1
|
Sarlak S, Pagès G, Luciano F. Enhancing radiotherapy techniques for Triple-Negative breast cancer treatment. Cancer Treat Rev 2025; 136:102939. [PMID: 40286498 DOI: 10.1016/j.ctrv.2025.102939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/22/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025]
Abstract
Breast cancer is the most prevalent cancer among women worldwide, with various subtypes that require distinct treatment approaches. Among these, Triple-Negative Breast Bancer (TNBC) is recognized as the most aggressive form, often associated with poor prognosis due to its lack of targeted therapeutic options. This review specifically focuses on Radiotherapy (RT) as a treatment modality for TNBC, evaluating recent advancements and ongoing challenges, particularly the issue of radioresistance. RT remains an essential part in the management of breast cancer, including TNBC. Over the years, multiple improvements have been made to enhance RT effectiveness and minimize resistance. The introduction of advanced techniques such as Stereotactic Body Radiation Therapy (SBRT) and Stereotactic Radiosurgery (SRS) has significantly improved precision and reduced toxicity. More recently, proton radiation therapy, a novel RT modality, has been introduced, offering enhanced dose distribution and reducing damage to surrounding healthy tissues. Despite these technological advancements, a subset of TNBC patients continues to exhibit resistance to RT, leading to recurrence and poor treatment outcomes. To overcome radioresistance, there is an increasing interest in combining RT with targeted therapeutic agents that sensitize cancer cells to radiation. Radiosensitizing drugs have been explored to enhance the efficacy of RT by making cancer cells more susceptible to radiation-induced damage. Potential candidates include DNA damage repair inhibitors, immune checkpoint inhibitors, and small-molecule targeted therapies that interfere with key survival pathways in TNBC cells. In conclusion, while RT remains a crucial modality for TNBC treatment, radioresistance remains a significant challenge. Future research should focus on optimizing RT techniques while integrating radiosensitizing agents to improve treatment efficacy. By combining RT with targeted drug therapy, a more effective and personalized treatment approach can be developed, ultimately improving patient outcomes and reducing recurrence rates in TNBC.
Collapse
Affiliation(s)
- Saharnaz Sarlak
- Cote d'Azur University (UCA), Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, France.
| | - Gilles Pagès
- Cote d'Azur University (UCA), Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, France.
| | - Frédéric Luciano
- Cote d'Azur University (UCA), Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, France.
| |
Collapse
|
2
|
Le Reun E, Kotov I, Leiser D, Pica A, Vazquez M, Calaminus G, Weber DC. Long-Term Outcomes and Quality of Life of Children With Intracranial Ependymoma Treated With Pencil Beam Scanning Proton Therapy. Pediatr Blood Cancer 2025:e31728. [PMID: 40254810 DOI: 10.1002/pbc.31728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/20/2025] [Accepted: 04/02/2025] [Indexed: 04/22/2025]
Abstract
BACKGROUND Ependymoma is a common brain tumor in children and adolescents. Adjuvant radiation therapy improves prognosis but carries potential toxicity risks, particularly for young patients. Proton therapy (PT) offers better conformal treatments and reduces dose exposure compared to traditional photon radiotherapy. PROCEDURE This study retrospectively analyzed long-term outcomes of children treated with pencil beam scanning (PBS) PT for intracranial ependymomas (EPs) at the Paul Scherrer Institute (PSI) between 2004 and 2022. RESULTS We identified 119 children, with most having infra-tentorial tumors (70.6%) and anaplastic ependymomas (82.4%). The median PT dose was 59.4 GyRBE delivered in 1.8 GyRBE/fraction. Follow-up at 5 years showed 70.4% local control, 63.5% progression-free survival (PFS), and 82.2% overall survival (OS). OS was better with upfront than relapse treatment (83% vs. 69.8%; p = 0.024), and complete resection improved both LC (74% vs. 65.1%; p = 0.033) and PFS (67.5% vs. 57.1%; p = 0.049) compared to subtotal resection. No hearing loss was observed with cochlea Dmax not exceeding 48 GyRBE (10.5% vs. 0%; p = 0.0097), whereas the risk of hormone deficiency was significantly increased with pituitary Dmean above 38 GyRBE (33.3% vs. 6.0%; p = 0.00007). Most patients (72.3%) had no late toxicity. Four secondary brain malignancies (3.4%) occurred within a median of 9.3 years after PT (range: 3.7-15). Quality of life 5 years after PT was good in older (>4 years) patients, though proxy-rated social functioning was poorer than the norm group. CONCLUSION Intracranial PBS-PT offers excellent tumor control and low late toxicity, and revealed good overall quality of life in children with ependymoma, both by proxy- and self-assessment.
Collapse
Affiliation(s)
- Eymeric Le Reun
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
- Inserm, U1296 Unit, "Radiation: Defense, Health and Environment", Centre Léon-Bérard, Lyon, France
| | - Ilya Kotov
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Dominic Leiser
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Alessia Pica
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Miriam Vazquez
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Gabriele Calaminus
- Department of Pediatric Hematology and Oncology, University Hospital Bonn, Bonn, Germany
| | | |
Collapse
|
3
|
Corrales-García EM, Aristu-Mendioroz JJ, Castro-Novais J, Matute-Martín R, Learra-Martínez MC, Delgado-López PD. Current state of proton therapy for tumors of the central nervous system in Spain: physical bases, indications, controversies and perspectives. Clin Transl Oncol 2025; 27:858-870. [PMID: 39207674 DOI: 10.1007/s12094-024-03624-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024]
Abstract
The unique biophysical properties of proton therapy (PT), regarding the precise dose distribution, a remarkable better sparing of surrounding normal tissues, and the decreasing costs have promoted the spread of this technique worldwide. In Spain, eleven new PT centers, added to the currently two in function, are expected to be available in the near future. Indications for PT are currently evolving. The suitability of PT in central nervous system tumors of the adult population has been extrapolated from the favorable experience in children and adolescents. Given the lack of appropriate randomized trials, controversies remain regarding its use in lower grade tumors, re-irradiation, and other clinical scenarios in which an a priori dose distribution benefit is expected compared to photon-based radiotherapy. PT is a reasonable option in many brain and spinal tumors associating long life expectancy, in which cognitive decline, and the appearance of radiation-induced neoplasms can be minimized.Estado actual de la terapia con protones en los tumores del sistema nervioso central en España: bases físicas, indicaciones, controversias y perspectivas.
Collapse
Affiliation(s)
| | | | - Juan Castro-Novais
- Servicio de Radiofísica y Protección Radiológica, Centro de Protonterapia. Hospital Universitario Quironsalud, Madrid, Spain
| | - Raúl Matute-Martín
- Servicio Oncología Radioterápica, Centro de Protonterapia, Hospital Quironsalud, Madrid, Spain
| | - María Concepción Learra-Martínez
- Comisión de Protonterapia de La Comunidad de Castilla y LeónServicio de Atención Hospitalaria y CoordinaciónDirección Técnica de Asistencia SanitariaDirección General de Asistencia Sanitaria y HumanizaciónGerencia Regional de Salud de Castilla y León, Valladolid, Spain
| | - Pedro David Delgado-López
- Servicio de Neurocirugía, Hospital Universitario de Burgos, Avda Islas Baleares 3, 09006, Burgos, Spain.
| |
Collapse
|
4
|
Alhaddad L, Osipov AN, Leonov S. FLASH Radiotherapy: Benefits, Mechanisms, and Obstacles to Its Clinical Application. Int J Mol Sci 2024; 25:12506. [PMID: 39684218 DOI: 10.3390/ijms252312506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 12/18/2024] Open
Abstract
Radiotherapy (RT) has been shown to be a cornerstone of both palliative and curative tumor care. RT has generally been reported to be sharply limited by ionizing radiation (IR)-induced toxicity, thereby constraining the control effect of RT on tumor growth. FLASH-RT is the delivery of ultra-high dose rate (UHDR) several orders of magnitude higher than what is presently used in conventional RT (CONV-RT). The FLASH-RT clinical trials have been designed to examine the UHDR deliverability, the effectiveness of tumor control, the dose tolerance of normal tissue, and the reproducibility of treatment effects across several institutions. Although it is still in its infancy, FLASH-RT has been shown to have potential to rival current RT in terms of safety. Several studies have suggested that the adoption of FLASH-RT is very limited, and the incorporation of this new technique into routine clinical RT will require the use of accurate dosimetry methods and reproducible equipment that enable the reliable and robust measurements of doses and dose rates. The purpose of this review is to highlight the advantages of this technology, the potential mechanisms underpinning the FLASH-RT effect, and the major challenges that need to be tackled in the clinical transfer of FLASH-RT.
Collapse
Affiliation(s)
- Lina Alhaddad
- Department of Environmental Sciences, Faculty of Science, Damascus University, Damascus P.O. Box 30621, Syria
| | - Andreyan N Osipov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia
- State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), Moscow 123098, Russia
- CANDLE Synchrotron Research Institute, 31 Acharyan, Yerevan 0040, Armenia
| | - Sergey Leonov
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| |
Collapse
|
5
|
Gupta A, Subramani V, Kumar R, Kareem R, Vishwanathan B, Sharma DN. Revolutionizing cancer treatment in India: Evaluating the unmet need, economics, and a roadmap for project implementation of particle therapy. Cancer 2024; 130:2528-2537. [PMID: 38373062 DOI: 10.1002/cncr.35233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/01/2024] [Accepted: 01/17/2024] [Indexed: 02/21/2024]
Abstract
INTRODUCTION This study aims to quantitatively assess eligible patients and project the demand for particle therapy facilities in India from 2020 to 2040. In addition, an economic analysis evaluates the financial feasibility of implementing this technology. The study also examines the prospective benefits and challenges of adopting this technology in India. METHODOLOGY Cancer incidence and projected trends were analyzed for pediatric patients using the Global Childhood Cancer microsimulation model and adult patients using the Globocan data. Economic cost evaluation is performed for large-scale combined particle (carbon and proton-three room fixed-beam), large-scale proton (one gantry and two fixed-beam), and small-scale proton (one gantry) facility. RESULTS By 2040, the estimated number of eligible patients for particle therapy is projected to reach 161,000, including approximately 14,000 pediatric cases. The demand for particle therapy facilities is projected to rise from 81 to 97 in 2020 to 121 to 146 by 2040. The capital expenditure is estimated to be only 3.7 times that of a standard photon linear accelerator over a 30-year period. Notably, the treatment cost can be reduced to USD 400 to 800 per fraction, substantially lower than that in high-income countries (USD 1000 to 3000 per fraction). CONCLUSION This study indicates that, in the Indian scenario, all particle therapy models are cost-beneficial and feasible, with large-scale proton therapy being the most suitable. Despite challenges such as limited resources, space, a skilled workforce, referral systems, and patient affordability, it offers substantial benefits. These include the potential to treat many patients and convenient construction and operational costs. An iterative phased implementation strategy can effectively overcome these challenges, paving the way for the successful adoption of particle therapy in India. PLAIN LANGUAGE SUMMARY In India, the number of eligible patients benefiting from high-precision particle therapy technology is projected to rise till 2040. Despite high upfront costs, our study finds the long-term feasibility of all particle therapy models, potentially offering a substantial reduction in treatment cost compared to high-income countries. Despite challenges, India can succeed with an iterative phased approach.
Collapse
Affiliation(s)
- Anil Gupta
- Department of Radiation Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - V Subramani
- Department of Radiation Oncology, All India Institute of Medical Sciences, New Delhi & National Cancer Institute, Jhajjar, Haryana, India
| | - Rishabh Kumar
- Department of Radiation Oncology, Amrita Hospital, Faridabad, India
| | - Rafi Kareem
- Department of Medical Physics, Heidelberg Ion Therapy Center, Heidelberg, Germany
| | | | - Daya Nand Sharma
- Department of Radiation Oncology, All India Institute of Medical Sciences, New Delhi & National Cancer Institute, Jhajjar, Haryana, India
| |
Collapse
|
6
|
Stokkevåg CH, Journy N, Vogelius IR, Howell RM, Hodgson D, Bentzen SM. Radiation Therapy Technology Advances and Mitigation of Subsequent Neoplasms in Childhood Cancer Survivors. Int J Radiat Oncol Biol Phys 2024; 119:681-696. [PMID: 38430101 DOI: 10.1016/j.ijrobp.2024.01.206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/17/2023] [Accepted: 01/13/2024] [Indexed: 03/03/2024]
Abstract
PURPOSE In this Pediatric Normal Tissue Effects in the Clinic (PENTEC) vision paper, challenges and opportunities in the assessment of subsequent neoplasms (SNs) from radiation therapy (RT) are presented and discussed in the context of technology advancement. METHODS AND MATERIALS The paper discusses the current knowledge of SN risks associated with historic, contemporary, and future RT technologies. Opportunities for research and SN mitigation strategies in pediatric patients with cancer are reviewed. RESULTS Present experience with radiation carcinogenesis is from populations exposed during widely different scenarios. Knowledge gaps exist within clinical cohorts and follow-up; dose-response and volume effects; dose-rate and fractionation effects; radiation quality and proton/particle therapy; age considerations; susceptibility of specific tissues; and risks related to genetic predisposition. The biological mechanisms associated with local and patient-level risks are largely unknown. CONCLUSIONS Future cancer care is expected to involve several available RT technologies, necessitating evidence and strategies to assess the performance of competing treatments. It is essential to maximize the utilization of existing follow-up while planning for prospective data collection, including standardized registration of individual treatment information with linkage across patient databases.
Collapse
Affiliation(s)
- Camilla H Stokkevåg
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway; Department of Physics and Technology, University of Bergen, Bergen, Norway.
| | - Neige Journy
- French National Institute of Health and Medical Research (INSERM) Unit 1018, Centre for Research in Epidemiology and Population Health, Paris Saclay University, Gustave Roussy, Villejuif, France
| | - Ivan R Vogelius
- Department of Clinical Oncology, Centre for Cancer and Organ Diseases and University of Copenhagen, Copenhagen, Denmark
| | - Rebecca M Howell
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas
| | - David Hodgson
- Department of Radiation Oncology, University of Toronto, Princess Margaret Cancer Center, Toronto, Ontario, Canada
| | - Søren M Bentzen
- Department of Epidemiology and Public Health, University of Maryland, Baltimore, Maryland
| |
Collapse
|
7
|
Böhlen TT, Germond JF, Desorgher L, Veres I, Bratel A, Landström E, Engwall E, Herrera FG, Ozsahin EM, Bourhis J, Bochud F, Moeckli R. Very high-energy electron therapy as light-particle alternative to transmission proton FLASH therapy - An evaluation of dosimetric performances. Radiother Oncol 2024; 194:110177. [PMID: 38378075 DOI: 10.1016/j.radonc.2024.110177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/29/2024] [Accepted: 02/16/2024] [Indexed: 02/22/2024]
Abstract
PURPOSE Clinical translation of FLASH-radiotherapy (RT) to deep-seated tumours is still a technological challenge. One proposed solution consists of using ultra-high dose rate transmission proton (TP) beams of about 200-250 MeV to irradiate the tumour with the flat entrance of the proton depth-dose profile. This work evaluates the dosimetric performance of very high-energy electron (VHEE)-based RT (50-250 MeV) as a potential alternative to TP-based RT for the clinical transfer of the FLASH effect. METHODS Basic physics characteristics of VHEE and TP beams were compared utilizing Monte Carlo simulations in water. A VHEE-enabled research treatment planning system was used to evaluate the plan quality achievable with VHEE beams of different energies, compared to 250 MeV TP beams for a glioblastoma, an oesophagus, and a prostate cancer case. RESULTS Like TP, VHEE above 100 MeV can treat targets with roughly flat (within ± 20 %) depth-dose distributions. The achievable dosimetric target conformity and adjacent organs-at-risk (OAR) sparing is consequently driven for both modalities by their lateral beam penumbrae. Electron beams of 400[500] MeV match the penumbra of 200[250] MeV TP beams and penumbra is increased for lower electron energies. For the investigated patient cases, VHEE plans with energies of 150 MeV and above achieved a dosimetric plan quality comparable to that of 250 MeV TP plans. For the glioblastoma and the oesophagus case, although having a decreased conformity, even 100 MeV VHEE plans provided a similar target coverage and OAR sparing compared to TP. CONCLUSIONS VHEE-based FLASH-RT using sufficiently high beam energies may provide a lighter-particle alternative to TP-based FLASH-RT with comparable dosimetric plan quality.
