1
|
Jiang L, Lyu Q, Abdelhamid AMH, Hui S, Sheng K. An efficient rectangular optimization method for sparse orthogonal collimator based small animal irradiation. Phys Med Biol 2022; 67:10.1088/1361-6560/ac910b. [PMID: 36084625 PMCID: PMC9595432 DOI: 10.1088/1361-6560/ac910b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/09/2022] [Indexed: 11/11/2022]
Abstract
Objective.Intensity-modulated radiotherapy (IMRT) is widely used in clinical radiotherapy, treating varying malignancies with conformal doses. As the test field for clinical translation, preclinical small animal experiments need to mimic the human radiotherapy condition, including IMRT. However, small animal IMRT is a systematic challenge due to the lack of corresponding hardware and software for miniaturized targets.Approach.The sparse orthogonal collimators (SOC) based on the direct rectangular aperture optimization (RAO) substantially simplified the hardware for miniaturization. This study investigates and evaluates a significantly improved RAO algorithm for complex mouse irradiation using SOC. Because the Kronecker product representation of the rectangular aperture is the main limitation of the computational performance, we reformulated matrix multiplication in the data fidelity term using multiplication with small matrices instead of the Kronecker product of the dose loading matrices. Solving the optimization problem was further accelerated using the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA).Main results.Four mouse cases, including a liver, a brain tumor, a concave U-target, and a complex total marrow irradiation (TMI) case, were included in this study with manually delineated targets and OARs. Seven coplanar-field SOC IMRT (sIMRT) plans were compared with idealistic fluence map based IMRT (iIMRT) plans. For the first three cases with simpler and smaller targets, the differences between sIMRT plans and iIMRT plans in the planning target volumes (PTV) statistics are within 1%. For the TMI case, the sIMRT plans are superior in reducing hot spots (also termedDmax) of PTV, kidneys, lungs, heart, and bowel by 20.5%, 31.5%, 24.67%, 20.13%, and 17.78%, respectively. On average, in four cases in this study, the sIMRT plan conformity is comparable to that of the iIMRT's with lightly increased R50 and Integral Dose by 2.23% and 2.78%.Significance.The significantly improved sIMRT optimization method allows fast plan creation in under 1 min for smaller targets and makes complex TMI planning feasible while achieving comparable dosimetry to idealistic IMRT with fluence map optimization.
Collapse
Affiliation(s)
- Lu Jiang
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Qihui Lyu
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Amr M H Abdelhamid
- Department of Radiation Oncology, City of Hope Medical Center, Duarte, CA, United States of America
| | - Susanta Hui
- Department of Radiation Oncology, City of Hope Medical Center, Duarte, CA, United States of America
| | - Ke Sheng
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA, United States of America
| |
Collapse
|
2
|
Wang X, Lu Y, Qin Z, Guo H, Chen W, Ding T, Tang J, Zhang H. Stereotactic Body Radiotherapy and Conventional Radiotherapy Induce Cytoskeleton Extension and Enlargement of Cell Morphology in Non-Small Cell Lung Cancer. Dose Response 2022; 19:15593258211064499. [PMID: 34987340 PMCID: PMC8725237 DOI: 10.1177/15593258211064499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Stereotactic body radiotherapy (SBRT) is now widely used in cancer therapy. However, the biological effects of SBRT compared with conventional radiotherapy (CRT) are not clear. The cytoskeleton plays an important role in many biological processes and cellular life activities. The effects of SBRT or CRT on the morphology and cytoskeletal structure of non-small cell lung cancer (NSCLC) cells remain unknown. Based on the biologically equivalent dose (BED) formula, we designed SBRT and CRT fractionation regimens with the same BED. The morphology was captured during radiation, and rhodamine-phalloidin immunofluorescence was used to study the cytoskeleton. A lactate dehydrogenase assay kit was used to determine the cell membrane permeability, and western blot was used to detect the cytoskeleton protein expression levels. The morphology and cytoskeleton expanded after SBRT or CRT, with an increase in cell membrane permeability and stable cytoskeleton protein levels. Besides, different dose of SBRT (10,20,30 Gy) induce similar morphology and cytoskeleton enlargement. Our findings indicate that SBRT and CRT can induce cytoskeleton reorganization and the enlargement of cell morphology (at different rates) in NSCLC. The morphology and cytoskeleton enlargement after SBRT are dose independence.
