracks using fluorescent nuclear track detectors. Med Phys 2017; 43:2485. [PMID: 27147359 DOI: 10.1118/1.4947128] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The authors describe a method in which fluorescence nuclear track detectors (FNTDs), novel track detectors with nanoscale spatial resolution, are used to determine the linear energy transfer (LET) of individual proton tracks from proton therapy beams by allowing visualization and 3D reconstruction of such tracks. METHODS FNTDs were exposed to proton therapy beams with nominal energies ranging from 100 to 250 MeV. Proton track images were then recorded by confocal microscopy of the FNTDs. Proton tracks in the FNTD images were fit by using a Gaussian function to extract fluorescence amplitudes. Histograms of fluorescence amplitudes were then compared with LET spectra. RESULTS The authors successfully used FNTDs to register individual proton tracks from high-energy proton therapy beams, allowing reconstruction of 3D images of proton tracks along with delta rays. The track amplitudes from FNTDs could be used to parameterize LET spectra, allowing the LET of individual proton tracks from therapeutic proton beams to be determined. CONCLUSIONS FNTDs can be used to directly visualize proton tracks and their delta rays at the nanoscale level. Because the track intensities in the FNTDs correlate with LET, they could be used further to measure LET of individual proton tracks. This method may be useful for measuring nanoscale radiation quantities and for measuring the LET of individual proton tracks in radiation biology experiments.
Collapse
Affiliation(s)
- Gabriel O Sawakuchi
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 and Graduate School of Biomedical Sciences, The University of Texas, Houston, Texas 77030
| | | | - Conor H McFadden
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Timothy M Hallacy
- Biophysics Program, Harvard University, Cambridge, Massachusetts 02138
| | - Dal A Granville
- Department of Medical Physics, The Ottawa Hospital Cancer Centre, Ottawa, Ontario K1H 8L6, Canada
| | - Narayan Sahoo
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 and Graduate School of Biomedical Sciences, The University of Texas, Houston, Texas 77030
| | - Mark S Akselrod
- Crystal Growth Division, Landauer, Inc., Stillwater, Oklahoma 74074
| |
Collapse
|
14
|
Muggiolu G, Pomorski M, Claverie G, Berthet G, Mer-Calfati C, Saada S, Devès G, Simon M, Seznec H, Barberet P. Single α-particle irradiation permits real-time visualization of RNF8 accumulation at DNA damaged sites. Sci Rep 2017; 7:41764. [PMID: 28139723 PMCID: PMC5282495 DOI: 10.1038/srep41764] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/22/2016] [Indexed: 11/22/2022] Open
Abstract
As well as being a significant source of environmental radiation exposure, α-particles are increasingly considered for use in targeted radiation therapy. A better understanding of α-particle induced damage at the DNA scale can be achieved by following their tracks in real-time in targeted living cells. Focused α-particle microbeams can facilitate this but, due to their low energy (up to a few MeV) and limited range, α-particles detection, delivery, and follow-up observations of radiation-induced damage remain difficult. In this study, we developed a thin Boron-doped Nano-Crystalline Diamond membrane that allows reliable single α-particles detection and single cell irradiation with negligible beam scattering. The radiation-induced responses of single 3 MeV α-particles delivered with focused microbeam are visualized in situ over thirty minutes after irradiation by the accumulation of the GFP-tagged RNF8 protein at DNA damaged sites.