Collapse
Affiliation(s)
- Till Tobias Böhlen
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Jean-François Germond
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Laurent Desorgher
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Izabella Veres
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | | | | | | | - Fernanda G Herrera
- Department of Radiation Oncology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Esat Mahmut Ozsahin
- Department of Radiation Oncology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Jean Bourhis
- Department of Radiation Oncology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - François Bochud
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Raphaël Moeckli
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland.
| |
Collapse
|
8
|
Wilson JS, Main C, Thorp N, Taylor RE, Majothi S, Kearns PR, English M, Dandapani M, Phillips R, Wheatley K, Pizer B. The effectiveness and safety of proton beam radiation therapy in children and young adults with Central Nervous System (CNS) tumours: a systematic review. J Neurooncol 2024; 167:1-34. [PMID: 38294638 PMCID: PMC10978619 DOI: 10.1007/s11060-023-04510-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/14/2023] [Indexed: 02/01/2024]
Abstract
BACKGROUND Central nervous system (CNS) tumours account for around 25% of childhood neoplasms. With multi-modal therapy, 5-year survival is at around 75% in the UK. Conventional photon radiotherapy has made significant contributions to survival, but can be associated with long-term side effects. Proton beam radiotherapy (PBT) reduces the volume of irradiated tissue outside the tumour target volume which may potentially reduce toxicity. Our aim was to assess the effectiveness and safety of PBT and make recommendations for future research for this evolving treatment. METHODS A systematic review assessing the effects of PBT for treating CNS tumours in children/young adults was undertaken using methods recommended by Cochrane and reported using PRISMA guidelines. Any study design was included where clinical and toxicity outcomes were reported. Searches were to May 2021, with a narrative synthesis employed. RESULTS Thirty-one case series studies involving 1731 patients from 10 PBT centres were included. Eleven studies involved children with medulloblastoma / primitive neuroectodermal tumours (n = 712), five ependymoma (n = 398), four atypical teratoid/rhabdoid tumour (n = 72), six craniopharyngioma (n = 272), three low-grade gliomas (n = 233), one germ cell tumours (n = 22) and one pineoblastoma (n = 22). Clinical outcomes were the most frequently reported with overall survival values ranging from 100 to 28% depending on the tumour type. Endocrine outcomes were the most frequently reported toxicity outcomes with quality of life the least reported. CONCLUSIONS This review highlights areas of uncertainty in this research area. A well-defined, well-funded research agenda is needed to best maximise the potential of PBT. SYSTEMATIC REVIEW REGISTRATION PROSPERO-CRD42016036802.
Collapse
Affiliation(s)
- Jayne S Wilson
- Cancer Research UK Clinical Trials Unit (CRCTU), Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK.
| | - Caroline Main
- Cancer Research UK Clinical Trials Unit (CRCTU), Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Nicky Thorp
- The Clatterbridge Cancer Centre, Liverpool, UK
- The Christie Hospital Foundation Trust Proton Beam Therapy Centre, Manchester, UK
| | | | - Saimma Majothi
- Cancer Research UK Clinical Trials Unit (CRCTU), Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Pamela R Kearns
- Cancer Research UK Clinical Trials Unit (CRCTU), Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Martin English
- Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Madhumita Dandapani
- Children's Brain Tumour Research Centre, University of Nottingham, Nottingham, UK
- Queen's Medical Centre, Nottingham University Hospitals' NHS Trust, Nottingham, UK
| | - Robert Phillips
- Centre for Reviews and Dissemination (CRD), University of York, York, UK
| | - Keith Wheatley
- Cancer Research UK Clinical Trials Unit (CRCTU), Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Barry Pizer
- Alder Hey Children's NHS Foundation Trust, Liverpool, UK
- University of Liverpool, Liverpool, UK
| |
Collapse
|
9
|
Journy N, Bolle S, Brualla L, Dumas A, Fresneau B, Haddy N, Haghdoost S, Haustermans K, Jackson A, Karabegovic S, Lassen-Ramshad Y, Thariat J, Wette MR, Botzenhardt S, De Wit I, Demoor-Goldschmidt C, Christiaens M, Høyer M, Isebaert S, Jacobs S, Henriksen LT, Maduro JH, Ronckers C, Steinmeier T, Uyttebroeck A, Van Beek K, Walsh L, Thierry-Chef I, Timmermann B. Assessing late outcomes of advances in radiotherapy for paediatric cancers: Study protocol of the "HARMONIC-RT" European registry (NCT 04746729). Radiother Oncol 2024; 190:109972. [PMID: 37922994 DOI: 10.1016/j.radonc.2023.109972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Affiliation(s)
- Neige Journy
- National Institute for Medical Research (INSERM) U1018 Center for Research in Epidemiology and Population Health, Laboratory of "Radiation Epidemiology, Clinical Epidemiology and Cancer Survivorship", Paris-Saclay University, Gustave Roussy Cancer Campus, Villejuif, France.
| | - Stéphanie Bolle
- Department of Radiotherapy, Gustave Roussy Cancer Campus, Villejuif, France; West German Proton Therapy Centre Essen (WPE), Hufelandstr. 55, Essen 45147, Germany
| | - Lorenzo Brualla
- West German Proton Therapy Centre Essen (WPE), Hufelandstr. 55, Essen 45147, Germany
| | - Agnès Dumas
- Inserm, Aix Marseille University, IRD, ISSPAM, SESSTIM (Economic and Social Sciences of Health and Medical Information Processing), Marseille, France
| | - Brice Fresneau
- National Institute for Medical Research (INSERM) U1018 Center for Research in Epidemiology and Population Health, Laboratory of "Radiation Epidemiology, Clinical Epidemiology and Cancer Survivorship", Paris-Saclay University, Gustave Roussy Cancer Campus, Villejuif, France; Department of Paediatric Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Nadia Haddy
- National Institute for Medical Research (INSERM) U1018 Center for Research in Epidemiology and Population Health, Laboratory of "Radiation Epidemiology, Clinical Epidemiology and Cancer Survivorship", Paris-Saclay University, Gustave Roussy Cancer Campus, Villejuif, France
| | - Siamak Haghdoost
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden; University of Caen Normandy, Advanced Resource Center for HADrontherapy in Europe (ARCHADE), 14000 Caen, France
| | - Karin Haustermans
- Department of Radiation Oncology, UZ Leuven & Department of Oncology, KU Leuven, Leuven 3000, Belgium
| | - Angela Jackson
- National Institute for Medical Research (INSERM) U1018 Center for Research in Epidemiology and Population Health, Paris-Saclay University, Villejuif, France; National Institute for Medical Research (INSERM) U1018 Center for Research in Epidemiology and Population Health, Paris-Saclay University, Gustave Roussy Cancer Campus, Villejuif, France
| | - Sanja Karabegovic
- Department of Neuroradiology, Aarhus University Hospital, Aarhus, Denmark
| | - Yasmin Lassen-Ramshad
- Department of Pediatric and Adolescent Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus 8200, Denmark
| | - Juliette Thariat
- Centre Régional Francois Baclesse, Avenue Du General Harris 3, Caen Cedex 5 14076, France; Université de Caen Normandie, ENSICAEN, CNRS/IN2P3, LPC Caen UMR6534, F-14000 Caen, France
| | - Martina Roxanne Wette
- Department of Particle Therapy - University Hospital Essen, West German Cancer Centre (WTZ), Hufelandstrasse 55, Essen 45147, Germany; West German Proton Therapy Centre Essen (WPE), Hufelandstr. 55, Essen 45147, Germany
| | - Suzan Botzenhardt
- Department of Particle Therapy - University Hospital Essen, West German Cancer Centre (WTZ), Hufelandstrasse 55, Essen 45147, Germany
| | - Inge De Wit
- Department of Radiation Oncology, UZ Leuven & Department of Oncology, KU Leuven, Leuven 3000, Belgium
| | - Charlotte Demoor-Goldschmidt
- National Institute for Medical Research (INSERM) U1018 Center for Research in Epidemiology and Population Health, Laboratory of "Radiation Epidemiology, Clinical Epidemiology and Cancer Survivorship", Paris-Saclay University, Gustave Roussy Cancer Campus, Villejuif, France; Centre Régional Francois Baclesse, Avenue Du General Harris 3, Caen Cedex 5 14076, France; Centre Hospitalier Universitaire d'Angers, Rue Larrey 4, Angers 49 000, France
| | - Melissa Christiaens
- Department of Radiation Oncology, UZ Leuven & Department of Oncology, KU Leuven, Leuven 3000, Belgium
| | - Morten Høyer
- Aarhus University (AU), Nordre Ringgade 1, Aarhus C 8000, Denmark
| | - Sofie Isebaert
- Department of Radiation Oncology, UZ Leuven & Department of Oncology, KU Leuven, Leuven 3000, Belgium
| | - Sandra Jacobs
- Department of Paediatric Oncology, UZ Leuven, Leuven 3000, Belgium; Department of Neuroradiology, Aarhus University Hospital, Aarhus, Denmark
| | - Louise Tram Henriksen
- Department of Pediatric and Adolescent Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus 8200, Denmark
| | - John H Maduro
- Department of Radiation Oncology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Cecile Ronckers
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Theresa Steinmeier
- Department of Particle Therapy - University Hospital Essen, West German Cancer Centre (WTZ), Hufelandstrasse 55, Essen 45147, Germany; West German Proton Therapy Centre Essen (WPE), Hufelandstr. 55, Essen 45147, Germany
| | - Anne Uyttebroeck
- Department of Paediatric Oncology, UZ Leuven, Leuven 3000, Belgium
| | - Karen Van Beek
- Department of Radiation Oncology, UZ Leuven & Department of Oncology, KU Leuven, Leuven 3000, Belgium
| | - Linda Walsh
- Department of Physics, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | | - Beate Timmermann
- University Hospital Essen (UK Essen), Hufelandstrasse 55, Essen 45147, Germany; Department of Particle Therapy - University Hospital Essen, West German Cancer Centre (WTZ), Hufelandstrasse 55, Essen 45147, Germany; West German Proton Therapy Centre Essen (WPE), Hufelandstr. 55, Essen 45147, Germany
| |
Collapse
|
10
|
Yu QS, Yin YH, Yu XG. Clinical Characteristics, Treatment, and Survival Outcome of Ependymoma in Infants. World Neurosurg 2024; 181:e75-e83. [PMID: 37532021 DOI: 10.1016/j.wneu.2023.07.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND Treatment modalities of ependymoma in infants remain controversial. Postoperative adjuvant radiotherapy could prolong overall survival but has the potential to affect nervous system development in infants. The role of adjuvant chemotherapy in prolonging overall survival for infants with ependymoma is still unclear. Therefore we designed this study to explore the effect of treatment modalities on survival time of infants with ependymoma. METHODS We studied 72 infants with ependymoma from the Surveillance, Epidemiology, and End Results database in this retrospective analysis. Univariate and multivariate Cox proportional hazard models were adopted to determine hazard ratios and compare overall survival. RESULTS Among 72 infants with ependymoma, 35 were male (48.6%) and 37 were female (51.4%). The 5-year overall survival of all patients was 67%. Forty-six infants (63.9%) received gross total resection, 20 (27.8%) received subtotal resection, and 6 (8.3%) did not receive surgical resection or only autopsy. Twenty-one infants (29.2%) received radiotherapy, and 45 (62.5%) received chemotherapy. Multivariate analysis revealed that patients accepted surgical resection (No vs. gross total resection, P < 0.001; No vs. subtotal resection, P = 0.026) and chemotherapy (No vs. Yes, P = 0.024) are the independent prognostic factors for overall survival. CONCLUSIONS Treatment modality is associated with survival time in infants with ependymoma. The extent of resection and chemotherapy were independent prognostic factors for infants with ependymoma.
Collapse
Affiliation(s)
- Qi-Shuai Yu
- Medical School of Nankai University, Tianjin, China; Department of Neurosurgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yi-Heng Yin
- Department of Neurosurgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xin-Guang Yu
- Medical School of Nankai University, Tianjin, China; Department of Neurosurgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
11
|
Cicone F, Sjögreen Gleisner K, Sarnelli A, Indovina L, Gear J, Gnesin S, Kraeber-Bodéré F, Bischof Delaloye A, Valentini V, Cremonesi M. The contest between internal and external-beam dosimetry: The Zeno's paradox of Achilles and the tortoise. Phys Med 2024; 117:103188. [PMID: 38042710 DOI: 10.1016/j.ejmp.2023.103188] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/06/2023] [Accepted: 11/23/2023] [Indexed: 12/04/2023] Open
Abstract
Radionuclide therapy, also called molecular radiotherapy (MRT), has come of age, with several novel radiopharmaceuticals being approved for clinical use or under development in the last decade. External beam radiotherapy (EBRT) is a well-established treatment modality, with about half of all oncologic patients expected to receive at least one external radiation treatment over their disease course. The efficacy and the toxicity of both types of treatment rely on the interaction of radiation with biological tissues. Dosimetry played a fundamental role in the scientific and technological evolution of EBRT, and absorbed doses to the target and to the organs at risk are calculated on a routine basis. In contrast, in MRT the usefulness of internal dosimetry has long been questioned, and a structured path to include absorbed dose calculation is missing. However, following a similar route of development as EBRT, MRT treatments could probably be optimized in a significant proportion of patients, likely based on dosimetry and radiobiology. In the present paper we describe the differences and the similarities between internal and external-beam dosimetry in the context of radiation treatments, and we retrace the main stages of their development over the last decades.
Collapse
Affiliation(s)
- Francesco Cicone
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy; Nuclear Medicine Unit, "Mater Domini" University Hospital, Catanzaro, Italy.
| | | | - Anna Sarnelli
- Medical Physics Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Luca Indovina
- Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Jonathan Gear
- Joint Department of Physics, Royal Marsden NHSFT & Institute of Cancer Research, Sutton, UK
| | - Silvano Gnesin
- Institute of Radiation Physics, Lausanne University Hospital, Lausanne, Switzerland; University of Lausanne, Lausanne, Switzerland
| | - Françoise Kraeber-Bodéré
- Nantes Université, Université Angers, CHU Nantes, INSERM, CNRS, CRCI2NA, Médecine Nucléaire, F-44000 Nantes, France
| | | | - Vincenzo Valentini
- Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy; Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marta Cremonesi
- Unit of Radiation Research, IEO, European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
12
|
Berlin E, Eisenberg R, Hill-Kayser C, Lustig RA, Kurtz G, Cummings E, LaRiviere M. Delivery of re-irradiation and complex palliative radiotherapy using proton therapy in pediatric cancer patients. Pediatr Blood Cancer 2023; 70:e30708. [PMID: 37794575 DOI: 10.1002/pbc.30708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND The intent of this study is to characterize indications for pediatric palliative-intent proton radiation therapy (PIPRT). PROCEDURE We retrospectively reviewed patients 21 years and younger who received PIPRT. We defined PIPRT as radiotherapy (RT) aimed to improve cancer-related symptoms/provide durable local control in the non-curative setting. Mixed proton/photon plans were included. Adjacent re-irradiation (reRT) was defined as a reRT volume within the incidental dose cloud of a prior RT target, whereas direct reRT was defined as in-field overlap with prior RT target. Acute toxicity during RT until first inspection visit was graded according to the Common Terminology Criteria for Adverse Events. The Kaplan-Meier method, measured from last PIPRT fraction, was used to assess progression-free survival (PFS) and overall survival (OS). RESULTS Eighteen patients underwent PIPRT between 2014 and 2020. Median age at treatment start was 10 years [2-21]. Median follow-up was 8.2 months [0-48]. Treatment sites included: brain/spine [10], abdomen/pelvis [3], thorax [3], and head/neck [2]. Indications for palliation included: durable tumor control [18], neurologic symptoms [4], pain [3], airway compromise [2], and great vessel compression [1]. Indications for protons included: reRT [15] (three adjacent, 12 direct), craniospinal irradiation [4], reduction of dose to normal tissues [3]. Sixteen experienced grade (G) 1-2 toxicity; two G3. There were no reports of radionecrosis. Median PFS was 5.3 months [95% confidence interval (CI): 2.7-16.3]. Median OS was 8.3 months [95% CI: 5.5-26.3]. CONCLUSIONS The most common indication for PIPRT was reRT to provide durable tumor control. PIPRT appears to be safe, with no cases of high-grade toxicity.