Collapse
Affiliation(s)
- Xiao Wang
- Oncology Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yanwei Lu
- Oncology Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Zhiquan Qin
- Oncology Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Haiwei Guo
- Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Wenjuan Chen
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ting Ding
- Department of Endocrinology, Yiyang Central Hospital, Yiyang, China
| | - Jianming Tang
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Haibo Zhang
- Oncology Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
3
|
Yu VY, Nguyen D, O'Connor D, Ruan D, Kaprealian T, Chin R, Sheng K. Treating Glioblastoma Multiforme (GBM) with super hyperfractionated radiation therapy: Implication of temporal dose fractionation optimization including cancer stem cell dynamics. PLoS One 2021; 16:e0245676. [PMID: 33524046 PMCID: PMC7850476 DOI: 10.1371/journal.pone.0245676] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/05/2021] [Indexed: 11/18/2022] Open
Abstract
PURPOSE A previously developed ordinary differential equation (ODE) that models the dynamic interaction and distinct radiosensitivity between cancer stem cells (CSC) and differentiated cancer cells (DCC) was used to explain the definitive treatment failure in Glioblastoma Multiforme (GBM) for conventionally and hypo-fractionated treatments. In this study, optimization of temporal dose modulation based on the ODE equation is performed to explore the feasibility of improving GBM treatment outcome. METHODS A non-convex optimization problem with the objective of minimizing the total cancer cell number while maintaining the normal tissue biological effective dose (BEDnormal) at 100 Gy, equivalent to the conventional 2 Gy × 30 dosing scheme was formulated. With specified total number of dose fractions and treatment duration, the optimization was performed using a paired simulated annealing algorithm with fractional doses delivered to the CSC and DCC compartments and time intervals between fractions as variables. The recurrence time, defined as the time point at which the total tumor cell number regrows to 2.8×109 cells, was used to evaluate optimization outcome. Optimization was performed for conventional treatment time frames equivalent to currently and historically utilized fractionation schemes, in which limited improvement in recurrence time delay was observed. The efficacy of a super hyperfractionated approach with a prolonged treatment duration of one year was therefore tested, with both fixed regular and optimized variable time intervals between dose fractions corresponding to total number of fractions equivalent to weekly, bi-weekly, and monthly deliveries (n = 53, 27, 13). Optimization corresponding to BEDnormal of 150 Gy was also obtained to evaluate the possibility in further recurrence delay with dose escalation. RESULTS For the super hyperfractionated schedules with dose fraction number equivalent to weekly, bi-weekly, and monthly deliveries, the recurrence time points were found to be 430.5, 423.9, and 413.3 days, respectively, significantly delayed compared with the recurrence time of 250.3 days from conventional fractionation. Results show that optimal outcome was achieved by first delivering infrequent fractions followed by dense once per day fractions in the middle and end of the treatment course, with sparse and low dose treatments in the between. The dose to the CSC compartment was held relatively constant throughout while larger dose fractions to the DCC compartment were observed in the beginning and final fractions that preceded large time intervals. Dose escalation to BEDnormal of 150 Gy was shown capable of further delaying recurrence time to 452 days. CONCLUSION The development and utilization of a temporal dose fractionation optimization framework in the context of CSC dynamics have demonstrated that substantial delay in GBM local tumor recurrence could be achieved with a super hyperfractionated treatment approach. Preclinical and clinical studies are needed to validate the efficacy of this novel treatment delivery method.
Collapse
Affiliation(s)
- Victoria Y Yu
- Department of Radiation Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Dan Nguyen
- Department of Radiation Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Daniel O'Connor
- Department of Radiation Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Dan Ruan
- Department of Radiation Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Tania Kaprealian
- Department of Radiation Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Robert Chin
- Department of Radiation Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Ke Sheng
- Department of Radiation Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
4
|
Tallman MM, Zalenski AA, Deighen AM, Schrock MS, Mortach S, Grubb TM, Kastury PS, Huntoon K, Summers MK, Venere M. The small molecule drug CBL0137 increases the level of DNA damage and the efficacy of radiotherapy for glioblastoma. Cancer Lett 2020; 499:232-242. [PMID: 33253788 DOI: 10.1016/j.canlet.2020.11.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/05/2020] [Accepted: 11/23/2020] [Indexed: 11/17/2022]
Abstract
Glioblastoma (GBM) is an incurable brain tumor with inevitable recurrence. This is in part due to a highly malignant cancer stem cell (CSC) subpopulation of tumor cells that is particularly resistant to conventional treatments, including radiotherapy. Here we show that CBL0137, a small molecule anti-cancer agent, sensitizes GBM CSCs to radiotherapy. CBL0137 sequesters the FACT (facilitates chromatin transcription) complex to chromatin, resulting in cytotoxicity preferentially within tumor cells. We show that when combined with radiotherapy, CBL0137 inhibited GBM CSC growth and resulted in more DNA damage in the CSCs compared to irradiation or drug alone. Using an in vivo subcutaneous model, we showed that the frequency of GBM CSCs was reduced when tumors were pretreated with CBL0137 and then exposed to irradiation. Survival studies with orthotopic GBM models resulted in significantly extended survival for mice treated with combinatorial therapy. As GBM CSCs contribute to the inevitable recurrence in patients, targeting them is imperative. This work establishes a new treatment paradigm for GBM that sensitizes CSCs to irradiation and may ultimately reduce tumor recurrence.
Collapse
Affiliation(s)
- Miranda M Tallman
- Department of Radiation Oncology, James Cancer Hospital and Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, OH, USA; Biomedical Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Abigail A Zalenski
- Department of Radiation Oncology, James Cancer Hospital and Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, OH, USA; Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Amanda M Deighen
- Department of Radiation Oncology, James Cancer Hospital and Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Morgan S Schrock
- Department of Radiation Oncology, James Cancer Hospital and Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Sherry Mortach
- Department of Radiation Oncology, James Cancer Hospital and Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Treg M Grubb
- Department of Radiation Oncology, James Cancer Hospital and Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Preetham S Kastury
- Department of Radiation Oncology, James Cancer Hospital and Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Kristin Huntoon
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Matthew K Summers
- Department of Radiation Oncology, James Cancer Hospital and Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Monica Venere
- Department of Radiation Oncology, James Cancer Hospital and Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
5
|
He Y, Xiao M, Fu H, Chen L, Qi L, Liu D, Guo P, Chen L, Luo Y, Xiao H, Zhang N, Guo H. cPLA2α reversibly regulates different subsets of cancer stem cells transformation in cervical cancer. Stem Cells 2020; 38:487-503. [PMID: 32100928 DOI: 10.1002/stem.3157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/23/2020] [Indexed: 12/17/2022]
Abstract
Cervical cancer stem cells (CCSCs) are considered major causes of chemoresistance/radioresistance and metastasis. Although several cell surface antigens have been identified in CCSCs, these markers vary among tumors because of CSC heterogeneity. However, whether these markers specifically distinguish CCSCs with different functions is unclear. Here, we demonstrated that CCSCs exist in two biologically distinct phenotypes characterized by different levels of cytosolic phospholipase A2α (cPLA2α) expression. Overexpression of cPLA2α results in a CD44+ CD24- phenotype associated with mesenchymal traits, including increased invasive and migration abilities, whereas CCSCs with cPLA2α downregulation express CD133 and show quiescent epithelial characteristics. In addition, cPLA2α regulates the reversible transition between mesenchymal and epithelial CCSC states through PKCζ, an atypical protein kinase C, which governs cancer cell state changes and the maintenance of various embryonic stem cell characteristics, further inhibiting β-catenin-E-cadherin interaction in membrane and promoting β-catenin translocation into the nucleus to affect the transcriptional regulation of stemness signals. We propose that reversible transitions between mesenchymal and epithelial CCSC states regulated by cPLA2α are necessary for cervical cancer metastasis and recurrence. Thus, cPLA2α might be an attractive therapeutic target for eradicating different states of CCSCs to eliminate tumors more effectively.