Collapse
Affiliation(s)
- Giovanna Muggiolu
- Université de Bordeaux, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175 Gradignan, France.,CNRS, UMR5797, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175 Gradignan, France
| | - Michal Pomorski
- CEA-LIST, Diamond Sensors Laboratory, Gif-sur-Yvette F-91191, France
| | - Gérard Claverie
- Université de Bordeaux, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175 Gradignan, France.,CNRS, UMR5797, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175 Gradignan, France
| | - Guillaume Berthet
- CEA-LIST, Diamond Sensors Laboratory, Gif-sur-Yvette F-91191, France
| | | | - Samuel Saada
- CEA-LIST, Diamond Sensors Laboratory, Gif-sur-Yvette F-91191, France
| | - Guillaume Devès
- Université de Bordeaux, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175 Gradignan, France.,CNRS, UMR5797, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175 Gradignan, France
| | - Marina Simon
- Université de Bordeaux, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175 Gradignan, France.,CNRS, UMR5797, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175 Gradignan, France
| | - Hervé Seznec
- Université de Bordeaux, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175 Gradignan, France.,CNRS, UMR5797, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175 Gradignan, France
| | - Philippe Barberet
- Université de Bordeaux, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175 Gradignan, France.,CNRS, UMR5797, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175 Gradignan, France
| |
Collapse
|
15
|
Niklas M, Zimmermann F, Schlegel J, Schwager C, Debus J, Jäkel O, Abdollahi A, Greilich S. Registration procedure for spatial correlation of physical energy deposition of particle irradiation and cellular response utilizing cell-fluorescent ion track hybrid detectors. Phys Med Biol 2016; 61:N441-60. [PMID: 27499388 DOI: 10.1088/0031-9155/61/17/n441] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The hybrid technology cell-fluorescent ion track hybrid detector (Cell-Fit-HD) enables the investigation of radiation-related cellular events along single ion tracks on the subcellular scale in clinical ion beams. The Cell-Fit-HD comprises a fluorescent nuclear track detector (FNTD, the physical compartment), a device for individual particle detection and a substrate for viable cell-coating, i.e. the biological compartment. To date both compartments have been imaged sequentially in situ by confocal laser scanning microscopy (CLSM). This is yet in conflict with a functional read-out of the Cell-Fit-HD utilizing a fast live-cell imaging of the biological compartment with low phototoxicity on greater time scales. The read-out of the biological from the physical compartment was uncoupled. A read-out procedure was developed to image the cell layer by conventional widefield microscopy whereas the FNTD was imaged by CLSM. Point mapping registration of the confocal and widefield imaging data was performed. Non-fluorescent crystal defects (spinels) visible in both read-outs were used as control point pairs. The accuracy achieved was on the sub-µm scale. The read-out procedure by widefield microscopy does not impair the unique ability of spatial correlation by the Cell-Fit-HD. The uncoupling will enlarge the application potential of the hybrid technology significantly. The registration allows for an ultimate correlation of microscopic physical beam parameters and cell kinetics on greater time scales. The method reported herein will be instrumental for the introduction of a novel generation of compact detectors facilitating biodosimetric research towards high-throughput analysis.
Collapse
Affiliation(s)
- M Niklas
- Molecular & Translational Radiation Oncology, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany. German Cancer Consortium (DKTK), D-69120 Heidelberg, Germany. Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
16
|
McFadden CH, Hallacy TM, Flint DB, Granville DA, Asaithamby A, Sahoo N, Akselrod MS, Sawakuchi GO. Time-Lapse Monitoring of DNA Damage Colocalized With Particle Tracks in Single Living Cells. Int J Radiat Oncol Biol Phys 2016; 96:221-7. [DOI: 10.1016/j.ijrobp.2016.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 04/08/2016] [Indexed: 12/18/2022]
|
17
|
Dokic I, Niklas M, Zimmermann F, Mairani A, Seidel P, Krunic D, Jäkel O, Debus J, Greilich S, Abdollahi A. Correlation of Particle Traversals with Clonogenic Survival Using Cell-Fluorescent Ion Track Hybrid Detector. Front Oncol 2015; 5:275. [PMID: 26697410 PMCID: PMC4671278 DOI: 10.3389/fonc.2015.00275] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/23/2015] [Indexed: 01/26/2023] Open
Abstract
Development of novel approaches linking the physical characteristics of particles with biological responses are of high relevance for the field of particle therapy. In radiobiology, the clonogenic survival of cells is considered the gold standard assay for the assessment of cellular sensitivity to ionizing radiation. Toward further development of next generation biodosimeters in particle therapy, cell-fluorescent ion track hybrid detector (Cell-FIT-HD) was recently engineered by our group and successfully employed to study physical particle track information in correlation with irradiation-induced DNA damage in cell nuclei. In this work, we investigated the feasibility of Cell-FIT-HD as a tool to study the effects of clinical beams on cellular clonogenic survival. Tumor cells were grown on the fluorescent nuclear track detector as cell culture, mimicking the standard procedures for clonogenic assay. Cell-FIT-HD was used to detect the spatial distribution of particle tracks within colony-initiating cells. The physical data were associated with radiation-induced foci as surrogates for DNA double-strand breaks, the hallmark of radiation-induced cell lethality. Long-term cell fate was monitored to determine the ability of cells to form colonies. We report the first successful detection of particle traversal within colony-initiating cells at subcellular resolution using Cell-FIT-HD.