Collapse
Affiliation(s)
- Eva Berlin
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rachel Eisenberg
- Albany Medical College, Albany Medical Center, Albany, New York, USA
| | - Christine Hill-Kayser
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert A Lustig
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Goldie Kurtz
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elizabeth Cummings
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael LaRiviere
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
García-Aroca MA, Fernández-de Miguel JM, Franceschi MAD, Fernández-Vaquero MA, Meléndez-Salinas DA, Piñero-Merino M, Álvarez-Avello JM. Inhalation anesthesia without any intravenous management for pediatric proton beam therapy. Paediatr Anaesth 2023; 33:946-954. [PMID: 37526245 DOI: 10.1111/pan.14739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
INTRODUCTION Proton beam therapy is an oncological treatment, argued to be an appropriate tumor irradiation technique for childhood solid tumors. Due to its duration and the need for immobility, many children require anesthesia for proton therapy sessions. As not many centers in the world provide this therapy, there is little published research about pediatric anesthesia for these cases, and the available data suggest a preference for intravenous anesthesia or combined intravenous and inhalation anesthesia. We conducted this study with the aim of describing and analyzing the inhalation anesthetic management of children undergoing proton therapy at our medical center, comparing our results with studies that have followed different anesthetic protocols. METHODS We reviewed two major databases (Web of Science and Scopus) to find papers that had addressed, to date, anesthesia for pediatric proton therapy. To describe our anesthetic management, we included all pediatric patients treated with proton therapy under anesthesia in our center between June 2020 and August 2021. The characteristics of the patients, their diagnoses, treatments, airway management, drugs administered, duration of induction, and recovery from anesthesia, and adverse effects where all recorded. All anesthesiologists followed a strict anesthetic protocol based only on inhalational anesthesia with sevoflurane delivered via laryngeal mask airway. RESULTS Of the total of 1082 papers found in Web of Science and Scopus on pediatric proton therapy, 11 have addressed its anesthetic management, using intravenous or combined intravenous and inhalation anesthesia. Between June 2020 and August 2021, 31 children were anesthetized in our center to receive proton therapy under inhalational anesthesia (total number of sessions: 873). The mean anesthesia induction time was 4.1 min (SD = 0.7, 95% CI [3.9, 4.4]). The mean anesthesia recovery time was 13.8 min (SD = 4.1, 95% CI [12.3, 15.3]). The percentage of non-serious adverse effects was 0.7% (Clopper-Pearson 95% CI [0.3, 1.5]). The percentage of serious adverse effects was 0.1% (Clopper-Pearson 95% CI [0, 0.6]), without statistically significant difference with other published works with different anesthetic approaches. CONCLUSION Inhalation anesthesia without any intravenous management for pediatric proton therapy is, in our experience, an effective technique with a complication rate similar to other anesthetic approaches.
Collapse
Affiliation(s)
- Miguel A García-Aroca
- Department of Anesthesia and Intensive Care, Clínica Universidad de Navarra, Madrid, Spain
| | | | | | | | | | - María Piñero-Merino
- Department of Anesthesia and Intensive Care, Clínica Universidad de Navarra, Madrid, Spain
| | - José M Álvarez-Avello
- Department of Anesthesia and Intensive Care, Clínica Universidad de Navarra, Madrid, Spain
| |
Collapse
|
14
|
Johny J, van Halteren CER, Cakir FC, Zwiehoff S, Behrends C, Bäumer C, Timmermann B, Rauschenbach L, Tippelt S, Scheffler B, Schramm A, Rehbock C, Barcikowski S. Surface Chemistry and Specific Surface Area Rule the Efficiency of Gold Nanoparticle Sensitizers in Proton Therapy. Chemistry 2023; 29:e202301260. [PMID: 37334753 DOI: 10.1002/chem.202301260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
Gold nanoparticles (AuNPs) are currently the most studied radiosensitizers in proton therapy (PT) applicable for the treatment of solid tumors, where they amplify production of reactive oxygen species (ROS). However, it is underexplored how this amplification is correlated with the AuNPs' surface chemistry. To clarify this issue, we fabricated ligand-free AuNPs of different mean diameters by laser ablation in liquids (LAL) and laser fragmentation in liquids (LFL) and irradiated them with clinically relevant proton fields by using water phantoms. ROS generation was monitored by the fluorescent dye 7-OH-coumarin. Our findings reveal an enhancement of ROS production driven by I) increased total particle surface area, II) utilization of ligand-free AuNPs avoiding sodium citrate as a radical quencher ligands, and III) a higher density of structural defects generated by LFL synthesis, indicated by surface charge density. Based on these findings it may be concluded that the surface chemistry is a major and underexplored contributor to ROS generation and sensitizing effects of AuNPs in PT. We further highlight the applicability of AuNPs in vitro in human medulloblastoma cells.
Collapse
Affiliation(s)
- Jacob Johny
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141, Essen, Germany
| | - Charlotte E R van Halteren
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141, Essen, Germany
| | - Fatih-Can Cakir
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141, Essen, Germany
| | - Sandra Zwiehoff
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141, Essen, Germany
| | - Carina Behrends
- West German Proton Therapy Centre Essen (WPE), 45147, Essen, Germany
- West German Cancer Center (WTZ), 45147, Essen, Germany
- Department of Physics, TU Dortmund University, 44227, Dortmund, Germany
| | - Christian Bäumer
- West German Proton Therapy Centre Essen (WPE), 45147, Essen, Germany
- West German Cancer Center (WTZ), 45147, Essen, Germany
- Department of Physics, TU Dortmund University, 44227, Dortmund, Germany
- German Cancer Consortium (DKTK), 45147, Essen, Germany
| | - Beate Timmermann
- West German Proton Therapy Centre Essen (WPE), 45147, Essen, Germany
- West German Cancer Center (WTZ), 45147, Essen, Germany
- German Cancer Consortium (DKTK), 45147, Essen, Germany
- Department of Particle Therapy, University Hospital Essen, 45147, Essen, Germany
| | - Laurèl Rauschenbach
- West German Cancer Center (WTZ), 45147, Essen, Germany
- German Cancer Consortium (DKTK), 45147, Essen, Germany
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, 45147, Essen, Germany
- DKFZ-Division Translational Neurooncology at the, West German Cancer Center (WTZ), University Hospital Essen, 45147, Essen, Germany
| | - Stephan Tippelt
- Pediatrics III, Pediatric Oncology and Hematology, University Hospital Essen, 45147, Essen, Germany
| | - Björn Scheffler
- West German Cancer Center (WTZ), 45147, Essen, Germany
- German Cancer Consortium (DKTK), 45147, Essen, Germany
- DKFZ-Division Translational Neurooncology at the, West German Cancer Center (WTZ), University Hospital Essen, 45147, Essen, Germany
| | - Alexander Schramm
- Laboratory of Molecular Oncology, Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Christoph Rehbock
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141, Essen, Germany
| | - Stephan Barcikowski
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141, Essen, Germany
| |
Collapse
|
15
|
Gan HW, Morillon P, Albanese A, Aquilina K, Chandler C, Chang YC, Drimtzias E, Farndon S, Jacques TS, Korbonits M, Kuczynski A, Limond J, Robinson L, Simmons I, Thomas N, Thomas S, Thorp N, Vargha-Khadem F, Warren D, Zebian B, Mallucci C, Spoudeas HA. National UK guidelines for the management of paediatric craniopharyngioma. Lancet Diabetes Endocrinol 2023; 11:694-706. [PMID: 37549682 DOI: 10.1016/s2213-8587(23)00162-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/25/2023] [Accepted: 06/01/2023] [Indexed: 08/09/2023]
Abstract
Although rare, craniopharyngiomas constitute up to 80% of tumours in the hypothalamic-pituitary region in childhood. Despite being benign, the close proximity of these tumours to the visual pathways, hypothalamus, and pituitary gland means that both treatment of the tumour and the tumour itself can cause pronounced long-term neuroendocrine morbidity against a background of high overall survival. To date, the optimal management strategy for these tumours remains undefined, with practice varying between centres. In light of these discrepancies, as part of a national endeavour to create evidence-based and consensus-based guidance for the management of rare paediatric endocrine tumours in the UK, we aimed to develop guidelines, which are presented in this Review. These guidelines were developed under the auspices of the UK Children's Cancer and Leukaemia Group and the British Society for Paediatric Endocrinology and Diabetes, with the oversight and endorsement of the Royal College of Paediatrics and Child Health using Appraisal of Guidelines for Research & Evaluation II methodology to standardise care for children and young people with craniopharyngiomas.
Collapse
Affiliation(s)
- Hoong-Wei Gan
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK; University College London Great Ormond Street Institute of Child Health, London, UK.
| | - Paul Morillon
- King's College Hospital NHS Foundation Trust, London, UK
| | - Assunta Albanese
- St George's University Hospitals NHS Foundation Trust, London, UK
| | - Kristian Aquilina
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Chris Chandler
- King's College Hospital NHS Foundation Trust, London, UK
| | - Yen-Ching Chang
- University College London Hospitals NHS Foundation Trust, London, UK
| | - Evangelos Drimtzias
- St James' University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Sarah Farndon
- Bristol Royal Hospital for Children, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Thomas S Jacques
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK; University College London Great Ormond Street Institute of Child Health, London, UK
| | - Márta Korbonits
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Adam Kuczynski
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Jennifer Limond
- Department of Psychology, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Louise Robinson
- Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Ian Simmons
- St James' University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Nick Thomas
- King's College Hospital NHS Foundation Trust, London, UK
| | - Sophie Thomas
- Nottingham Children's Hospital, Queens Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Nicola Thorp
- The Clatterbridge Cancer Centre NHS Foundation Trust, Clatterbridge Road, Bebington, UK
| | - Faraneh Vargha-Khadem
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK; University College London Great Ormond Street Institute of Child Health, London, UK
| | - Daniel Warren
- St James' University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Bassel Zebian
- King's College Hospital NHS Foundation Trust, London, UK
| | - Conor Mallucci
- Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | | |
Collapse
|
16
|
Roohani S, Loskutov J, Heufelder J, Ehret F, Wedeken L, Regenbrecht M, Sauer R, Zips D, Denker A, Joussen AM, Regenbrecht CRA, Kaul D. Photon and Proton irradiation in Patient-derived, Three-Dimensional Soft Tissue Sarcoma Models. BMC Cancer 2023; 23:577. [PMID: 37349697 DOI: 10.1186/s12885-023-11013-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 05/25/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND Despite their heterogeneity, the current standard preoperative radiotherapy regimen for localized high-grade soft tissue sarcoma (STS) follows a one fits all approach for all STS subtypes. Sarcoma patient-derived three-dimensional cell culture models represent an innovative tool to overcome challenges in clinical research enabling reproducible subtype-specific research on STS. In this pilot study, we present our methodology and preliminary results using STS patient-derived 3D cell cultures that were exposed to different doses of photon and proton radiation. Our aim was: (i) to establish a reproducible method for irradiation of STS patient-derived 3D cell cultures and (ii) to explore the differences in tumor cell viability of two different STS subtypes exposed to increasing doses of photon and proton radiation at different time points. METHODS Two patient-derived cell cultures of untreated localized high-grade STS (an undifferentiated pleomorphic sarcoma (UPS) and a pleomorphic liposarcoma (PLS)) were exposed to a single fraction of photon or proton irradiation using doses of 0 Gy (sham irradiation), 2 Gy, 4 Gy, 8 Gy and 16 Gy. Cell viability was measured and compared to sham irradiation at two different time points (four and eight days after irradiation). RESULTS The proportion of viable tumor cells four days after photon irradiation for UPS vs. PLS were significantly different with 85% vs. 65% (4 Gy), 80% vs. 50% (8 Gy) and 70% vs. 35% (16 Gy). Proton irradiation led to similar diverging viability curves between UPS vs. PLS four days after irradiation with 90% vs. 75% (4 Gy), 85% vs. 45% (8 Gy) and 80% vs. 35% (16 Gy). Photon and proton radiation displayed only minor differences in cell-killing properties within each cell culture (UPS and PLS). The cell-killing effect of radiation sustained at eight days after irradiation in both cell cultures. CONCLUSIONS Pronounced differences in radiosensitivity are evident among UPS and PLS 3D patient-derived sarcoma cell cultures which may reflect the clinical heterogeneity. Photon and proton radiation showed similar dose-dependent cell-killing effectiveness in both 3D cell cultures. Patient-derived 3D STS cell cultures may represent a valuable tool to enable translational studies towards individualized subtype-specific radiotherapy in patients with STS.
Collapse
Affiliation(s)
- Siyer Roohani
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Augustenburger Platz 1, 13353, Berlin, Germany.
- Charité - Universitätsmedizin Berlin, German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), 69120, Berlin, Heidelberg, Germany.
| | - Jürgen Loskutov
- CELLphenomics GmbH, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Jens Heufelder
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, BerlinProtonen am Helmholtz-Zentrum Berlin, 14109, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Ophthalmology, 12200, Berlin, Germany
| | - Felix Ehret
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Augustenburger Platz 1, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), 69120, Berlin, Heidelberg, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Lena Wedeken
- CELLphenomics GmbH, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Manuela Regenbrecht
- CELLphenomics GmbH, Robert-Rössle-Str. 10, 13125, Berlin, Germany
- Helios Klinikum Berlin-Buch, Schwanebecker Chaussee 50, 13125, Berlin, Germany
- ASC Oncology GmbH, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Rica Sauer
- Institute of Pathology, Helios Klinikum Emil von Behring, Walterhöferstr. 11, 14165, Berlin, Germany
| | - Daniel Zips
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Augustenburger Platz 1, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), 69120, Berlin, Heidelberg, Germany
| | - Andrea Denker
- Helmholtz-Zentrum Berlin für Materialien und Energie, 14109, Berlin, Germany
| | - Antonia M Joussen
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Ophthalmology, 12200, Berlin, Germany
| | - Christian R A Regenbrecht
- CELLphenomics GmbH, Robert-Rössle-Str. 10, 13125, Berlin, Germany
- ASC Oncology GmbH, Robert-Rössle-Str. 10, 13125, Berlin, Germany
- Institut für Pathologie, Universitätsmedizin Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - David Kaul
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Augustenburger Platz 1, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), 69120, Berlin, Heidelberg, Germany
| |
Collapse
|
17
|
Schenck L, Bäumer C, Ross B, Schäfer G, Stember N, Thomas H, Stieglitz S, Timmermann B. Development of a smartphone virtual reality game to support the radiation therapy of children and adolescents in proton centers. Front Pediatr 2023; 11:1163022. [PMID: 37408981 PMCID: PMC10319066 DOI: 10.3389/fped.2023.1163022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/08/2023] [Indexed: 07/07/2023] Open
Abstract
Introduction For most patients, cancer therapy with radiation is a new experience coming with many unknown challenges. This can be stressful, particularly for children and adolescents. With the aim of reducing this stress and anxiety, a virtual-reality (VR) game, which can be used by patients prior to treatment, was developed and evaluated in a proton therapy center. Methods The specifications were derived from literature and from interviews with medical staff and patients. The gantry including the sound of its moving components and the sound of the interlock and safety system were identified as the main features relevant for preparation of a radiation course. Potential implementation difficulties were identified in a literature study and regarded in the design. Within the VR game, patients could interact with modeled equipment of the treatment room and hear the reportedly stress-inducing sounds in a stress-free environment prior to the treatment. The VR game was evaluated in a second series of interviews with patients. Results and Discussion This exploratory study demonstrated the specification, implementation and safe application of a VR game dedicated to young proton therapy patients. Initial anecdotal evidence suggested that the VR gaming experience was well received and found to be helpful when preparing young patients for radiation therapy.