Collapse
Affiliation(s)
- Yuchao He
- Department of Tumor Cell Biology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Manyu Xiao
- Department of Tumor Cell Biology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Hui Fu
- Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Lu Chen
- Department of Hepatobiliary Tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China.,The Key Laboratory of Tianjin Cancer Prevention and Treatment, National Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Lisha Qi
- The Key Laboratory of Tianjin Cancer Prevention and Treatment, National Clinical Research Center for Cancer, Tianjin, People's Republic of China.,Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Dongming Liu
- The Key Laboratory of Tianjin Cancer Prevention and Treatment, National Clinical Research Center for Cancer, Tianjin, People's Republic of China.,Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Piao Guo
- Department of Tumor Cell Biology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Liwei Chen
- Department of Tumor Cell Biology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Yi Luo
- Department of Tumor Cell Biology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Huiting Xiao
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Ning Zhang
- Department of Tumor Cell Biology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China.,The Center for Translational Cancer Research, Peking University First Hospital, Beijing, People's Republic of China
| | - Hua Guo
- Department of Tumor Cell Biology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| |
Collapse
|
6
|
Woods K, Neph R, Nguyen D, Sheng K. A sparse orthogonal collimator for small animal intensity-modulated radiation therapy. Part II: hardware development and commissioning. Med Phys 2019; 46:5733-5747. [PMID: 31621091 DOI: 10.1002/mp.13870] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 12/18/2022] Open
Abstract
PURPOSE A dose-modulation device for small animal radiotherapy is required to use clinically analogous treatment techniques, which will likely increase the translatability of preclinical research results. Because the clinically used multileaf collimator (MLC) is impractical for miniaturization, we have developed a simpler, better-suited sparse orthogonal collimator (SOC) for delivering small animal intensity-modulated radiation therapy (IMRT) using a rectangular aperture optimization (RAO) treatment planning system. METHODS The SOC system was modeled in computer-aided design software and fabricated with machined tungsten leaves and three-dimensional (3D) printed leaf housing. A graphical user interface was developed for controlling and calibrating the SOC leaves, which are driven by Arduino-controlled stepper motors. A Winston-Lutz test was performed to assess mechanical alignment, and abutting field and grid dose patterns were created to analyze intra- and intercalibration leaf positioning error. Leaf transmission and penumbra were measured over the full range of gantry angles and leaf positions, respectively. Three SOC test plans were delivered, and film measurements were compared to the intended dose distributions. The differences in maximum, mean, and minimum, as well as pixelwise absolute dose differences, were compared for each structure, and a gamma analysis was performed for the target structures using criteria of 4% dose difference and 0.3 mm distance to agreement. RESULTS The Winston-Lutz test revealed maximum directional offsets between the SOC and primary collimator axes of 0.53 mm at 0° and 0.68 mm over the full 360°. Upper and lower abutting field patterns had maximum dose deviations of 18.8 ± 3.1% and 15.5 ± 2.9%, respectively, and grid patterns showed intra- and intercalibration repeatability of 93% and 91%, respectively. Extremely low midleaf (0.15 ± 0.05%) and interleaf (0.27 ± 0.22%) transmission was measured, with no significant rotational variation. The average penumbra was ~0.8 mm for all leaves at field center, with a range of 0.17 mm for all leaf positions. A highly concave test plan was delivered with a ~ 95% gamma analysis pass rate, and a realistic mouse phantom liver irradiation plan achieved a pass rate of ~98%. A highly complex dose distribution was also created with 551 SOC apertures averaging 2.4 mm in size. CONCLUSIONS A sparse orthogonal collimator was developed and commissioned, with promising preliminary dosimetry results. The SOC design, with its limited moving components and high dose-modulation resolution, is ideal for delivering high-quality small animal IMRT with our RAO-based treatment planning system.
Collapse
Affiliation(s)
- Kaley Woods
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA, USA
| | - Ryan Neph
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA, USA
| | - Dan Nguyen
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA, USA
| | - Ke Sheng
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
7
|
Dünker N, Jendrossek V. Implementation of the Chick Chorioallantoic Membrane (CAM) Model in Radiation Biology and Experimental Radiation Oncology Research. Cancers (Basel) 2019; 11:cancers11101499. [PMID: 31591362 PMCID: PMC6826367 DOI: 10.3390/cancers11101499] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy (RT) is part of standard cancer treatment. Innovations in treatment planning and increased precision in dose delivery have significantly improved the therapeutic gain of radiotherapy but are reaching their limits due to biologic constraints. Thus, a better understanding of the complex local and systemic responses to RT and of the biological mechanisms causing treatment success or failure is required if we aim to define novel targets for biological therapy optimization. Moreover, optimal treatment schedules and prognostic biomarkers have to be defined for assigning patients to the best treatment option. The complexity of the tumor environment and of the radiation response requires extensive in vivo experiments for the validation of such treatments. So far in vivo investigations have mostly been performed in time- and cost-intensive murine models. Here we propose the implementation of the chick chorioallantoic membrane (CAM) model as a fast, cost-efficient model for semi high-throughput preclinical in vivo screening of the modulation of the radiation effects by molecularly targeted drugs. This review provides a comprehensive overview on the application spectrum, advantages and limitations of the CAM assay and summarizes current knowledge of its applicability for cancer research with special focus on research in radiation biology and experimental radiation oncology.