Collapse
Affiliation(s)
- Ivana Dokic
- German Cancer Consortium, Translational Radiation Oncology, National Center for Tumor Diseases, German Cancer Research Center, Heidelberg University Medical School , Heidelberg , Germany ; Heidelberg Ion Therapy Center , Heidelberg , Germany ; Heidelberg Institute of Radiation Oncology, National Center for Radiation Research in Oncology , Heidelberg , Germany
| | - Martin Niklas
- German Cancer Consortium, Translational Radiation Oncology, National Center for Tumor Diseases, German Cancer Research Center, Heidelberg University Medical School , Heidelberg , Germany ; Heidelberg Ion Therapy Center , Heidelberg , Germany ; Heidelberg Institute of Radiation Oncology, National Center for Radiation Research in Oncology , Heidelberg , Germany
| | - Ferdinand Zimmermann
- German Cancer Consortium, Translational Radiation Oncology, National Center for Tumor Diseases, German Cancer Research Center, Heidelberg University Medical School , Heidelberg , Germany ; Heidelberg Ion Therapy Center , Heidelberg , Germany ; Heidelberg Institute of Radiation Oncology, National Center for Radiation Research in Oncology , Heidelberg , Germany
| | - Andrea Mairani
- Heidelberg Ion Therapy Center , Heidelberg , Germany ; National Center for Oncological Hadrontherapy , Pavia , Italy
| | - Philipp Seidel
- German Cancer Consortium, Translational Radiation Oncology, National Center for Tumor Diseases, German Cancer Research Center, Heidelberg University Medical School , Heidelberg , Germany ; Heidelberg Ion Therapy Center , Heidelberg , Germany ; Heidelberg Institute of Radiation Oncology, National Center for Radiation Research in Oncology , Heidelberg , Germany
| | - Damir Krunic
- Light Microscopy Facility, German Cancer Research Center , Heidelberg , Germany
| | - Oliver Jäkel
- Heidelberg Ion Therapy Center , Heidelberg , Germany ; Heidelberg Institute of Radiation Oncology, National Center for Radiation Research in Oncology , Heidelberg , Germany ; Division of Medical Physics in Radiation Oncology, German Cancer Research Center , Heidelberg , Germany
| | - Jürgen Debus
- German Cancer Consortium, Translational Radiation Oncology, National Center for Tumor Diseases, German Cancer Research Center, Heidelberg University Medical School , Heidelberg , Germany ; Heidelberg Ion Therapy Center , Heidelberg , Germany ; Heidelberg Institute of Radiation Oncology, National Center for Radiation Research in Oncology , Heidelberg , Germany
| | - Steffen Greilich
- Heidelberg Institute of Radiation Oncology, National Center for Radiation Research in Oncology , Heidelberg , Germany ; Division of Medical Physics in Radiation Oncology, German Cancer Research Center , Heidelberg , Germany
| | - Amir Abdollahi
- German Cancer Consortium, Translational Radiation Oncology, National Center for Tumor Diseases, German Cancer Research Center, Heidelberg University Medical School , Heidelberg , Germany ; Heidelberg Ion Therapy Center , Heidelberg , Germany ; Heidelberg Institute of Radiation Oncology, National Center for Radiation Research in Oncology , Heidelberg , Germany
| |
Collapse
|
18
|
Byrne HL, Domanova W, McNamara AL, Incerti S, Kuncic Z. The cytoplasm as a radiation target: an in silico study of microbeam cell irradiation. Phys Med Biol 2015; 60:2325-37. [PMID: 25715947 DOI: 10.1088/0031-9155/60/6/2325] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We performed in silico microbeam cell irradiation modelling to quantitatively investigate ionisations resulting from soft x-ray and alpha particle microbeams targeting the cytoplasm of a realistic cell model. Our results on the spatial distribution of ionisations show that as x-rays are susceptible to scatter within a cell that can lead to ionisations in the nucleus, soft x-ray microbeams may not be suitable for investigating the DNA damage response to radiation targeting the cytoplasm alone. In contrast, ionisations from an ideal alpha microbeam are tightly confined to the cytoplasm, but a realistic alpha microbeam degrades upon interaction with components upstream of the cellular target. Thus it is difficult to completely rule out a contribution from alpha particle hits to the nucleus when investigating DNA damage response to cytoplasmic irradiation. We find that although the cytoplasm targeting efficiency of an alpha microbeam is better than that of a soft x-ray microbeam (the probability of stray alphas hitting the nucleus is 0.2% compared to 3.6% for x-rays), stray alphas produce more ionisations in the nucleus and thus have greater potential for initiating damage responses therein. Our results suggest that observed biological responses to cytoplasmic irradiation include a small component that can be attributed to stray ionisations in the nucleus resulting from the stochastic nature of particle interactions that cause out-of-beam scatter. This contribution is difficult to isolate experimentally, thus demonstrating the value of the in silico approach.
Collapse
Affiliation(s)
- H L Byrne
- Institute of Medical Physics, School of Physics, University of Sydney, NSW 2006, Australia
| | | | | | | | | |
Collapse
|