Collapse
Affiliation(s)
- Leonardo Schenck
- West German Proton Therapy Centre Essen (WPE), Essen, Germany
- Department of Computer Science and Applied Cognitive Science, University of Duisburg-Essen, Essen, Germany
| | - Christian Bäumer
- West German Proton Therapy Centre Essen (WPE), Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK), Essen, Germany
- Department of Physics, TU Dortmund University, Dortmund, Germany
| | - Björn Ross
- Department of Computer Science and Applied Cognitive Science, University of Duisburg-Essen, Essen, Germany
| | - Gabriele Schäfer
- West German Proton Therapy Centre Essen (WPE), Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
| | - Nicole Stember
- West German Proton Therapy Centre Essen (WPE), Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
| | - Heike Thomas
- West German Proton Therapy Centre Essen (WPE), Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
- Department of Particle Therapy, University Hospital Essen, Essen, Germany
| | - Stefan Stieglitz
- Department of Computer Science and Applied Cognitive Science, University of Duisburg-Essen, Essen, Germany
| | - Beate Timmermann
- West German Proton Therapy Centre Essen (WPE), Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK), Essen, Germany
- Department of Particle Therapy, University Hospital Essen, Essen, Germany
| |
Collapse
|
18
|
Mast TD, Johnstone DA, Dumoulin CL, Lamba MA, Patch SK. Reconstruction of thermoacoustic emission sources induced by proton irradiation using numerical time reversal. Phys Med Biol 2023; 68:10.1088/1361-6560/acabfc. [PMID: 36595327 PMCID: PMC9976196 DOI: 10.1088/1361-6560/acabfc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Objective.Mapping of dose delivery in proton beam therapy can potentially be performed by analyzing thermoacoustic emissions measured by ultrasound arrays. Here, a method is derived and demonstrated for spatial mapping of thermoacoustic sources using numerical time reversal, simulating re-transmission of measured emissions into the medium.Approach.Spatial distributions of thermoacoustic emission sources are shown to be approximated by the analytic-signal form of the time-reversed acoustic field, evaluated at the time of the initial proton pulse. Given calibration of the array sensitivity and knowledge of tissue properties, this approach approximately reconstructs the acoustic source amplitude, equal to the product of the time derivative of the radiation dose rate, mass density, and Grüneisen parameter. This approach was implemented using two models for acoustic fields of the array elements, one modeling elements as line sources and the other as rectangular radiators. Thermoacoustic source reconstructions employed previously reported measurements of emissions from proton energy deposition in tissue-mimicking phantoms. For a phantom incorporating a bone layer, reconstructions accounted for the higher sound speed in bone. Dependence of reconstruction quality on array aperture size and signal-to-noise ratio was consistent with previous acoustic simulation studies.Main results.Thermoacoustic source distributions were successfully reconstructed from acoustic emissions measured by a linear ultrasound array. Spatial resolution of reconstructions was significantly improved in the azimuthal (array) direction by incorporation of array element diffraction. Source localization agreed well with Monte Carlo simulations of energy deposition, and was improved by incorporating effects of inhomogeneous sound speed.Significance.The presented numerical time reversal approach reconstructs thermoacoustic sources from proton beam radiation, based on straightforward processing of acoustic emissions measured by ultrasound arrays. This approach may be useful for ranging and dosimetry of clinical proton beams, if acoustic emissions of sufficient amplitude and bandwidth can be generated by therapeutic proton sources.
Collapse
Affiliation(s)
- T Douglas Mast
- Biomedical Engineering, University of Cincinnati, United States of America
| | - David A Johnstone
- Radiation Oncology, University of Cincinnati, United States of America
| | - Charles L Dumoulin
- Radiology, Cincinnati Children's Hospital Medical Center, United States of America
| | - Michael A Lamba
- Radiation Oncology, University of Cincinnati, United States of America
| | - Sarah K Patch
- Acoustic Range Estimates, Chicago, Illinois, United States of America
| |
Collapse
|
19
|
Bielack SS. Systemic treatment for primary malignant sarcomas arising in craniofacial bones. Front Oncol 2022; 12:966073. [PMID: 36158667 PMCID: PMC9492845 DOI: 10.3389/fonc.2022.966073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/22/2022] [Indexed: 12/05/2022] Open
Abstract
Introduction Craniofacial bones may be the site of origin of various sarcomas. We review the various malignancies affecting this region of the body and attempt to put systemic treatment approaches into perspective. Material and methods Non-systematic literature review Results Conventional types of osteosarcoma, Ewing sarcoma, and chondrosarcoma are the most frequent bone sarcomas occurring in craniofacial region, but variants may occur. The tumors’ biologies and the resulting treatment strategies vary distinctly. As a general rule, local control remains paramount regardless of histology. The efficacy of antineoplastic chemotherapy varies by type of malignancy. It is clearly indicated in Ewing sarcoma and related tumors, potentially of benefit in high-grade osteosarcoma, undifferentiated pleomorphic sarcoma, dedifferentiated and mesenchymal chondrosarcoma, and of no proven benefit in the others. Conclusions Various histologies demand various and distinct treatment approaches, with local control remaining paramount in all. The efficacy of systemic treatments varies by type of tumor. Prospective trials would help in all of these to better define systemic treatment strategies.
Collapse
Affiliation(s)
- Stefan S. Bielack
- Pediatrics 5 (Oncology, Hematology, Immunology), Center for Pediatric, Adolescent and Women’s Medicine, Stuttgart Cancer Center, Klinikum Stuttgart–Olgahospital, Stuttgart, Germany
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Muenster, Muenster, Germany
- *Correspondence: Stefan S. Bielack,
| |
Collapse
|
20
|
Nakagawa N, Morimoto T, Miyamura T, Suzuki S, Shimojo H, Nishida K. A case of retinoblastoma resulting in phthisis bulbi after proton beam radiation therapy. Am J Ophthalmol Case Rep 2022; 28:101715. [PMID: 36204723 PMCID: PMC9530840 DOI: 10.1016/j.ajoc.2022.101715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 08/30/2022] [Accepted: 09/23/2022] [Indexed: 11/28/2022] Open
Abstract
Purpose Proton beam radiation therapy (PBRT) is a treatment option for advanced retinoblastoma (RB) resistant to chemotherapy and focal ophthalmic treatment. Here we report a case of RB with phthisis bulbi following PBRT. Observations A 16-day-old boy with a family history of RB was referred to our institution. Initial examination revealed an extensive white mass in the right eye and a small tumor near the optic disk of the left eye. The patient was diagnosed with bilateral RB and treated with chemotherapy and focal ophthalmic therapy. The right eye showed shrinkage in the treatment course. The tumor control was not achieved bilaterally, and, therefore, PBRT was performed to preserve the eyes. However, the right eye became significantly phthisical following PBRT and ultimately required enucleation. Conclusions and importance PBRT for RB may result in phthisis bulbi. Further investigations of its role and possible complications are warranted.
Collapse
Affiliation(s)
- Norihiko Nakagawa
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takeshi Morimoto
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan
- Corresponding author. Department of Ophthalmology, Osaka University Graduate School of Medicine, Room E7, Yamada-Oka 2-2, Osaka, 565-0871, Japan.
| | - Takako Miyamura
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shigenobu Suzuki
- Department of Ophthalmologic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Hiroshi Shimojo
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kohji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
21
|
Knežević Ž, Stolarczyk L, Ambrožová I, Caballero-Pacheco MÁ, Davídková M, De Saint-Hubert M, Domingo C, Jeleń K, Kopeć R, Krzempek D, Majer M, Miljanić S, Mojżeszek N, Romero-Expósito M, Martínez-Rovira I, Harrison RM, Olko P. Out-of-Field Doses Produced by a Proton Scanning Beam Inside Pediatric Anthropomorphic Phantoms and Their Comparison With Different Photon Modalities. Front Oncol 2022; 12:904563. [PMID: 35957900 PMCID: PMC9361051 DOI: 10.3389/fonc.2022.904563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/15/2022] [Indexed: 11/23/2022] Open
Abstract
Since 2010, EURADOS Working Group 9 (Radiation Dosimetry in Radiotherapy) has been involved in the investigation of secondary and scattered radiation doses in X-ray and proton therapy, especially in the case of pediatric patients. The main goal of this paper is to analyze and compare out-of-field neutron and non-neutron organ doses inside 5- and 10-year-old pediatric anthropomorphic phantoms for the treatment of a 5-cm-diameter brain tumor. Proton irradiations were carried out at the Cyclotron Centre Bronowice in IFJ PAN Krakow Poland using a pencil beam scanning technique (PBS) at a gantry with a dedicated scanning nozzle (IBA Proton Therapy System, Proteus 235). Thermoluminescent and radiophotoluminescent dosimeters were used for non-neutron dose measurements while secondary neutrons were measured with track-etched detectors. Out-of-field doses measured using intensity-modulated proton therapy (IMPT) were compared with previous measurements performed within a WG9 for three different photon radiotherapy techniques: 1) intensity-modulated radiation therapy (IMRT), 2) three-dimensional conformal radiation therapy (3D CDRT) performed on a Varian Clinac 2300 linear accelerator (LINAC) in the Centre of Oncology, Krakow, Poland, and 3) Gamma Knife surgery performed on the Leksell Gamma Knife (GK) at the University Hospital Centre Zagreb, Croatia. Phantoms and detectors used in experiments as well as the target location were the same for both photon and proton modalities. The total organ dose equivalent expressed as the sum of neutron and non-neutron components in IMPT was found to be significantly lower (two to three orders of magnitude) in comparison with the different photon radiotherapy techniques for the same delivered tumor dose. For IMPT, neutron doses are lower than non-neutron doses close to the target but become larger than non-neutron doses further away from the target. Results of WG9 studies have provided out-of-field dose levels required for an extensive set of radiotherapy techniques, including proton therapy, and involving a complete description of organ doses of pediatric patients. Such studies are needed for validating mathematical models and Monte Carlo simulation tools for out-of-field dosimetry which is essential for dedicated epidemiological studies which evaluate the risk of second cancers and other late effects for pediatric patients treated with radiotherapy.
Collapse
Affiliation(s)
- Željka Knežević
- Ruđer Bošković Institute, Zagreb, Croatia
- *Correspondence: Željka Knežević,
| | - Liliana Stolarczyk
- Danish Centre for Particle Therapy, Aarhus, Denmark
- Institute of Nuclear Physics, PAN, Krakow, Poland
| | - Iva Ambrožová
- Nuclear Physics Institute of the Czech Academy of Sciences, CAS, Řež, Czechia
| | | | - Marie Davídková
- Nuclear Physics Institute of the Czech Academy of Sciences, CAS, Řež, Czechia
| | | | | | - Kinga Jeleń
- Institute of Nuclear Physics, PAN, Krakow, Poland
- Tadeusz Kosciuszko Cracow University of Technology, Cracow, Poland
| | - Renata Kopeć
- Institute of Nuclear Physics, PAN, Krakow, Poland
| | | | | | | | | | - Maite Romero-Expósito
- Universitat Autònoma de Barcelona, Bellaterra, Spain
- Skandion Clinic, Uppsala, Sweden
| | | | - Roger M. Harrison
- University of Newcastle upon Tyne, Newcastle upon Tyne, United Kingdom
| | - Paweł Olko
- Institute of Nuclear Physics, PAN, Krakow, Poland
| |
Collapse
|
22
|
Xia Z, Wang J, Xia J, Wang M, Cheng Z. Inequality in Accessibility of Proton Therapy for Cancers and Its Economic Determinants: A Cross-Sectional Study. Front Oncol 2022; 12:876368. [PMID: 35669433 PMCID: PMC9163414 DOI: 10.3389/fonc.2022.876368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/08/2022] [Indexed: 11/19/2022] Open
Abstract
Background Cancer is a leading cause of death in the world, and the estimated new cancer cases were 19 million and the estimated cancer deaths were around 10 million worldwide in 2020. Proton therapy (PT) is a promising treatment for cancers; however, only few patients with cancer received PT due to limited number of PT centers worldwide, especially in low- and middle-income countries. Methods and Results Cross-sectional country level data were collected from publicly available information. Lorenz curves and Gini coefficient were used to assess the inequality in accessing to PT, and zero-inflated Poisson models were used to investigate the determinants of number of PT facilities in each country. The Gini coefficients were 0.96 for PT centers and 0.96 for PT chambers, which indicated high level of inequality. Total GDP had a significant impact on whether a country had a practical PT center, whereas total GDP and GDP per capita had significant impacts on the number of PT centers. Conclusion Extremely high inequality exists in accessibility of PT centers among all countries in the world. Economic development was the most important factor determining the adoption of PT; thus, with the growth in global economics, more PT centers can be expected in near future.
Collapse
Affiliation(s)
- Zhongying Xia
- Department of Oncology of Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Junfeng Wang
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Jiaxin Xia
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Menglei Wang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiqiang Cheng
- Department of Oncology of Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Zhiqiang Cheng,
| |
Collapse
|
23
|
Blay JY, Palmerini E, Bollard J, Aguiar S, Angel M, Araya B, Badilla R, Bernabeu D, Campos F, Chs CS, Carvajal Montoya A, Casavilca-Zambrano S, Castro-Oliden, Chacón M, Clara-Altamirano MA, Collini P, Correa Genoroso R, Costa FD, Cuellar M, Dei Tos AP, Dominguez Malagon HR, Donati DM, Dufresne A, Eriksson M, Farias-Loza M, Frezza AM, Frisoni T, Garcia-Ortega DY, Gerderblom H, Gouin F, Gómez-Mateo MC, Gronchi A, Haro J, Hindi N, Huanca L, Jimenez N, Karanian M, Kasper B, Lopes A, Lopes David BB, Lopez-Pousa A, Lutter G, Maki RG, Martinez-Said H, Martinez-Tlahuel JL, Mello CA, Morales Pérez JM, Moura DS, Nakagawa SA, Nascimento AG, Ortiz-Cruz EJ, Patel S, Pfluger Y, Provenzano S, Righi A, Rodriguez A, Santos TG, Scotlandi K, Mlg S, Soulé T, Stacchiotti S, Valverde CM, Waisberg F, Zamora Estrada E, Martin-Broto J. SELNET clinical practice guidelines for bone sarcoma. Crit Rev Oncol Hematol 2022; 174:103685. [PMID: 35460913 DOI: 10.1016/j.critrevonc.2022.103685] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 11/29/2022] Open
Abstract
Bone sarcoma are infrequent diseases, representing < 0.2% of all adult neoplasms. A multidisciplinary management within reference centers for sarcoma, with discussion of the diagnostic and therapeutic strategies within an expert multidisciplinary tumour board, is essential for these patients, given its heterogeneity and low frequency. This approach leads to an improvement in patient's outcome, as demonstrated in several studies. The Sarcoma European Latin-American Network (SELNET), aims to improve clinical outcome in sarcoma care, with a special focus in Latin-American countries. These Clinical Practice Guidelines (CPG) have been developed and agreed by a multidisciplinary expert group (including medical and radiation oncologist, surgical oncologist, orthopaedic surgeons, radiologist, pathologist, molecular biologist and representatives of patients advocacy groups) of the SELNET consortium, and are conceived to provide the standard approach to diagnosis, treatment and follow-up of bone sarcoma patients in the Latin-American context.
Collapse
Affiliation(s)
- J Y Blay
- Léon Bérard Center, 28 rue Laennec 69373 Lyon Cedex 08, France.