Collapse
Affiliation(s)
- Nicole Dünker
- Institute for Anatomy II, Department of Neuroanatomy, University of Duisburg-Essen, University Medicine Essen, 45122 Essen, Germany.
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Medicine Essen, 45122 Essen, Germany.
| |
Collapse
|
8
|
Alfonso JCL, Berk L. Modeling the effect of intratumoral heterogeneity of radiosensitivity on tumor response over the course of fractionated radiation therapy. Radiat Oncol 2019; 14:88. [PMID: 31146751 PMCID: PMC6543639 DOI: 10.1186/s13014-019-1288-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/06/2019] [Indexed: 01/31/2023] Open
Abstract
Background Standard radiobiology theory of radiation response assumes a uniform innate radiosensitivity of tumors. However, experimental data show that there is significant intratumoral heterogeneity of radiosensitivity. Therefore, a model with heterogeneity was developed and tested using existing experimental data to show the potential effects from the presence of an intratumoral distribution of radiosensitivity on radiation therapy response over a protracted radiation therapy treatment course. Methods The standard radiation response curve was modified to account for a distribution of radiosensitivity, and for variations in the repopulation rates of the tumor cell subpopulations. Experimental data from the literature were incorporated to determine the boundaries of the model. The proposed model was then used to show the changes in radiosensitivity of the tumor during treatment, and the effects of fraction size, α/β ratio and variation of the repopulation rates of tumor cells. Results In the presence of an intratumoral distribution of radiosensitivity, there is rapid selection of radiation-resistant cells over a course of fractionated radiation therapy. Standard treatment fractionation regimes result in the near-complete replacement of the initial population of sensitive cells with a population of more resistant cells. Further, as treatment progresses, the tumor becomes more resistant to further radiation treatment, making each fractional dose less efficacious. A wider initial distribution induces increased radiation resistance. Hypofractionation is more efficient in a heterogeneous tumor, with increased cell kill for biologically equivalent doses, while inducing less resistance. The model also shows that a higher growth rate in resistant cells can account for the accelerated repopulation that is seen during the clinical treatment of patients. Conclusions Modeling of tumor cell survival with radiosensitivity heterogeneity alters the predicted tumor response, and explains the induction of radiation resistance by radiation treatment, the development of accelerated repopulation, and the potential beneficial effects of hypofractionation. Tumor response to treatment may be better predicted by assaying for the distribution of radiosensitivity, or the extreme of the radiosensitivity, rather than measuring the initial, general radiation sensitivity of the untreated tumor.
Collapse
Affiliation(s)
- J C L Alfonso
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.
| | - L Berk
- Division of Radiation Oncology, Department of Radiology, Morsani School of Medicine at the University of South Florida, Tampa, FL, USA
| |
Collapse
|
9
|
Yin Z, Yang G, Deng S, Wang Q. Oxidative stress levels and dynamic changes in mitochondrial gene expression in a radiation-induced lung injury model. JOURNAL OF RADIATION RESEARCH 2019; 60:204-214. [PMID: 30590649 PMCID: PMC6430248 DOI: 10.1093/jrr/rry105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/21/2018] [Indexed: 05/09/2023]
Abstract
The purpose of this study was to set up a beagle dog model, for radiation-induced lung injury, that would be able to supply fresh lung tissues in the different injury phases for research into oxidative stress levels and mitochondrial gene expression. Blood serum and tissues were collected via CT-guided core needle biopsies from dogs in the various phases of the radiation response over a 40-week period. Levels of reactive oxygen species (ROS) and manganese superoxide dismutase 2 (MnSOD) protein expression in radiation-induced lung injury were determined by in situ immunocytochemistry; malondialdehyde (MDA) content and reductase activity in the peripheral blood were also tested; in addition, the copy number of the mitochondrial DNA and the level of function of the respiratory chain in the lung tissues were assessed. ROS showed dynamic changes and peaked at 4 weeks; MnSOD was mainly expressed in the Type II alveolar epithelium at 8 weeks; the MDA content and reductase activity in the peripheral blood presented no changes; the copy numbers of most mitochondrial genes peaked at 8 weeks, similarly to the level of function of the corresponding respiratory chain complexes; the level of function of the respiratory chain complex III did not peak until 24 weeks, similarly to the level of function of the corresponding gene Cytb. Radiation-induced lung injury was found to be a dynamically changing process, mainly related to interactions between local ROS, and it was not associated with the levels of oxidative stress in the peripheral blood. Mitochondrial genes and their corresponding respiratory chain complexes were found to be involved in the overall process.