| | - E Palmerini
- IRCCS Istituto Ortopedico Rizzoli, University of Bologna, Via Pupilli, 1, 40136, Bologna, Italy
| | - J Bollard
- Léon Bérard Center, 28 rue Laennec 69373 Lyon Cedex 08, France
| | - S Aguiar
- A.C.Camargo Cancer Center, Rua prof Antonio Prudente, 211 - Liberdade, São Paulo 01509-010, Brazil
| | - M Angel
- Instituto Alexander Fleming, Av. Cramer 1180. CP, C1426ANZ Buenos Aires, Argentina
| | - B Araya
- Hospital Dr. R. A. Calderón Guardia, 7-9 Av, 15-17 St, Aranjuez, San José, Costa Rica
| | - R Badilla
- Hospital Dr. R. A. Calderón Guardia, 7-9 Av, 15-17 St, Aranjuez, San José, Costa Rica
| | - D Bernabeu
- Hospital Universitario La Paz, Paseo de la Castellana, 261, 28046 Madrid, Spain
| | - F Campos
- A.C.Camargo Cancer Center, Rua prof Antonio Prudente, 211 - Liberdade, São Paulo 01509-010, Brazil
| | - Caro-Sánchez Chs
- Instituto Nacional de Cancerologia, Torre Nueva de Hospitalización, primer piso. Av. San Fernando 86, Colonia Niño Jesus. CP, 14080 Tlalpan Mexico
| | - A Carvajal Montoya
- Hospital Dr. R. A. Calderón Guardia, 7-9 Av, 15-17 St, Aranjuez, San José, Costa Rica
| | - S Casavilca-Zambrano
- Instituto Nacional de Enfermedades Neoplásicas, Av. Angamos Este 2520, Lima, Peru
| | - Castro-Oliden
- Instituto Nacional de Enfermedades Neoplásicas, Av. Angamos Este 2520, Lima, Peru
| | - M Chacón
- Instituto Alexander Fleming, Av. Cramer 1180. CP, C1426ANZ Buenos Aires, Argentina
| | - M A Clara-Altamirano
- Instituto Nacional de Cancerologia, Torre Nueva de Hospitalización, primer piso. Av. San Fernando 86, Colonia Niño Jesus. CP, 14080 Tlalpan Mexico
| | - P Collini
- Fondazione IRCCS Istituto Nazionale dei Tumori, Via Giacomo Venezian, 1, 20133 Milano, Italy
| | - R Correa Genoroso
- Hospital Clínico Universitario Virgen de la Victoria, Campus Universitario de Teatinos s/n, 29010, Malaga, Spain
| | - F D Costa
- A.C.Camargo Cancer Center, Rua prof Antonio Prudente, 211 - Liberdade, São Paulo 01509-010, Brazil
| | - M Cuellar
- Instituto Nacional de Cancerologia, Torre Nueva de Hospitalización, primer piso. Av. San Fernando 86, Colonia Niño Jesus. CP, 14080 Tlalpan Mexico
| | - A P Dei Tos
- Treviso General Hospital Treviso, University of Padua, Padova, Italy
| | - H R Dominguez Malagon
- Instituto Nacional de Cancerologia, Torre Nueva de Hospitalización, primer piso. Av. San Fernando 86, Colonia Niño Jesus. CP, 14080 Tlalpan Mexico
| | - D M Donati
- IRCCS Istituto Ortopedico Rizzoli, University of Bologna, Via Pupilli, 1, 40136, Bologna, Italy
| | - A Dufresne
- Léon Bérard Center, 28 rue Laennec 69373 Lyon Cedex 08, France
| | - M Eriksson
- Skane University Hospital and Lund University, Lund, Sweden
| | - M Farias-Loza
- Instituto Nacional de Enfermedades Neoplásicas, Av. Angamos Este 2520, Lima, Peru
| | - A M Frezza
- Fondazione IRCCS Istituto Nazionale dei Tumori, Via Giacomo Venezian, 1, 20133 Milano, Italy
| | - T Frisoni
- IRCCS Istituto Ortopedico Rizzoli, University of Bologna, Via Pupilli, 1, 40136, Bologna, Italy
| | - D Y Garcia-Ortega
- Instituto Nacional de Cancerologia, Torre Nueva de Hospitalización, primer piso. Av. San Fernando 86, Colonia Niño Jesus. CP, 14080 Tlalpan Mexico
| | - H Gerderblom
- Leiden University Medical Center, Leiden, The Netherlands
| | - F Gouin
- Léon Bérard Center, 28 rue Laennec 69373 Lyon Cedex 08, France
| | - M C Gómez-Mateo
- Hospital Universitario Miguel Servet, Paseo Isabel la Católica, 1-3, 50009 Zaragoza, Spain
| | - A Gronchi
- Fondazione IRCCS Istituto Nazionale dei Tumori, Via Giacomo Venezian, 1, 20133 Milano, Italy
| | - J Haro
- Instituto Nacional de Enfermedades Neoplásicas, Av. Angamos Este 2520, Lima, Peru
| | - N Hindi
- Research Health Institute Fundacion Jimenez Diaz (IIS/FJD), 28015 Madrid, Spain; Hospital Fundación Jimenez Diaz University Hospital, 28040 Madrid, Spain; General de Villalba University Hospital, 28400 Madrid, Spain
| | - L Huanca
- Instituto Nacional de Enfermedades Neoplásicas, Av. Angamos Este 2520, Lima, Peru
| | - N Jimenez
- Hospital San Vicente de Paúl, Avenue 16, streets 10 and 14, Heredia, Costa Rica
| | - M Karanian
- Léon Bérard Center, 28 rue Laennec 69373 Lyon Cedex 08, France
| | - B Kasper
- University of Heidelberg, Mannheim Cancer Center, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - A Lopes
- A.C.Camargo Cancer Center, Rua prof Antonio Prudente, 211 - Liberdade, São Paulo 01509-010, Brazil
| | - B B Lopes David
- Fondazione IRCCS Istituto Nazionale dei Tumori, Via Giacomo Venezian, 1, 20133 Milano, Italy
| | - A Lopez-Pousa
- Hospital de la Santa Creu i Sant Pau, Carrer de Sant Quintí, 89, 08041 Barcelona, Spain
| | - G Lutter
- Instituto Alexander Fleming, Av. Cramer 1180. CP, C1426ANZ Buenos Aires, Argentina
| | - R G Maki
- University of Pennsylvania, Abramson Cancer Center, 3400 Civic Center Boulevard, Philadelphia, PA 19104 USA
| | - H Martinez-Said
- Centro Oncologico Integral, Hospital Medica Sur, Planta Baja Torre III - Cons. 305, Col. Toriello Guerra, Deleg. Tlalpan. C.P., 14050, Mexico, D.F
| | - J L Martinez-Tlahuel
- Instituto Nacional de Cancerologia, Torre Nueva de Hospitalización, primer piso. Av. San Fernando 86, Colonia Niño Jesus. CP, 14080 Tlalpan Mexico
| | - C A Mello
- A.C.Camargo Cancer Center, Rua prof Antonio Prudente, 211 - Liberdade, São Paulo 01509-010, Brazil
| | - J M Morales Pérez
- Centro Oncologico Integral, Hospital Medica Sur, Planta Baja Torre III - Cons. 305, Col. Toriello Guerra, Deleg. Tlalpan. C.P., 14050, Mexico, D.F
| | - D S Moura
- Hospital Universitario Virgen del Rocio, Av Manuel Siurot s/n, 41013 Sevilla, Spain
| | - S A Nakagawa
- A.C.Camargo Cancer Center, Rua prof Antonio Prudente, 211 - Liberdade, São Paulo 01509-010, Brazil
| | - A G Nascimento
- A.C.Camargo Cancer Center, Rua prof Antonio Prudente, 211 - Liberdade, São Paulo 01509-010, Brazil
| | - E J Ortiz-Cruz
- Hospital Universitario La Paz, MD Anderson Cancer Center, Calle de Arturo Soria, 270, 28033 Madrid, Spain
| | - S Patel
- UT MD Anderson Cancer Center, Houston, TX, USA
| | - Y Pfluger
- Instituto Alexander Fleming, Av. Cramer 1180. CP, C1426ANZ Buenos Aires, Argentina
| | - S Provenzano
- Fondazione IRCCS Istituto Nazionale dei Tumori, Via Giacomo Venezian, 1, 20133 Milano, Italy
| | - A Righi
- IRCCS Istituto Ortopedico Rizzoli, University of Bologna, Via Pupilli, 1, 40136, Bologna, Italy
| | - A Rodriguez
- Instituto Alexander Fleming, Av. Cramer 1180. CP, C1426ANZ Buenos Aires, Argentina
| | - T G Santos
- A.C.Camargo Cancer Center, Rua prof Antonio Prudente, 211 - Liberdade, São Paulo 01509-010, Brazil
| | - K Scotlandi
- IRCCS Istituto Ortopedico Rizzoli, University of Bologna, Via Pupilli, 1, 40136, Bologna, Italy
| | - Silva Mlg
- A.C.Camargo Cancer Center, Rua prof Antonio Prudente, 211 - Liberdade, São Paulo 01509-010, Brazil
| | - T Soulé
- Instituto Alexander Fleming, Av. Cramer 1180. CP, C1426ANZ Buenos Aires, Argentina
| | - S Stacchiotti
- Fondazione IRCCS Istituto Nazionale dei Tumori, Via Giacomo Venezian, 1, 20133 Milano, Italy
| | - C M Valverde
- Vall d´Hebrón University Hospital, Passeig de la Vall d'Hebron, 119, 08035 Barcelona, Spain
| | - F Waisberg
- Instituto Alexander Fleming, Av. Cramer 1180. CP, C1426ANZ Buenos Aires, Argentina
| | - E Zamora Estrada
- Hospital Dr. R. A. Calderón Guardia, 7-9 Av, 15-17 St, Aranjuez, San José, Costa Rica
| | - J Martin-Broto
- Research Health Institute Fundacion Jimenez Diaz (IIS/FJD), 28015 Madrid, Spain; Hospital Fundación Jimenez Diaz University Hospital, 28040 Madrid, Spain; General de Villalba University Hospital, 28400 Madrid, Spain
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW To review state of art and relevant advances in the molecular genetics and management of ependymomas of children and adults. RECENT FINDINGS Ependymomas may occur either in the brain or in the spinal cord. Compared with intracranial ependymomas, spinal ependymomas are less frequent and exhibit a better prognosis. The new WHO classification of CNS tumors of 2021 has subdivided ependymomas into different histomolecular subgroups with different outcome. The majority of studies have shown a major impact of extent of resection; thus, a complete resection must be performed, whenever possible, at first surgery or at reoperation. Conformal radiotherapy is recommended for grade 3 or incompletely resected grade II tumors. Proton therapy is increasingly employed especially in children to reduce the risk of neurocognitive and endocrine sequelae. Craniospinal irradiation is reserved for metastatic disease. Chemotherapy is not useful as primary treatment and is commonly employed as salvage treatment for patients failing surgery and radiotherapy. Standard treatments are still the mainstay of treatment: the discovery of new druggable pathways will hopefully increase the therapeutic armamentarium in the near future.
Collapse
Affiliation(s)
- Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience “Rita Levi Montalcini”, University of Turin, Via Cherasco 15, 10126 Turin, Italy
| | - Francesco Bruno
- Division of Neuro-Oncology, Department of Neuroscience “Rita Levi Montalcini”, University of Turin, Via Cherasco 15, 10126 Turin, Italy
| | - Alessia Pellerino
- Division of Neuro-Oncology, Department of Neuroscience “Rita Levi Montalcini”, University of Turin, Via Cherasco 15, 10126 Turin, Italy
| | - Riccardo Soffietti
- Division of Neuro-Oncology, Department of Neuroscience “Rita Levi Montalcini”, University of Turin, Via Cherasco 15, 10126 Turin, Italy
| |
Collapse
|
25
|
Nogueira LM, Sineshaw HM, Jemal A, Pollack CE, Efstathiou JA, Yabroff KR. Association of Race With Receipt of Proton Beam Therapy for Patients With Newly Diagnosed Cancer in the US, 2004-2018. JAMA Netw Open 2022; 5:e228970. [PMID: 35471569 PMCID: PMC9044116 DOI: 10.1001/jamanetworkopen.2022.8970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
IMPORTANCE Black patients are less likely than White patients to receive guideline-concordant cancer care in the US. Proton beam therapy (PBT) is a potentially superior technology to photon radiotherapy for tumors with complex anatomy, tumors surrounded by sensitive tissues, and childhood cancers. OBJECTIVE To evaluate whether there are racial disparities in the receipt of PBT among Black and White individuals diagnosed with all PBT-eligible cancers in the US. DESIGN, SETTING, AND PARTICIPANTS This cross-sectional study evaluated Black and White individuals diagnosed with PBT-eligible cancers between January 1, 2004, and December 31, 2018, in the National Cancer Database, a nationwide hospital-based cancer registry that collects data on radiation treatment, even when it is received outside the reporting facility. American Society of Radiation Oncology model policies were used to classify patients into those for whom PBT is the recommended radiation therapy modality (group 1) and those for whom evidence of PBT efficacy is still under investigation (group 2). Propensity score matching was used to ensure comparability of Black and White patients' clinical characteristics and regional availability of PBT according to the National Academy of Medicine's definition of disparities. Data analysis was performed from October 4, 2021, to February 22, 2022. EXPOSURE Patients' self-identified race was ascertained from medical records. MAIN OUTCOMES AND MEASURES The main outcome was receipt of PBT, with disparities in this therapy's use evaluated with logistic regression analysis. RESULTS Of the 5 225 929 patients who were eligible to receive PBT and included in the study, 13.6% were Black, 86.4% were White, and 54.3% were female. The mean (SD) age at diagnosis was 63.2 (12.4) years. Black patients were less likely to be treated with PBT than their White counterparts (0.3% vs 0.5%; odds ratio [OR], 0.67; 95% CI, 0.64-0.71). Racial disparities were greater for group 1 cancers (0.4% vs 0.8%; OR, 0.49; 95% CI, 0.44-0.55) than group 2 cancers (0.3% vs 0.4%; OR, 0.75; 95% CI, 0.70-0.80). Racial disparities in PBT receipt among group 1 cancers increased over time (annual percent change = 0.09, P < .001) and were greatest in 2018, the most recent year of available data. CONCLUSIONS AND RELEVANCE In this cross-sectional study, Black patients were less likely to receive PBT than their White counterparts, and disparities were greatest for cancers for which PBT was the recommended radiation therapy modality. These findings suggest that efforts other than increasing the number of facilities that provide PBT will be needed to eliminate disparities.
Collapse
Affiliation(s)
- Leticia M. Nogueira
- Department of Surveillance and Health Equity Science, American Cancer Society, Atlanta, Georgia
| | - Helmneh M. Sineshaw
- Department of Surveillance and Health Equity Science, American Cancer Society, Atlanta, Georgia
| | - Ahmedin Jemal
- Department of Surveillance and Health Equity Science, American Cancer Society, Atlanta, Georgia
| | - Craig E. Pollack
- Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health and Johns Hopkins School of Nursing, Baltimore, Maryland
| | | | - K. Robin Yabroff
- Department of Surveillance and Health Equity Science, American Cancer Society, Atlanta, Georgia
| |
Collapse
|
26
|
Dell'Oro M, Short M, Wilson P, Peukert D, Hua CH, Merchant TE, Bezak E. Lifetime attributable risk of radiation induced second primary cancer from scattering and scanning proton therapy - A model for out-of-field organs of paediatric patients with cranial cancer. Radiother Oncol 2022; 172:65-75. [DOI: 10.1016/j.radonc.2022.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/28/2022] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
|
27
|
Pham TT, Whelan B, Oborn BM, Delaney GP, Vinod S, Brighi C, Barton M, Keall P. Magnetic resonance imaging (MRI) guided proton therapy: A review of the clinical challenges, potential benefits and pathway to implementation. Radiother Oncol 2022; 170:37-47. [DOI: 10.1016/j.radonc.2022.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/09/2022] [Accepted: 02/25/2022] [Indexed: 10/18/2022]
|
28
|
Ingley KM, Maleddu A, Grange FL, Gerrand C, Bleyer A, Yasmin E, Whelan J, Strauss SJ. Current approaches to management of bone sarcoma in adolescent and young adult patients. Pediatr Blood Cancer 2022; 69:e29442. [PMID: 34767314 DOI: 10.1002/pbc.29442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/02/2021] [Accepted: 10/16/2021] [Indexed: 01/05/2023]
Abstract
Bone tumors are a group of histologically diverse diseases that occur across all ages. Two of the commonest, osteosarcoma (OS) and Ewing sarcoma (ES), are regarded as characteristic adolescent and young adult (AYA) cancers with an incidence peak in AYAs. They are curable for some but associated with unacceptably high rates of treatment failure and morbidity. The introduction of effective new therapeutics for bone sarcomas is slow, and to date, complex biology has been insufficiently characterized to allow more rapid therapeutic exploitation. This review focuses on current standards of care, recent advances that have or may soon change that standard of care and challenges to the expert clinical research community that we suggest must be met.
Collapse
Affiliation(s)
- Katrina M Ingley
- London Sarcoma Service, University College London Hospitals NHS Trust, London, UK
| | - Alessandra Maleddu
- London Sarcoma Service, University College London Hospitals NHS Trust, London, UK
| | - Franel Le Grange
- London Sarcoma Service, University College London Hospitals NHS Trust, London, UK
| | - Craig Gerrand
- London Sarcoma Service, Department of Orthopaedic Oncology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, UK
| | - Archie Bleyer
- Oregon Health and Science University, Portland, Oregon
| | - Ephia Yasmin
- Reproductive Medicine Unit, University College London Hospitals NHS Trust, London, UK
| | - Jeremy Whelan
- London Sarcoma Service, University College London Hospitals NHS Trust, London, UK
| | - Sandra J Strauss
- London Sarcoma Service, University College London Hospitals NHS Trust, London, UK.,UCL Cancer Institute, London, UK
| |
Collapse
|
29
|
Montemagno C, Luciano F, Pagès G. Opposing Roles of Vascular Endothelial Growth Factor C in Metastatic Dissemination and Resistance to Radio/Chemotherapy: Discussion of Mechanisms and Therapeutic Strategies. Methods Mol Biol 2022; 2475:1-23. [PMID: 35451746 DOI: 10.1007/978-1-0716-2217-9_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Many cancers can be cured by combining surgery with healthy margins, radiation therapy and chemotherapies. However, when the pathology becomes metastatic, cancers can be incurable. The best situation involves "chronicization" of the pathology even for several years. However, most of the time, patients die within a few months. To disseminate throughout the body, cancer cells must enter the vascular network and seed in another organ. However, during the initiation of cancer processes, the tumor is avascular. Later, the production of angiogenic factors causes tumor neovascularization and subsequent growth and spread, and the presence of blood and/or lymphatic vessels is associated with high grade tumors. Moreover, during tumor development, cancer cells enter lymphatic vessels and disseminate via the lymphatic network. Hence, blood and lymphatic vessels are considered as main routes of metastatic dissemination and cancer aggressiveness. Therefore, anti-angiogenic drugs entered in the therapeutic arsenal from 2004. Despite undeniable effects however, they are far from curative and only prolong survival by a few months.Recently, the concepts of angio/lymphangiogenesis were revisited by analyzing the role of blood and lymphatic vessels at the initiation steps of tumor development. During this period, cancer cells enter lymphatic vessels and activate immune cells within lymph nodes to initiate an antitumor immune response. Moreover, the presence of blood vessels at the proximity of the initial nodule allows immune cells to reach the tumor and eliminate cancer cells. Therefore, blood and lymphatic networks have a beneficial role during a defined time window. Considering only their detrimental effects is a concern. Hence, administration of anti-angio/lymphangiogenic therapies should be revisited to avoid the destruction of networks involved in antitumor immune response. This review mainly focuses on one of the main drivers of lymphangiogenesis, the VEGFC and its beneficial and pejorative roles according to the grade of aggressive tumors.