Collapse
Affiliation(s)
- Zhongyuan Yin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guanghai Yang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sisi Deng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiong Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Corresponding author: Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China. Tel: +86-159-2739-5672; Fax: +86-27-6565-0733;
| |
Collapse
|
10
|
Deciphering the Dynamics of Epithelial-Mesenchymal Transition and Cancer Stem Cells in Tumor Progression. CURRENT STEM CELL REPORTS 2019. [DOI: 10.1007/s40778-019-0150-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Zhong H, Brown S, Devpura S, Li XA, Chetty IJ. Kinetic modeling of tumor regression incorporating the concept of cancer stem-like cells for patients with locally advanced lung cancer. Theor Biol Med Model 2018; 15:23. [PMID: 30587218 PMCID: PMC6307263 DOI: 10.1186/s12976-018-0096-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/30/2018] [Indexed: 12/17/2022] Open
Abstract
Background Personalized medicine for patients receiving radiation therapy remains an elusive goal due, in part, to the limits in our understanding of the underlying mechanisms governing tumor response to radiation. The purpose of this study was to develop a kinetic model, in the context of locally advanced lung cancer, connecting cancer cell subpopulations with tumor volumes measured during the course of radiation treatment for understanding treatment outcome for individual patients. Methods The kinetic model consists of three cell compartments: cancer stem-like cells (CSCs), non-stem tumor cells (TCs) and dead cells (DCs). A set of ordinary differential equations were developed to describe the time evolution of each compartment, and the analytic solution of these equations was iterated to be aligned with the day-to-day tumor volume changes during the course of radiation treatment. A least squares fitting method was used to estimate the parameters of the model that include the proportion of CSCs and their radio-sensitivities. This model was applied to five patients with stage III lung cancer, and tumor volumes were measured from 33 cone-beam computed tomography (CBCT) images for each of these patients. The analytical solution of these differential equations was compared with numerically simulated results. Results For the five patients with late stage lung cancer, the derived proportions of CSCs are 0.3 on average, the average probability of the symmetry division is 0.057 and the average surviving fractions of CSCs is 0.967, respectively. The derived parameters are comparable to the results from literature and our experiments. The preliminary results suggest that the CSC self-renewal rate is relatively small, compared to the proportion of CSCs for locally advanced lung cancers. Conclusions A novel mathematical model has been developed to connect the population of cancer stem-like cells with tumor volumes measured from a sequence of CBCT images. This model may help improve our understanding of tumor response to radiation therapy, and is valuable for development of new treatment regimens for patients with locally advanced lung cancer.
Collapse
Affiliation(s)
- Hualiang Zhong
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, 53226, WI, USA.
| | - Stephen Brown
- Department of Radiation Oncology, Henry Ford Health System, Detroit, 48202, MI, USA
| | - Suneetha Devpura
- Department of Radiation Oncology, Henry Ford Health System, Detroit, 48202, MI, USA
| | - X Allen Li
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, 53226, WI, USA
| | - Indrin J Chetty
- Department of Radiation Oncology, Henry Ford Health System, Detroit, 48202, MI, USA
| |
Collapse
|
12
|
Yang L, Li N, Yan Z, Li C, Zhao Z. MiR-29a-Mediated CD133 Expression Contributes to Cisplatin Resistance in CD133+ Glioblastoma Stem Cells. J Mol Neurosci 2018; 66:369-377. [DOI: 10.1007/s12031-018-1177-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 09/17/2018] [Indexed: 10/28/2022]
|
13
|
Zhang H, Wan C, Huang J, Yang C, Qin Y, Lu Y, Ma J, Wu B, Xu S, Wu G, Yang K. In Vitro Radiobiological Advantages of Hypofractionation Compared with Conventional Fractionation: Early-Passage NSCLC Cells are Less Aggressive after Hypofractionation. Radiat Res 2018; 190:584-595. [PMID: 30234458 DOI: 10.1667/rr14951.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Haibo Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chao Wan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jing Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chensu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - You Qin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yanwei Lu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jia Ma
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bian Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuangbing Xu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
14
|
Doi H, Uemoto K, Masai N, Tatsumi D, Shiomi H, Oh RJ. Definitive re-irradiation using intensity-modulated radiation therapy in cancers of the head and neck, focusing on rare tumors. Acta Otolaryngol 2018; 138:750-758. [PMID: 29468910 DOI: 10.1080/00016489.2018.1438662] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/06/2018] [Accepted: 01/15/2018] [Indexed: 10/18/2022]
Abstract
PURPOSE To analyze the outcomes following re-irradiation for local recurrence of rare head and neck tumors. MATERIAL AND METHODS We retrospectively analyzed 11 patients who had received intensity-modulated radiation therapy (IMRT) for recurrent tumors in the head and neck except for laryngopharynx. RESULTS Primary tumor sites included the maxillary sinus, nasal cavity, and external ear canal in six, three, and two patients, respectively. The median follow-up times were 13 (range, 3-54) months. The median survival time was 17 months with 1- and 2-year survival rates of 63.64 and 39.77%, respectively. Among 11 patients, five experienced local failure in the follow-up period. The 1- and 2-year local control rates were 58 and 47%, respectively. Patients who had received a radiation dose of ≥3 Gy per fraction showed significantly better local control than those receiving less (p = .0419). One patient experienced Grade 3 facial pain as acute toxicity. Late toxicities included radiographic findings of partial central nervous system necrosis in three patients and Grade 3 osteonecrosis and Grade 3 facial nerve disorder in one patient. CONCLUSIONS Re-irradiation of rare head and neck tumors using IMRT for loco-regional recurrence may be an acceptable treatment option.