Collapse
Affiliation(s)
- Christopher Montemagno
- LIA ROPSE, Laboratoire International Associé, Centre Scientifique de Monaco, Université Côte d'Azur, Nice, France
- Institute for Research on Cancer and Aging of Nice (IRCAN), Centre Antoine Lacassagne, University Côte d'Azur, CNRS UMR 7284, INSERM U1081, Nice, France
- Département de Biologie Médicale, Centre Scientifique de Monaco, Monaco, Monaco
| | - Frédéric Luciano
- Institute for Research on Cancer and Aging of Nice (IRCAN), Centre Antoine Lacassagne, University Côte d'Azur, CNRS UMR 7284, INSERM U1081, Nice, France
- Centre Antoine Lacassagne, Nice, France
| | - Gilles Pagès
- LIA ROPSE, Laboratoire International Associé, Centre Scientifique de Monaco, Université Côte d'Azur, Nice, France.
- Institute for Research on Cancer and Aging of Nice (IRCAN), Centre Antoine Lacassagne, University Côte d'Azur, CNRS UMR 7284, INSERM U1081, Nice, France.
- Centre Antoine Lacassagne, Nice, France.
| |
Collapse
|
30
|
Näsmark T, Andersson J. Proton stopping power prediction based on dual-energy CT-generated virtual monoenergetic images. Med Phys 2021; 48:5232-5243. [PMID: 34213768 DOI: 10.1002/mp.15066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/11/2022] Open
Abstract
PURPOSE The purpose of this work was to assess a proof of concept for a novel method for predicting proton stopping power ratios (SPRs) based on a pair of dual-energy CT generated virtual monoenergetic (VM) images. MATERIALS AND METHODS A rapid kV-switching dual-energy CT scanner was used to acquire Gemstone Spectral Imaging (GSI) and 120 kV conventional single-energy CT (SECT) image data of the CIRS 062M phantom. The proposed method was applied to every possible pairing of VM images between 40 and 140 keV to find the optimal energy pairs for SPR prediction in lung tissue, soft tissue, and bone. The predicted SPRs were compared against SPRs predicted from the SECT data using the conventional SECT-based method. The impact of different scan and reconstruction parameters was also investigated. RESULTS The SPR residual root mean square errors (RMSE) yielded by the optimal pairs were 7.2% for lung tissue, 0.4% for soft tissue, and 0.8% for bone. While no direct comparison could be made to other DECT-based methods for SPR prediction, as these methods could not be directly implemented on a fast kV-switching system, the SPR RMSEs for soft tissue and bone in Table 4 are comparable to RMSEs reported in the literature. For the conventional SECT-based method, the SPR RMSEs were 5.9% for lung tissue, 0.9% for soft tissue, and 5.1% for bone. CONCLUSIONS The proposed method is a valid alternative to, and has the potential to improve upon, the conventional SECT-based method for predicting SPRs. The formalism used in the method is applied directly, with no approximations made on our part, and requires neither prior knowledge of the spectra nor calibration with a phantom. This work presents a way of optimizing the proposed method for a specific scanner by determining the optimal energy pairs to use as input and demonstrates the method's robustness to different levels of ASiR-V, reconstruction kernels, and dose levels.
Collapse
Affiliation(s)
- Torbjörn Näsmark
- Department of Radiation Sciences, Radiation Physics, Umeå University, Umeå, Sweden
| | - Jonas Andersson
- Department of Radiation Sciences, Radiation Physics, Umeå University, Umeå, Sweden
| |
Collapse
|
31
|
Indelicato DJ, Ioakeim-Ioannidou M, Bradley JA, Mailhot-Vega RB, Morris CG, Tarbell NJ, Yock T, MacDonald SM. Proton Therapy for Pediatric Ependymoma: Mature Results From a Bicentric Study. Int J Radiat Oncol Biol Phys 2021; 110:815-820. [PMID: 33508372 DOI: 10.1016/j.ijrobp.2021.01.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/17/2020] [Accepted: 01/20/2021] [Indexed: 01/15/2023]
Abstract
PURPOSE To report the long-term efficacy and toxicity of proton therapy for pediatric ependymoma. METHODS AND MATERIALS Between 2000 and 2019, 386 children with nonmetastatic grade 2/3 intracranial ependymoma received proton therapy at 1 of 2 academic institutions. Median age at treatment was 3.8 years (range, 0.7-21.3); 56% were male. Most (72%) tumors were in the posterior fossa and classified as World Health Organization grade 3 (65%). Eighty-five percent had a gross total or near total tumor resection before radiation therapy; 30% received chemotherapy. Median radiation dose was 55.8 Gy relative biologic effectiveness (RBE) (range, 50.4-59.4). RESULTS Median follow-up was 5.0 years (range, 0.4-16.7). The 7-year local control, progression-free survival, and overall survival rates were 77.0% (95% confidence interval [CI], 71.9%-81.5%), 63.8% (95% CI, 58.0%-68.8%), and 82.2% (95% CI, 77.2%-86.3%), respectively. Subtotal resection was associated with inferior local control (59% vs 80%; P < .005), progression-free survival (48% vs 66%; P < .001), and overall survival (70% vs 84%; P < .05). Male sex was associated with inferior progression-free (60% vs 69%; P < .05) and overall survival (76% vs 89%; P < .05). Posterior fossa tumor site was also associated with inferior progression-free (59% vs 74%; P < .05) and overall survival (79% vs 89%; P < .01). Twenty-one patients (5.4%) required hearing aids; of these, 13 received cisplatin, including the 3 with bilateral hearing loss. Forty-five patients (11.7%) required hormone replacement, typically growth hormone (38/45). The cumulative incidence of grade 2+ brain stem toxicity was 4% and occurred more often in patients who received >54 GyRBE. Two patients (0.5%) died of brain stem necrosis. The second-malignancy rate was 0.8%. CONCLUSION Proton therapy offers disease control commensurate with modern photon therapy without unexpected toxicity. The high rate of long-term survival justifies efforts to reduce radiation exposure in this young population. Independent of radiation modality, this large series confirms extent of resection as the most important modifiable factor for survival.
Collapse
Affiliation(s)
- Daniel J Indelicato
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida.
| | | | - Julie A Bradley
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida
| | - Raymond B Mailhot-Vega
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida
| | - Christopher G Morris
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida
| | - Nancy J Tarbell
- Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts
| | - Torunn Yock
- Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts
| | - Shannon M MacDonald
- Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
32
|
Moskvin VP, Faught A, Pirlepesov F, Zhao L, Hua CH, Merchant TE. Monte Carlo framework for commissioning a synchrotron-based discrete spot scanning proton beam system and treatment plan verification. Biomed Phys Eng Express 2021; 7. [PMID: 34077921 DOI: 10.1088/2057-1976/ac077a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/02/2021] [Indexed: 11/12/2022]
Abstract
This study aimed to develop a Monte Carlo (MC) framework for commissioning the narrow proton beams (spot size sigma, 5.2 mm 2 mm at isocenter for 69.4 MeV-221.3 MeV for the main beam option and 4.1 mm 1.3 mm for the minibeam option respectively) of a synchrotron-based proton therapy system and design an independent absolute dose calculation engine for intensity-modulated proton treatments. A proton therapy system (Hitachi PROBEAT-V) was simulated using divergent and convergent beam models at the nozzle entrance. The innovative source weighting scheme for the MC simulation with TOPAS (TOol for PArticle Simulations) was implemented using dose output data for the absolute dose calculations. The results of the MC simulation were compared to the experimental data, analyzed and used to commission the treatment planning system. Two MC models, divergent and convergent beams were implemented. The convergent beam model produced a high level of agreement when MC and measurements were analyzed. The beam ellipticity did not result in significant differences between MC simulated and treatment planning system calculated doses. A model of a synchrotron-based spot scanning proton therapy system has been developed and implemented in the TOPAS MC transport code framework. The dose computation engine is useful for treatment plan verification with primary and minibeam beam option.
Collapse
Affiliation(s)
- Vadim P Moskvin
- Department of Radiation Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-2794, United States of America
| | - Austin Faught
- Department of Radiation Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-2794, United States of America
| | - Fakhriddin Pirlepesov
- Department of Radiation Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-2794, United States of America
| | - Li Zhao
- Department of Radiation Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-2794, United States of America
| | - Chia-Ho Hua
- Department of Radiation Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-2794, United States of America
| | - Thomas E Merchant
- Department of Radiation Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-2794, United States of America
| |
Collapse
|
33
|
Zahnreich S, Schmidberger H. Childhood Cancer: Occurrence, Treatment and Risk of Second Primary Malignancies. Cancers (Basel) 2021; 13:cancers13112607. [PMID: 34073340 PMCID: PMC8198981 DOI: 10.3390/cancers13112607] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer represents the leading cause of disease-related death and treatment-associated morbidity in children with an increasing trend in recent decades worldwide. Nevertheless, the 5-year survival of childhood cancer patients has been raised impressively to more than 80% during the past decades, primarily attributed to improved diagnostic technologies and multiagent cytotoxic regimens. This strong benefit of more efficient tumor control and prolonged survival is compromised by an increased risk of adverse and fatal late sequelae. Long-term survivors of pediatric tumors are at the utmost risk for non-carcinogenic late effects such as cardiomyopathies, neurotoxicity, or pneumopathies, as well as the development of secondary primary malignancies as the most detrimental consequence of genotoxic chemo- and radiotherapy. Promising approaches to reducing the risk of adverse late effects in childhood cancer survivors include high precision irradiation techniques like proton radiotherapy or non-genotoxic targeted therapies and immune-based treatments. However, to date, these therapies are rarely used to treat pediatric cancer patients and survival rates, as well as incidences of late effects, have changed little over the past two decades in this population. Here we provide an overview of the epidemiology and etiology of childhood cancers, current developments for their treatment, and therapy-related adverse late health consequences with a special focus on second primary malignancies.
Collapse
|
34
|
Lin B, Gao F, Yang Y, Wu D, Zhang Y, Feng G, Dai T, Du X. FLASH Radiotherapy: History and Future. Front Oncol 2021; 11:644400. [PMID: 34113566 PMCID: PMC8185194 DOI: 10.3389/fonc.2021.644400] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
The biological effects of radiation dose to organs at risk surrounding tumor target volumes are a major dose-limiting constraint in radiotherapy. This can mean that the tumor cannot be completely destroyed, and the efficacy of radiotherapy will be decreased. Thus, ways to reduce damage to healthy tissue has always been a topic of particular interest in radiotherapy research. Modern radiotherapy technologies such as helical tomotherapy (HT), intensity-modulated radiation therapy (IMRT), and proton radiotherapy can reduce radiation damage to healthy tissues. Recent outcomes of animal experiments show that FLASH radiotherapy (FLASH-RT) can reduce radiation-induced damage in healthy tissue without decreasing antitumor effectiveness. The very short radiotherapy time compared to that of conventional dose-rate radiotherapy is another advantage of FLASH-RT. The first human patient received FLASH-RT in Switzerland in 2018. FLASH-RT may become one of the main radiotherapy technologies in clinical applications in the future. We summarize the history of the development of FLASH-RT, its mechanisms, its influence on radiotherapy, and its future.
Collapse
Affiliation(s)
- Binwei Lin
- Department of Oncology, MianYang Central Hospital, Mianyang, China
| | - Feng Gao
- Department of Oncology, MianYang Central Hospital, Mianyang, China
| | - Yiwei Yang
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, China
| | - Dai Wu
- Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang, China
| | - Yu Zhang
- Department of Oncology, MianYang Central Hospital, Mianyang, China
| | - Gang Feng
- Department of Oncology, MianYang Central Hospital, Mianyang, China
| | - Tangzhi Dai
- Department of Oncology, MianYang Central Hospital, Mianyang, China
| | - Xiaobo Du
- Department of Oncology, MianYang Central Hospital, Mianyang, China
| |
Collapse
|
35
|
Zöllner SK, Amatruda JF, Bauer S, Collaud S, de Álava E, DuBois SG, Hardes J, Hartmann W, Kovar H, Metzler M, Shulman DS, Streitbürger A, Timmermann B, Toretsky JA, Uhlenbruch Y, Vieth V, Grünewald TGP, Dirksen U. Ewing Sarcoma-Diagnosis, Treatment, Clinical Challenges and Future Perspectives. J Clin Med 2021; 10:1685. [PMID: 33919988 PMCID: PMC8071040 DOI: 10.3390/jcm10081685] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 02/08/2023] Open
Abstract
Ewing sarcoma, a highly aggressive bone and soft-tissue cancer, is considered a prime example of the paradigms of a translocation-positive sarcoma: a genetically rather simple disease with a specific and neomorphic-potential therapeutic target, whose oncogenic role was irrefutably defined decades ago. This is a disease that by definition has micrometastatic disease at diagnosis and a dismal prognosis for patients with macrometastatic or recurrent disease. International collaborations have defined the current standard of care in prospective studies, delivering multiple cycles of systemic therapy combined with local treatment; both are associated with significant morbidity that may result in strong psychological and physical burden for survivors. Nevertheless, the combination of non-directed chemotherapeutics and ever-evolving local modalities nowadays achieve a realistic chance of cure for the majority of patients with Ewing sarcoma. In this review, we focus on the current standard of diagnosis and treatment while attempting to answer some of the most pressing questions in clinical practice. In addition, this review provides scientific answers to clinical phenomena and occasionally defines the resulting translational studies needed to overcome the hurdle of treatment-associated morbidities and, most importantly, non-survival.
Collapse
Affiliation(s)
- Stefan K. Zöllner
- Pediatrics III, University Hospital Essen, 45147 Essen, Germany;
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (S.B.); (S.C.); (J.H.); (A.S.); (B.T.)
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
| | - James F. Amatruda
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA;
| | - Sebastian Bauer
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (S.B.); (S.C.); (J.H.); (A.S.); (B.T.)
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
- Department of Medical Oncology, Sarcoma Center, University Hospital Essen, 45147 Essen, Germany
| | - Stéphane Collaud
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (S.B.); (S.C.); (J.H.); (A.S.); (B.T.)
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
- Department of Thoracic Surgery, Ruhrlandklinik, University of Essen-Duisburg, 45239 Essen, Germany
| | - Enrique de Álava
- Institute of Biomedicine of Sevilla (IbiS), Virgen del Rocio University Hospital, CSIC, University of Sevilla, CIBERONC, 41013 Seville, Spain;
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Steven G. DuBois
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA 02215, USA; (S.G.D.); (D.S.S.)
| | - Jendrik Hardes
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (S.B.); (S.C.); (J.H.); (A.S.); (B.T.)
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
- Department of Musculoskeletal Oncology, Sarcoma Center, 45147 Essen, Germany
| | - Wolfgang Hartmann
- Division of Translational Pathology, Gerhard-Domagk Institute of Pathology, University Hospital Münster, 48149 Münster, Germany;
- West German Cancer Center (WTZ), Network Partner Site, University Hospital Münster, 48149 Münster, Germany
| | - Heinrich Kovar
- St. Anna Children’s Cancer Research Institute and Medical University Vienna, 1090 Vienna, Austria;
| | - Markus Metzler
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, 91054 Erlangen, Germany;
| | - David S. Shulman
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA 02215, USA; (S.G.D.); (D.S.S.)
| | - Arne Streitbürger
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (S.B.); (S.C.); (J.H.); (A.S.); (B.T.)
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
- Department of Musculoskeletal Oncology, Sarcoma Center, 45147 Essen, Germany
| | - Beate Timmermann
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (S.B.); (S.C.); (J.H.); (A.S.); (B.T.)