Collapse
Affiliation(s)
- Hiroshi Doi
- a Miyakojima IGRT Clinic , Miyakojimahondori, Miyakojima-ku , Osaka , Japan
- b Department of Radiation Oncology , Kindai University Faculty of Medicine , Ohno-higashi , Osaka-sayama , Osaka , Japan
| | - Kenji Uemoto
- a Miyakojima IGRT Clinic , Miyakojimahondori, Miyakojima-ku , Osaka , Japan
| | - Norihisa Masai
- a Miyakojima IGRT Clinic , Miyakojimahondori, Miyakojima-ku , Osaka , Japan
| | - Daisaku Tatsumi
- a Miyakojima IGRT Clinic , Miyakojimahondori, Miyakojima-ku , Osaka , Japan
| | - Hiroya Shiomi
- a Miyakojima IGRT Clinic , Miyakojimahondori, Miyakojima-ku , Osaka , Japan
| | - Ryoong-Jin Oh
- a Miyakojima IGRT Clinic , Miyakojimahondori, Miyakojima-ku , Osaka , Japan
| |
Collapse
|
15
|
Radioresistance of the breast tumor is highly correlated to its level of cancer stem cell and its clinical implication for breast irradiation. Radiother Oncol 2017; 124:455-461. [PMID: 28923575 DOI: 10.1016/j.radonc.2017.08.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND PURPOSE Growing evidence suggested the coexistence of cancer stem cells (CSCs) within solid tumors. We aimed to study radiosensitivity parameters for the CSCs and differentiated tumor cells (TCs) and the correlation of the fractions of CSCs to the overall tumor radioresistance. MATERIAL AND METHODS Surviving fractions of breast cancer cell lines were analyzed using a dual-compartment Linear-quadratic model with independent fitting parameters: radiosensitive αTC, βTC, αCSC, βCSC, and fraction of CSCs f. The overall tumor radio-resistance, the biological effective doses and tumor control probability were estimated as a function of CSC fraction for different fractionation regimens. The pooled clinical outcome data were fitted to the single- and dual-compartment linear-quadric models. RESULTS CSCs were more radioresistant characterized by smaller α compared to TCs: αTC=0.1±0.2, αCSC=0.04±0.07 for MCF-7 (f=0.1%), αTC=0.08±0.25, αCSC=0.04±0.18 for SUM159PT (f=2.46%). Higher f values were correlated with increasing radioresistance in cell lines. Analysis of clinical outcome data is in accordance of a dual-compartment CSC model prediction. Higher percentage of BCSCs resulted in more overall tumor radioresistance and less biological effectiveness. CONCLUSIONS Percentage of CSCs strongly correlated to overall tumor radioresistance. This observation suggested potential individualized radiotherapy to account for heterogeneous population of CSCs and their distinct radiosensitivity for breast cancer.
Collapse
|
16
|
|
17
|
Crispin-Ortuzar M, Jeong J, Fontanella AN, Deasy JO. A radiobiological model of radiotherapy response and its correlation with prognostic imaging variables. Phys Med Biol 2017; 62:2658-2674. [PMID: 28140359 DOI: 10.1088/1361-6560/aa5d42] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Radiobiological models of tumour control probability (TCP) can be personalized using imaging data. We propose an extension to a voxel-level radiobiological TCP model in order to describe patient-specific differences and intra-tumour heterogeneity. In the proposed model, tumour shrinkage is described by means of a novel kinetic Monte Carlo method for inter-voxel cell migration and tumour deformation. The model captures the spatiotemporal evolution of the tumour at the voxel level, and is designed to take imaging data as input. To test the performance of the model, three image-derived variables found to be predictive of outcome in the literature have been identified and calculated using the model's own parameters. Simulating multiple tumours with different initial conditions makes it possible to perform an in silico study of the correlation of these variables with the dose for 50% tumour control ([Formula: see text]) calculated by the model. We find that the three simulated variables correlate with the calculated [Formula: see text]. In addition, we find that different variables have different levels of sensitivity to the spatial distribution of hypoxia within the tumour, as well as to the dynamics of the migration mechanism. Finally, based on our results, we observe that an adequate combination of the variables may potentially result in higher predictive power.
Collapse
|
18
|
Wirsdörfer F, Jendrossek V. The Role of Lymphocytes in Radiotherapy-Induced Adverse Late Effects in the Lung. Front Immunol 2016; 7:591. [PMID: 28018357 PMCID: PMC5155013 DOI: 10.3389/fimmu.2016.00591] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/29/2016] [Indexed: 12/31/2022] Open
Abstract
Radiation-induced pneumonitis and fibrosis are dose-limiting side effects of thoracic irradiation. Thoracic irradiation triggers acute and chronic environmental lung changes that are shaped by the damage response of resident cells, by the resulting reaction of the immune system, and by repair processes. Although considerable progress has been made during the last decade in defining involved effector cells and soluble mediators, the network of pathophysiological events and the cellular cross talk linking acute tissue damage to chronic inflammation and fibrosis still require further definition. Infiltration of cells from the innate and adaptive immune systems is a common response of normal tissues to ionizing radiation. Herein, lymphocytes represent a versatile and wide-ranged group of cells of the immune system that can react under specific conditions in various ways and participate in modulating the lung environment by adopting pro-inflammatory, anti-inflammatory, or even pro- or anti-fibrotic phenotypes. The present review provides an overview on published data about the role of lymphocytes in radiation-induced lung disease and related damage-associated pulmonary diseases with a focus on T lymphocytes and B lymphocytes. We also discuss the suspected dual role of specific lymphocyte subsets during the pneumonitic phase and fibrotic phase that is shaped by the environmental conditions as well as the interaction and the intercellular cross talk between cells from the innate and adaptive immune systems and (damaged) resident epithelial cells and stromal cells (e.g., endothelial cells, mesenchymal stem cells, and fibroblasts). Finally, we highlight potential therapeutic targets suited to counteract pathological lymphocyte responses to prevent or treat radiation-induced lung disease.
Collapse
Affiliation(s)
- Florian Wirsdörfer
- Institute of Cell Biology (Cancer Research), University Hospital Essen , Essen , Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University Hospital Essen , Essen , Germany
| |
Collapse
|
19
|
Fast and high temperature hyperthermia coupled with radiotherapy as a possible new treatment for glioblastoma. J Ther Ultrasound 2016; 4:32. [PMID: 27980785 PMCID: PMC5143464 DOI: 10.1186/s40349-016-0078-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 11/18/2016] [Indexed: 12/21/2022] Open
Abstract
Background A new transcranial focused ultrasound device has been developed that can induce hyperthermia in a large tissue volume. The purpose of this work is to investigate theoretically how glioblastoma multiforme (GBM) can be effectively treated by combining the fast hyperthermia generated by this focused ultrasound device with external beam radiotherapy. Methods/Design To investigate the effect of tumor growth, we have developed a mathematical description of GBM proliferation and diffusion in the context of reaction–diffusion theory. In addition, we have formulated equations describing the impact of radiotherapy and heat on GBM in the reaction–diffusion equation, including tumor regrowth by stem cells. This formulation has been used to predict the effectiveness of the combination treatment for a realistic focused ultrasound heating scenario. Our results show that patient survival could be significantly improved by this combined treatment modality. Discussion High priority should be given to experiments to validate the therapeutic benefit predicted by our model. Electronic supplementary material The online version of this article (doi:10.1186/s40349-016-0078-3) contains supplementary material, which is available to authorized users.
Collapse
|
20
|
Ye H, Chen M, Cao F, Huang H, Zhan R, Zheng X. Chloroquine, an autophagy inhibitor, potentiates the radiosensitivity of glioma initiating cells by inhibiting autophagy and activating apoptosis. BMC Neurol 2016; 16:178. [PMID: 27644442 PMCID: PMC5029068 DOI: 10.1186/s12883-016-0700-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/12/2016] [Indexed: 12/20/2022] Open
Abstract
Background Glioblastoma is refractory to conventional treatment, which is combined of surgery, chemotherapy and radiotherapy. Recent studies have shown that glioma initiating cells (GICs) contribute to tumorigenesis and radioresistance. Recently, other studies showed that the GICs use the autophagy as the major pathway to survive. Chloroquine, an anti-malarial chemical, is an autophagic inhibitor which blocks autophagosome fusion with lysosome and slows down lysosomal acidification. The aim of this study was to explore the mechanisms of chloroquine on the radiosensitivity of GICs. Methods Human glioblastoma cell lines U87 were investigated. MTT and clonogenic survival assay were used to evaluate the cell viability and survival from radiation. The formation of autophagosomes were evaluated by immunofluorescence. Annexin V-FITC/PI staining and flow cytometry were used to quantify the apoptotic cells. The expression levels of proteins were analyzed by Western blot. Cell cycle status was analyzed by checking DNA content after staining with PI. A comet assay was used to assess the DNA repair in the cells. Tumorsphere assay was used for evaluating GICs’ renewal ability. Results Treatment of U87 GICs with chloroquine (10–80 nmol/L) alone inhibited the cell growth in a dose-dependent manner. A dose of chloroquine (20 nmol/L) obviously enhanced the radiation sensitivity of U87 GICs., we found more punctate patterns of microtubule-associated protein LC3 immunoreactivity in radiation-treated U87 GICs, and the level of membrane-bound LC3-II was obviously enhanced. A combination of radiation and chloroquine obviously enhanced the U87 GICs’ apoptosis, as demonstrated by the enhanced levels of caspase-3, and reduced level of Bcl-2. In additon, combination of radiation and chloroquine cause G1/G0 cell cycle arrest. what’s more, Chloroquine obviously weakened the repair of radiation-induced DNA damage as reflected by the tail length of the comet. Combination treatment of irradiation and chloroquine has synergistic effects on decreasing the GICs’ tumorsphere number and diameter. Conclusion Chloroquine enhances the radiosensitivity of GICs in vitro, suggesting the feasibility of joint treatment with chloroquine with radiation for GBM.
Collapse
Affiliation(s)
- Hongxing Ye
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, Zhejiang, People's Republic of China
| | - Mantao Chen
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, Zhejiang, People's Republic of China
| | - Fei Cao
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, Zhejiang, People's Republic of China
| | - Hongguang Huang
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, Zhejiang, People's Republic of China
| | - Renya Zhan
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, Zhejiang, People's Republic of China.
| | - Xiujue Zheng
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
21
|
Vallard A, Espenel S, Guy JB, Diao P, Xia Y, El Meddeb Hamrouni A, Ben Mrad M, Falk AT, Rodriguez-Lafrasse C, Rancoule C, Magné N. Targeting stem cells by radiation: From the biological angle to clinical aspects. World J Stem Cells 2016; 8:243-250. [PMID: 27621758 PMCID: PMC4999651 DOI: 10.4252/wjsc.v8.i8.243] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/18/2016] [Accepted: 07/13/2016] [Indexed: 02/06/2023] Open
Abstract
Radiotherapy is a cornerstone of anticancer treatment. However in spite of technical evolutions, important rates of failure and of toxicity are still reported. Although numerous pre-clinical data have been published, we address the subject of radiotherapy-stem cells interaction from the clinical efficacy and toxicity perspective. On one side, cancer stem cells (CSCs) have been recently evidenced in most of solid tumor primary locations and are thought to drive radio-resistance phenomena. It is particularly suggested in glioblastoma, where CSCs were showed to be housed in the subventricular zone (SVZ). In recent retrospective studies, the radiation dose to SVZ was identified as an independent factor significantly influencing overall survival. On the other side, healthy tissue stem cells radio-destruction has been recently suggested to cause two of the most quality of life-impacting side effects of radiotherapy, namely memory disorders after brain radiotherapy, and xerostomia after head and neck radiotherapy. Recent publications studying the impact of a radiation dose decrease on healthy brain and salivary stem cells niches suggested significantly reduced long term toxicities. Stem cells comprehension should be a high priority for radiation oncologists, as this particular cell population seems able to widely modulate the efficacy/toxicity ratio of radiotherapy in real life patients.