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre, 45147 Essen, Germany
| | - Jeffrey A. Toretsky
- Departments of Oncology and Pediatrics, Georgetown University, Washington, DC 20057, USA;
| | - Yasmin Uhlenbruch
- St. Josefs Hospital Bochum, University Hospital, 44791 Bochum, Germany;
| | - Volker Vieth
- Department of Radiology, Klinikum Ibbenbüren, 49477 Ibbenbühren, Germany;
| | - Thomas G. P. Grünewald
- Division of Translational Pediatric Sarcoma Research, Hopp-Children’s Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany;
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Core Center, 69120 Heidelberg, Germany
| | - Uta Dirksen
- Pediatrics III, University Hospital Essen, 45147 Essen, Germany;
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (S.B.); (S.C.); (J.H.); (A.S.); (B.T.)
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
| |
Collapse
|
36
|
Rashid T, Noyd DH, Iranzad N, Davis JT, Deel MD. Advances in the Diagnosis and Management of Neonatal Sarcomas. Clin Perinatol 2021; 48:117-145. [PMID: 33583500 DOI: 10.1016/j.clp.2020.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neonatal sarcomas comprise a heterogeneous group of rare soft tissue neoplasms that present unique diagnostic and therapeutic challenges. Recent advances in molecular profiling have improved diagnostic capabilities and reveal novel therapeutic targets. Clinical trials demonstrate differences in behavior between sarcoma subtypes that allow for better clinical management. Surgical resection has been replaced with a multimodal approach that includes chemotherapy and radiotherapy. Despite these advances, neonates with sarcoma continue to fare worse than histologically similar sarcomas in older children, likely reflecting differences in tumor biology and the complexities of neonatal medicine. This review focuses on recent advances in managing neonatal sarcomas.
Collapse
Affiliation(s)
- Tooba Rashid
- Pediatric Hematology/Oncology, Duke University School of Medicine, DUMC, Box 102382, Durham, NC 27710, USA
| | - David H Noyd
- Pediatric Hematology/Oncology, Duke University School of Medicine, DUMC, Box 102382, Durham, NC 27710, USA
| | - Natasha Iranzad
- Pediatric Hematology/Oncology, Duke University School of Medicine, DUMC, Box 3712, Durham, NC 27710, USA
| | - Joseph T Davis
- Pediatric Hematology/Oncology, Duke University School of Medicine, DUMC, Box 3808, Durham, NC 27710, USA
| | - Michael D Deel
- Pediatric Hematology/Oncology, Duke University School of Medicine, DUMC, Box 102382, Durham, NC 27710, USA.
| |
Collapse
|
37
|
Meazza C, Luksch R, Luzzati A. Managing axial bone sarcomas in childhood. Expert Rev Anticancer Ther 2021; 21:747-764. [PMID: 33593222 DOI: 10.1080/14737140.2021.1891886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Axial osteosarcoma and Ewing sarcoma are rare, aggressive neoplasms with a worse prognosis than with tumors involving the extremities because they are more likely to be associated with larger tumor volumes, older age, primary metastases, and a poor histological response to chemotherapy. The 5-year OS rates are reportedly in the range of 18-41% for axial osteosarcoma, and 46-64% for Ewing sarcoma.Area covered: The treatment of axial bone tumors is the same as for extremity bone tumors, and includes chemotherapy, surgery and/or radiotherapy.Expert opinion: Local treatment of axial tumors is particularly difficult due to their proximity to neurological and vascular structures, which often makes extensive and en bloc resections impossible without causing significant morbidity. The incidence of local relapse is consequently high, and this is the main issue in the treatment of these tumors. Radiotherapy is an option in the case of surgical resections with close or positive margins, as well as for inoperable tumors. Delivering high doses of RT to the spinal cord can be dangerous. Given the complexity and rarity of these tumors, it is essential for this subset of patients to be treated at selected reference institutions with specific expertise and multidisciplinary skills.
Collapse
Affiliation(s)
- Cristina Meazza
- Pediatric Oncology Unit, Medical Oncology and Emathology Department, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milano, Italy
| | - Roberto Luksch
- Pediatric Oncology Unit, Medical Oncology and Emathology Department, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milano, Italy
| | - Alessandro Luzzati
- Orthopedic Oncology and Spinal Reconstruction Surgery, Orthopedic Oncology Department, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| |
Collapse
|
38
|
Ngan SY, Chu J, Chander S. The Role of Radiotherapy for Sarcoma. Sarcoma 2021. [DOI: 10.1007/978-981-15-9414-4_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
39
|
Boik N, Hall MD. Psychosocial Support for Pediatric Patients at Proton Therapy Institutions. Int J Part Ther 2020; 7:28-33. [PMID: 33094133 PMCID: PMC7574829 DOI: 10.14338/ijpt-20-00015.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 04/27/2020] [Indexed: 01/07/2023] Open
Abstract
Purpose Pediatric patients with cancer benefit significantly from psychosocial support during and after treatment, but to date, limited data exist regarding the patterns of psychosocial support provided to patients in radiation oncology departments. The purpose of this study was to assess the supportive care services provided at proton therapy institutions in the United States with a specific focus on education, parental involvement, and coping techniques. Materials and Methods Physicians, nurses, and child life specialists at 29 operational proton therapy facilities in the United States were sent an online questionnaire regarding pediatric treatment support. The survey consisted of 10 questions exploring strategies employed to educate and support pediatric patients before and during radiotherapy. Results Staff members from 23 of 29 operational proton centers (79%) in the United States completed the survey. Three centers (10%) declined to participate, and three (10%) did not complete the questionnaire. Respondents permitted parental presence for body positioning on the first day of treatment and every day of treatment if needed at 95.6% (22 of 23) and 73.9% (17 of 23) of the centers, respectively. Primary education methods included a facility tour (91.3%; 21 of 23) and psychological preparation (78.3%; 17 of 23). Physicians (82.6%; 19 of 23), nurses (73.9%; 17 of 23), and child life specialists (69.6%; 16 of 23) most commonly provided education to pediatric patients and their families. Only 21.7% (5 of 23) of the facilities reported documentation of a psychosocial support policy. Common coping techniques included music (87.0%; 20 of 23), parental presence for positioning (73.9%; 17 of 23), listening to audio recordings (73.9%; 17 of 23), aromatherapy on or near the patient (73.9%; 17 of 23), and use of a stress ball (65.2%; 15 of 23). Conclusion Proton therapy institutions frequently offered psychologic preparation before treatment and employed various coping strategies. Based on this survey, we propose several recommendations to raise awareness and improve the experience of pediatric patients at radiation oncology centers.
Collapse
Affiliation(s)
- Nicole Boik
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| | - Matthew D Hall
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| |
Collapse
|
40
|
Fukumitsu N, Ishikawa H, Arimura T, Wada H, Okimoto T, Sato Y, Iwata H, Shimizu S, Sakurai H. Proton Therapy for Primary Renal Cell Carcinoma: The First Nationwide Retrospective Study in Japan. In Vivo 2020; 34:2883-2889. [PMID: 32871828 DOI: 10.21873/invivo.12116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 01/17/2023]
Abstract
BACKGROUND/AIM This multi-institutional study aimed to investigate the efficacy and feasibility of proton beam therapy (PBT) for renal cell carcinoma (RCC) in Japan. PATIENTS AND METHODS The survival, local control, and toxicities in 22 RCC patients treated between 2001 and 2016 at 6 Japanese PBT institutes were analyzed. RESULTS The 22 patients comprised 20 men and had a median age of 67 (range=42-88) years. The total irradiation dose was 60-79.6 Gy (relative biological effectiveness). Over a median follow-up of 37 months, the 3-year overall and disease-specific survival rates were 95% and 100%, respectively, and no recurrence occurred. No patient experienced grade 3 or higher adverse events. The serum blood urea nitrogen (p=0.25) and creatinine levels (p=0.95) were not significantly affected, although the mean estimated glomerular filtration rate was reduced by 7.1±11.2 ml/min/1.73 m2 Conclusion: Despite the small number of patients, high-dose PBT can control RCC while maintaining their renal function with high probability, and could be and alternative curative therapy especially for inoperable patients.
Collapse
Affiliation(s)
| | - Hitoshi Ishikawa
- Department of Radiation Oncology, University of Tsukuba, Faculty of Medicine, Ibaraki, Japan .,National Institutes for Quantum and Radiological Science and Technology, QST Hospital, Chiba, Japan
| | - Takeshi Arimura
- Medipolis Proton Therapy and Research Center, Kagoshima, Japan
| | - Hitoshi Wada
- Department of Radiation Oncology, Southern Tohoku Proton Therapy Center, Fukushima, Japan
| | - Tomoaki Okimoto
- Department of Radiology, Hyogo Ion Beam Medical Center, Hyogo, Japan
| | - Yoshitaka Sato
- Proton Therapy Center, Fukui Prefectural Hospital, Fukui, Japan
| | - Hiromitsu Iwata
- Departments of Radiation Oncology, Nagoya City West Medical Center, Aichi, Japan
| | - Shosei Shimizu
- Department of Radiation Oncology, University of Tsukuba, Faculty of Medicine, Ibaraki, Japan
| | - Hideyuki Sakurai
- Department of Radiation Oncology, University of Tsukuba, Faculty of Medicine, Ibaraki, Japan
| |
Collapse
|
41
|
Evaluation of a VERT-based module for proton radiotherapy education and training. JOURNAL OF RADIOTHERAPY IN PRACTICE 2020. [DOI: 10.1017/s1460396920000473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractIntroduction:In many countries, there is a skills gap in proton therapy with many staff unprepared to work with the new technology. The new Virtual Environment for Radiotherapy Training (VERT) proton module provides learners with a simulated proton machine 3D environment. This project aimed to evaluate the role of VERT in training the radiotherapy workforce for the future use of protons.Methods:A practical teaching session using VERT was deployed after a traditional teaching session had provided basic knowledge. A questionnaire deployed before and after VERT enabled comparison of knowledge while a combination of Likert and open questions gathered participant feedback concerning the initiative.Results:A total of 38 students provided evaluation of the session. Overall, there were high levels of satisfaction and enjoyment with 35 participants reporting enjoyment and 36 indicating that the event be repeated.Discussion:Participants felt that they had learned from the experience, although quantitative data lacked statistical significance to demonstrate this. All participants agreed that VERT had provided improved understanding of proton dose deposition arising from visualisation of beams and dose deposition. Most participants agreed that the simulation was realistic and that it had improved their understanding. Feedback in relation to future sessions concerned smaller group sizes, more patient cases, more time and additional clinical datasets.Conclusion:A proton simulation module has been shown to be an enjoyable teaching tool that improves students’ confidence in their knowledge of the underpinning theory and clinical usage of the modality. Learners felt better prepared to encounter protons in clinical practice. Future work will build on these findings using smaller group work and a more robust assessment tool to identify long-term impact of the training.
Collapse
|
42
|
Saini G, Shukla R, Sood KS, Shukla SK, Chandra R. Role of Proton Beam Therapy in Current Day Radiation Oncology Practice. ASIAN JOURNAL OF ONCOLOGY 2020. [DOI: 10.1055/s-0040-1713703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
AbstractProton beam therapy (PBT), because of its unique physics of no–exit dose deposition in the tissue, is an exciting prospect. The phenomenon of Bragg peak allows protons to deposit their almost entire energy towards the end of the path of the proton and stops any further dose delivery. Braggs peak equips PBT with superior dosimetric advantage over photons or electrons because PBT doesn’t traverse the target/body but is stopped sharply at an energy dependent depth in the target/body. It also has no exit dose. Because of no exit dose and normal tissue sparing, PBT is hailed for its potential to bring superior outcomes. Pediatric malignancies is the most common malignancy where PBT have found utmost application. Nowadays, PBT is also being used in the treatment of other malignancies such as carcinoma prostate, carcinoma breast, head and neck malignancies, and gastrointestinal (GI) malignancies. Despite advantages of PBT, there is not only a high cost of setting up of PBT centers but also a lack of definitive phase-III data. Therefore, we review the role of PBT in current day practice of oncology to bring out the nuances that must guide the practice to choose suitable patients for PBT.
Collapse
Affiliation(s)
- Gagan Saini
- Department of Radiation Oncology, MAX Super Speciality Hospital Patparganj and Vaishali, New Delhi, India
| | - Rashmi Shukla
- Department of Radiation Oncology, MAX Super Speciality Hospital Patparganj and Vaishali, New Delhi, India
| | - Kanika S. Sood
- Department of Radiation Oncology, Dharamshila Narayana Superspeciality Hospital, New Delhi, India
| | - Sujit K. Shukla
- Department of Radiation Oncology, Vardhaman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Ritu Chandra
- Department of Radiation Oncology, MAX Super Speciality Hospital Patparganj and Vaishali, New Delhi, India
| |
Collapse
|
43
|
Hwang EJ, Gorayski P, Le H, Hanna GG, Kenny L, Penniment M, Buck J, Thwaites D, Ahern V. Particle therapy toxicity outcomes: A systematic review. J Med Imaging Radiat Oncol 2020; 64:725-737. [PMID: 32421259 DOI: 10.1111/1754-9485.13036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023]
Abstract
Owing to its physical properties, particle therapy (PT), including proton beam therapy (PBT) and carbon ion therapy (CIT), can enhance the therapeutic ratio in radiation therapy. The major factor driving PT implementation is the reduction in exit and integral dose compared to photon plans, which is expected to translate to reduced toxicity and improved quality of life. This study extends the findings from a recent systematic review by the current authors which concentrated on tumour outcomes for PT, to now examine toxicity as a separate focus. Together, these reviews provide a comprehensive collation of the evidence relating to PT outcomes in clinical practice. Three major databases were searched by two independent researchers, and evidence quality was classified according to the National Health and Medical Research Council evidence hierarchy. One hundred and seventy-nine studies were included. Most demonstrated acceptable and favourable toxicity results. Comparative evidence reported reduced morbidities and improvement in quality of life in head and neck, paediatrics, sarcomas, adult central nervous system, gastrointestinal, ocular and prostate cancers compared to photon radiotherapy. This suggestion for reduced morbidity must be counterbalanced by the overall low quality of evidence. A concerted effort in the design of appropriate comparative clinical trials is needed which takes into account integration of PT's pace of technological advancements, including evolving delivery techniques, image guidance availability and sophistication of planning algorithms.
Collapse
Affiliation(s)
- Eun Ji Hwang
- Department of Radiation Oncology, Sydney West Radiation Oncology Network, Crown Princess Mary Cancer Centre, Sydney, New South Wales, Australia.,Medicine, Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia.,Institute of Medical Physics, School of Physics, University of Sydney, Sydney, New South Wales, Australia
| | - Peter Gorayski
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Hien Le
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,School of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Gerard G Hanna
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum, Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Liz Kenny
- Department of Radiation Oncology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia.,School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Michael Penniment
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Jacqueline Buck
- Department of Radiation Oncology, Sydney West Radiation Oncology Network, Crown Princess Mary Cancer Centre, Sydney, New South Wales, Australia
| | - David Thwaites
- Department of Radiation Oncology, Sydney West Radiation Oncology Network, Crown Princess Mary Cancer Centre, Sydney, New South Wales, Australia.,Institute of Medical Physics, School of Physics, University of Sydney, Sydney, New South Wales, Australia
| | - Verity Ahern
- Department of Radiation Oncology, Sydney West Radiation Oncology Network, Crown Princess Mary Cancer Centre, Sydney, New South Wales, Australia
| |
Collapse
|
44
|
Hwang EJ, Gorayski P, Le H, Hanna GG, Kenny L, Penniment M, Buck J, Thwaites D, Ahern V. Particle therapy tumour outcomes: An updated systematic review. J Med Imaging Radiat Oncol 2020; 64:711-724. [PMID: 32270626 DOI: 10.1111/1754-9485.13021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/20/2019] [Accepted: 02/13/2020] [Indexed: 12/25/2022]
Abstract
Particle therapy (PT) offers the potential for reduced normal tissue damage as well as escalation of target dose, thereby enhancing the therapeutic ratio in radiation therapy. Reflecting the building momentum of PT use worldwide, construction has recently commenced for The Australian Bragg Centre for Proton Therapy and Research in Adelaide - the first PT centre in Australia. This systematic review aims to update the clinical evidence base for PT, both proton beam and carbon ion therapy. The purpose is to inform clinical decision-making for referral of patients to PT centres in Australia as they become operational and overseas in the interim. Three major databases were searched by two independent researchers, and evidence quality was classified according to the National Health and Medical Research Council evidence hierarchy. One hundred and thirty-six studies were included, two-thirds related to proton beam therapy alone. PT at the very least provides equivalent tumour outcomes compared to photon controls with the possibility of improved control in the case of carbon ion therapy. There is suggestion of reduced morbidities in a range of tumour sites, supporting the predictions from dosimetric modelling and the wide international acceptance of PT for specific indications based on this. Though promising, this needs to be counterbalanced by the overall low quality of evidence found, with 90% of studies of level IV (case series) evidence. Prospective comparative clinical trials, supplemented by database-derived outcome information, preferably conducted within international and national networks, are strongly recommended as PT is introduced into Australasia.