Collapse
|
22
|
Badri H, Leder K. Optimal treatment and stochastic modeling of heterogeneous tumors. Biol Direct 2016; 11:40. [PMID: 27549860 PMCID: PMC4994177 DOI: 10.1186/s13062-016-0142-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/07/2016] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED In this work we review past articles that have mathematically studied cancer heterogeneity and the impact of this heterogeneity on the structure of optimal therapy. We look at past works on modeling how heterogeneous tumors respond to radiotherapy, and take a particularly close look at how the optimal radiotherapy schedule is modified by the presence of heterogeneity. In addition, we review past works on the study of optimal chemotherapy when dealing with heterogeneous tumors. REVIEWERS This article was reviewed by Thomas McDonald, David Axelrod, and Leonid Hanin.
Collapse
Affiliation(s)
- Hamidreza Badri
- Department of Industrial and Systems Engineering, University of Minnesota, Minneapolis, MN 55455 USA
| | - Kevin Leder
- Department of Industrial and Systems Engineering, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
23
|
Current Stem Cell Biomarkers and Their Functional Mechanisms in Prostate Cancer. Int J Mol Sci 2016; 17:ijms17071163. [PMID: 27447616 PMCID: PMC4964535 DOI: 10.3390/ijms17071163] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/07/2016] [Accepted: 07/09/2016] [Indexed: 12/12/2022] Open
Abstract
Currently there is little effective treatment available for castration resistant prostate cancer, which is responsible for the majority of prostate cancer related deaths. Emerging evidence suggested that cancer stem cells might play an important role in resistance to traditional cancer therapies, and the studies of cancer stem cells (including specific isolation and targeting on those cells) might benefit the discovery of novel treatment of prostate cancer, especially castration resistant disease. In this review, we summarized major biomarkers for prostate cancer stem cells, as well as their functional mechanisms and potential application in clinical diagnosis and treatment of patients.
Collapse
|
24
|
Mathematical Modeling of the Role of Survivin on Dedifferentiation and Radioresistance in Cancer. Bull Math Biol 2016; 78:1162-88. [PMID: 27271121 DOI: 10.1007/s11538-016-0177-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/13/2016] [Indexed: 12/27/2022]
Abstract
We use a mathematical model to investigate cancer resistance to radiation, based on dedifferentiation of non-stem cancer cells into cancer stem cells. Experimental studies by Iwasa 2008, using human non-small cell lung cancer (NSCLC) cell lines in mice, have implicated the inhibitor of apoptosis protein survivin in cancer resistance to radiation. A marked increase in radio-sensitivity was observed, after inhibiting survivin expression with a specific survivin inhibitor YM155 (sepantronium bromide). It was suggested that these observations are due to survivin-dependent dedifferentiation of non-stem cancer cells into cancer stem cells. Here, we confirm this hypothesis with a mathematical model, which we fit to Iwasa's data on NSCLC in mice. We investigate the timing of combination therapies of YM155 administration and radiation. We find an interesting dichotomy. Sometimes it is best to hit a cancer with a large radiation dose right at the beginning of the YM155 treatment, while in other cases, it appears advantageous to wait a few days until most cancer cells are sensitized and then radiate. The optimal strategy depends on the nature of the cancer and the dose of radiation administered.
Collapse
|
25
|
Koukourakis MI, Mitrakas AG, Giatromanolaki A. Therapeutic interactions of autophagy with radiation and temozolomide in glioblastoma: evidence and issues to resolve. Br J Cancer 2016; 114:485-96. [PMID: 26889975 PMCID: PMC4782209 DOI: 10.1038/bjc.2016.19] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/21/2015] [Accepted: 12/31/2015] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma is a unique model of non-metastasising disease that kills the vast majority of patients through local growth, despite surgery and local irradiation. Glioblastoma cells are resistant to apoptotic stimuli, and their death occurs through autophagy. This review aims to critically present our knowledge regarding the autophagic response of glioblastoma cells to radiation and temozolomide (TMZ) and to delineate eventual research directions to follow, in the quest of improving the curability of this incurable, as yet, disease. Radiation and TMZ interfere with the autophagic machinery, but whether cell response is driven to autophagy flux acceleration or blockage is disputable and may depend on both cell individuality and radiotherapy fractionation or TMZ schedules. Potent agents that block autophagy at an early phase of initiation or at a late phase of autolysosomal fusion are available aside to agents that induce functional autophagy, or even demethylating agents that may unblock the function of autophagy-initiating genes in a subset of tumours. All these create a maze, which if properly investigated can open new insights for the application of novel radio- and chemosensitising policies, exploiting the autophagic pathways that glioblastomas use to escape death.
Collapse
Affiliation(s)
- Michael I Koukourakis
- Department of Radiotherapy/Oncology, Democritus University of Thrace, PO Box 12, Alexandroupolis 68100, Greece
| | - Achilleas G Mitrakas
- Department of Radiotherapy/Oncology, Democritus University of Thrace, PO Box 12, Alexandroupolis 68100, Greece
| | | |
Collapse
|
26
|
Barbolosi D, Ciccolini J, Lacarelle B, Barlési F, André N. Computational oncology — mathematical modelling of drug regimens for precision medicine. Nat Rev Clin Oncol 2015; 13:242-54. [DOI: 10.1038/nrclinonc.2015.204] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
27
|
Preclinical Assessment of Efficacy of Radiation Dose Painting Based on Intratumoral FDG-PET Uptake. Clin Cancer Res 2015; 21:5511-8. [DOI: 10.1158/1078-0432.ccr-15-0290] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 08/03/2015] [Indexed: 11/16/2022]
|