Collapse
Affiliation(s)
- Eun Ji Hwang
- Department of Radiation Oncology, Sydney West Radiation Oncology Network, Crown Princess Mary Cancer Centre, Sydney, New South Wales, Australia.,Medicine, Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia.,Institute of Medical Physics, School of Physics, University of Sydney, Sydney, New South Wales, Australia
| | - Peter Gorayski
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Hien Le
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,School of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Gerard G Hanna
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Liz Kenny
- Department of Radiation Oncology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia.,School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Michael Penniment
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Jacqueline Buck
- Department of Radiation Oncology, Sydney West Radiation Oncology Network, Crown Princess Mary Cancer Centre, Sydney, New South Wales, Australia
| | - David Thwaites
- Department of Radiation Oncology, Sydney West Radiation Oncology Network, Crown Princess Mary Cancer Centre, Sydney, New South Wales, Australia.,Institute of Medical Physics, School of Physics, University of Sydney, Sydney, New South Wales, Australia
| | - Verity Ahern
- Department of Radiation Oncology, Sydney West Radiation Oncology Network, Crown Princess Mary Cancer Centre, Sydney, New South Wales, Australia
| |
Collapse
|
45
|
Su Z, Indelicato DJ, Mailhot RB, Bradley JA. Impact of different treatment techniques for pediatric Ewing sarcoma of the chest wall: IMRT, 3DCPT, and IMPT with/without beam aperture. J Appl Clin Med Phys 2020; 21:100-107. [PMID: 32268008 PMCID: PMC7324690 DOI: 10.1002/acm2.12870] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/08/2020] [Accepted: 03/11/2020] [Indexed: 12/25/2022] Open
Abstract
Purpose To evaluate the dosimetric differences between photon intensity‐modulated radiation therapy (IMRT) plans, 3D conformal proton therapy (3DCPT), and intensity‐modulated proton therapy (IMPT) plans and to investigate the dosimetric impact of different beam spot size and beam apertures in IMPT for pediatric Ewing sarcoma of the chest wall. Methods and Materials Six proton pediatric patients with Ewing sarcoma in the upper, middle, and lower thoracic spine regions as well as upper lumbar spine region were treated with 3DCPT and retrospectively planned with photon IMRT and IMPT nozzles of different beam spot sizes with/without beam apertures. The plan dose distributions were compared both on target conformity and homogeneity, and on organs‐at‐risk (OARs) sparing using QUANTEC metrics of the lung, heart, liver, and kidney. The total integral doses of healthy tissue of all plans were also evaluated. Results Target conformity and homogeneity indices are generally better for the IMPT plans with beam aperture. Doses to the lung, heart, and liver for all patients are substantially lower with the 3DPT and IMPT plans than those of IMRT plans. In the IMPT plans with large spot without beam aperture, some OAR doses are higher than those of 3DCPT plans. The integral dose of each photon IMRT plan ranged from 2 to 4.3 times of proton plans. Conclusion Compared to IMRT, proton therapy delivers significant lower dose to almost all OARs and much lower healthy tissue integral dose. Compared to 3DCPT, IMPT with small beam spot size or using beam aperture has better dose conformity to the target.
Collapse
Affiliation(s)
- Zhong Su
- Department of Radiation Oncology, University of Florida, Gainesville, FL, USA.,University of Florida Health Proton Therapy Institute, Jacksonville, FL, USA
| | - Daniel J Indelicato
- Department of Radiation Oncology, University of Florida, Gainesville, FL, USA.,University of Florida Health Proton Therapy Institute, Jacksonville, FL, USA
| | - Raymond B Mailhot
- Department of Radiation Oncology, University of Florida, Gainesville, FL, USA.,University of Florida Health Proton Therapy Institute, Jacksonville, FL, USA
| | - Julie A Bradley
- Department of Radiation Oncology, University of Florida, Gainesville, FL, USA.,University of Florida Health Proton Therapy Institute, Jacksonville, FL, USA
| |
Collapse
|
46
|
Sardaro A, Carbonara R, Petruzzelli MF, Turi B, Moschetta M, Scardapane A, Stabile Ianora AA. Proton therapy in the most common pediatric non-central nervous system malignancies: an overview of clinical and dosimetric outcomes. Ital J Pediatr 2019; 45:170. [PMID: 31881905 PMCID: PMC6935184 DOI: 10.1186/s13052-019-0763-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 12/17/2019] [Indexed: 11/20/2022] Open
Abstract
Radiation therapy represents an important approach in the therapeutic management of children and adolescents with malignant tumors and its application with modern techniques – including Proton Beam Therapy (PBT) – is of great interest. In particular, potential radiation-induced injuries and secondary malignancies – also associated to the prolonged life expectancy of patients – are still questions of concern that increase the debate on the usefulness of PBT in pediatric treatments. This paper presents a literary review of current applications of PBT in non-Central Nervous System pediatric tumors (such as retinoblastoma, Hodgkin Lymphoma, Wilms tumor, bone and soft tissues sarcomas). We specifically reported clinical results achieved with PBT and dosimetric comparisons between PBT and the most common photon-therapy techniques. The analysis emphasizes that PBT minimizes radiation doses to healthy growing organs, suggesting for reduced risks of late side-effects and radiation-induced secondary malignancies. Extended follow up and confirms by prospective clinical trials should support the effectiveness and long-term tolerance of PBT in the considered setting.
Collapse
Affiliation(s)
- Angela Sardaro
- Interdisciplinary Department of Medicine, Section of Radiology and Radiation Oncology, University of Bari, p.zza Giulio Cesare nr.11, 70124, Bari, Italy
| | - Roberta Carbonara
- Interdisciplinary Department of Medicine, Section of Radiology and Radiation Oncology, University of Bari, p.zza Giulio Cesare nr.11, 70124, Bari, Italy.
| | - Maria Fonte Petruzzelli
- Interdisciplinary Department of Medicine, Section of Radiology and Radiation Oncology, University of Bari, p.zza Giulio Cesare nr.11, 70124, Bari, Italy
| | - Barbara Turi
- Interdisciplinary Department of Medicine, Section of Radiology and Radiation Oncology, University of Bari, p.zza Giulio Cesare nr.11, 70124, Bari, Italy
| | - Marco Moschetta
- Interdisciplinary Department of Medicine, Section of Radiology and Radiation Oncology, University of Bari, p.zza Giulio Cesare nr.11, 70124, Bari, Italy
| | - Arnaldo Scardapane
- Interdisciplinary Department of Medicine, Section of Radiology and Radiation Oncology, University of Bari, p.zza Giulio Cesare nr.11, 70124, Bari, Italy
| | - Amato Antonio Stabile Ianora
- Interdisciplinary Department of Medicine, Section of Radiology and Radiation Oncology, University of Bari, p.zza Giulio Cesare nr.11, 70124, Bari, Italy
| |
Collapse
|
47
|
Vilches-Freixas G, Unipan M, Rinaldi I, Martens J, Roijen E, Almeida IP, Decabooter E, Bosmans G. Beam commissioning of the first compact proton therapy system with spot scanning and dynamic field collimation. Br J Radiol 2019; 93:20190598. [PMID: 31782941 DOI: 10.1259/bjr.20190598] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES To describe the measurements and to present the results of the beam commissioning and the beam model validation of a compact, gantry-mounted, spot scanning proton accelerator system with dynamic layer-by-layer field collimation. METHODS We performed measurements of depth dose distributions in water, spot and scanned field size in air at different positions from the isocenter plane, spot position over the 20 × 20 cm2 scanned area, beam monitor calibration in terms of absorbed dose to water and specific field collimation measurements at different gantry angles to commission the system. To validate the beam model in the treatment planning system (TPS), we measured spot profiles in water at different depths, absolute dose in water of single energy layers of different field sizes and inversely optimised spread-out Bragg peaks (SOBP) under normal and oblique beam incidence, field size and penumbra in water of SOBPs, and patient treatment specific quality assurance in homogeneous and heterogeneous phantoms. RESULTS Energy range, spot size, spot position and dose output were consistent at all gantry angles with 0.3 mm, 0.4 mm, 0.6 mm and 0.5% maximum deviations, respectively. Uncollimated spot size (one sigma) in air with an air-gap of 10 cm ranged from 4.1 to 16.4 mm covering a range from 32.2 to 1.9 cm in water, respectively. Absolute dose measurements were within 3% when comparing TPS and experimental data. Gamma pass rates >98% and >96% at 3%/3 mm were obtained when performing 2D dose measurements in homogeneous and in heterogeneous media, respectively. Leaf position was within ±1 mm at all gantry angles and nozzle positions. CONCLUSIONS Beam characterisation and machine commissioning results, and the exhaustive end-to-end tests performed to assess the proper functionality of the system, confirm that it is safe and accurate to treat patients. ADVANCES IN KNOWLEDGE This is the first paper addressing the beam commissioning and the beam validation of a compact, gantry-mounted, pencil beam scanning proton accelerator system with dynamic layer-by-layer multileaf collimation.
Collapse
Affiliation(s)
- Gloria Vilches-Freixas
- Department of Radiotherapy (MAASTRO Proton Therapy), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Mirko Unipan
- Department of Radiotherapy (MAASTRO Proton Therapy), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ilaria Rinaldi
- Department of Radiotherapy (MAASTRO Proton Therapy), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jonathan Martens
- Department of Radiotherapy (MAASTRO Proton Therapy), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Erik Roijen
- Department of Radiotherapy (MAASTRO Proton Therapy), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Isabel P Almeida
- Department of Radiotherapy (MAASTRO Proton Therapy), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Esther Decabooter
- Department of Radiotherapy (MAASTRO Proton Therapy), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Geert Bosmans
- Department of Radiotherapy (MAASTRO Proton Therapy), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
48
|
Wang X, Ma C, Davis R, Parikh RR, Jabbour SK, Haffty BG, Yue NJ, Nie K, Zhang Y. A novel approach to Verify air gap and SSD for proton radiotherapy using surface imaging. Radiat Oncol 2019; 14:224. [PMID: 31829246 PMCID: PMC6907344 DOI: 10.1186/s13014-019-1436-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/02/2019] [Indexed: 11/20/2022] Open
Abstract
PURPOSE To develop a novel approach to accurately verify patient set up in proton radiotherapy, especially for the verification of the nozzle - body surface air gap and source-to-skin distance (SSD), the consistency and accuracy of which is extremely important in proton treatment. METHODS Patient body surfaces can be captured and monitored with the optical surface imaging system during radiation treatment for improved intrafraction accuracy. An in-house software package was developed to reconstruct the patient body surface in the treatment position from the optical surface imaging reference capture and to calculate the corresponding nozzle - body surface air gap and SSD. To validate this method, a mannequin was scanned on a CT simulator and proton plans were generated for a Mevion S250 Proton machine with 20 gantry/couch angle combinations, as well as two different snout sizes, in the Varian Eclipse Treatment Planning Systems (TPS). The surface generated in the TPS from the CT scan was imported into the optical imaging system as an RT Structure for the purpose of validating and establishing a benchmark for ground truth comparison. The optical imaging surface reference capture was acquired at the treatment setup position after orthogonal kV imaging to confirm the positioning. The air gaps and SSDs calculated with the developed method from the surface captured at the treatment setup position (VRT surface) and the CT based surface imported from the TPS were compared to those calculated in TPS. The same approach was also applied to 14 clinical treatment fields for 10 patients to further validate the methodology. RESULTS The air gaps and SSDs calculated from our program agreed well with the corresponding values derived from the TPS. For the phantom results, using the CT surface, the absolute differences in the air gap were 0.45 mm ± 0.33 mm for the small snout, and 0.51 mm ± 0.49 mm for the large snout, and the absolute differences in SSD were 0.68 mm ± 0.42 mm regardless of snout size. Using the VRT surface, the absolute differences in air gap were 1.17 mm ± 1.17 mm and 2.1 mm ± 3.09 mm for the small and large snouts, respectively, and the absolute differences in SSD were 0.81 mm ± 0.45 mm. Similarly, for patient data, using the CT surface, the absolute differences in air gap were 0.42 mm ± 0.49 mm, and the absolute differences in SSD were 1.92 mm ± 1.4 mm. Using the VRT surface, the absolute differences in the air gap were 2.35 mm ± 2.3 mm, and the absolute differences in SSD were 2.7 mm ± 2.17 mm. CONCLUSION These results showed the feasibility and robustness of using an optical surface imaging approach to conveniently determine the air gap and SSD in proton treatment, providing an accurate and efficient way to confirm the target depth at treatment.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Chi Ma
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Rihan Davis
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Rahul R Parikh
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Salma K Jabbour
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Bruce G Haffty
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Ning J Yue
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Ke Nie
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Yin Zhang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
49
|
Fernandes RRA, Vianna CMDM, Guerra RL, Cancela MDC, Almeida LMD, Pereira AJDC, Viégas CMP, Ferman SE, Corrêa FD. Cost-Effectiveness of Proton Versus Photon Therapy in Pediatric Medulloblastoma Treatment: A Patient Volume–Based Analysis. Value Health Reg Issues 2019; 20:122-128. [DOI: 10.1016/j.vhri.2019.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/29/2019] [Accepted: 03/07/2019] [Indexed: 10/26/2022]
|
50
|
Carbonara R, Di Rito A, Monti A, Rubini G, Sardaro A. Proton versus Photon Radiotherapy for Pediatric Central Nervous System Malignancies: A Systematic Review and Meta-Analysis of Dosimetric Comparison Studies. JOURNAL OF ONCOLOGY 2019; 2019:5879723. [PMID: 31885580 PMCID: PMC6900940 DOI: 10.1155/2019/5879723] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/21/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Radiotherapy (RT) plays a fundamental role in the treatment of pediatric central nervous system (CNS) malignancies, but its late sequelae are still a challenging question. Despite developments in modern high-conformal photon techniques and proton beam therapy (PBT) are improving the normal tissues dose-sparing while maintaining satisfactory target coverage, clinical advantages supporting the optimal treatment strategy have to be better evaluated in long-term clinical studies and assessed in further radiobiological analyses. Our analysis aimed to systematically review current knowledge on the dosimetric advantages of PBT in the considered setting, which should be the basis for future specific studies. MATERIALS AND METHODS A PubMed and Google Scholar search was conducted in June 2019 to select dosimetric studies comparing photon versus proton RT for pediatric patients affected by CNS tumors. Then, a systematic review and meta-analysis according to the PRISMA statement was performed. Average and standard deviation values of Conformity Index, Homogeneity Index, and mean and maximum doses to intracranial and extracranial organs at risk (OARs) were specifically evaluated for secondary dosimetric comparisons. The standardized mean differences (SMDs) for target parameters and the mean differences (MDs) for OARs were summarized in forest plots (P < 0.05 was considered statistically significant). Publication bias was also assessed by the funnel plot and Egger's regression test. RESULTS Among the 88 identified papers, a total of twelve studies were included in the meta-analysis. PBT showed dosimetric advantages in target homogeneity (significant especially in the subgroup comparing PBT and 3D conformal RT), as well as in the dose sparing of almost all analyzed OARs (significantly superior results for brainstem, normal brain, and hippocampal dose constraints and for extracranial OARs parameters, excluding the kidneys). Publication bias was observed for Conformity Index. CONCLUSION Our analysis supports the evidence of dosimetric advantages of PBT over photon RT, especially in the dose sparing of normal growing tissues. Confirmations from wider well-designed studies are required.
Collapse
Affiliation(s)
- Roberta Carbonara
- Interdisciplinary Department of Medicine, Section of Radiology and Radiation Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Alessia Di Rito
- Radiation Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, Bari, Italy
| | - Angela Monti
- Interdisciplinary Department of Medicine, Section of Radiology and Radiation Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppe Rubini
- Interdisciplinary Department of Medicine, Section of Nuclear Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Angela Sardaro
- Interdisciplinary Department of Medicine, Section of Radiology and Radiation Oncology, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|