1
|
Min J, Dong F, Chen Y, Li W, Wu Y, Tan Y, Yang F, Wu P, Chai Y. The NSCLC immunotherapy response predicted by tumor-infiltrating T cells via a non-invasive radiomic approach. Front Immunol 2024; 15:1379812. [PMID: 39315096 PMCID: PMC11416977 DOI: 10.3389/fimmu.2024.1379812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/12/2024] [Indexed: 09/25/2024] Open
Abstract
Introductions Identifying patients with non-small cell lung cancer (NSCLC) who are optimal candidates for immunotherapy is a cornerstone in clinical decision-making. The tumor immune microenvironment (TIME) is intricately linked with both the prognosis of the malignancy and the efficacy of immunotherapeutic interventions. CD8+ T cells, and more specifically, tissue-resident memory CD8+ T cells [CD8+ tissue-resident memory T (TRM) cells] are postulated to be pivotal in orchestrating the immune system's assault on tumor cells. Nevertheless, the accurate quantification of immune cell infiltration-and by extension, the prediction of immunotherapeutic efficacy-remains a significant scientific frontier. Methods In this study, we introduce a cutting-edge non-invasive radiomic model, grounded in TIME markers (CD3+ T, CD8+ T, and CD8+ TRM cells), to infer the levels of immune cell infiltration in NSCLC patients receiving immune checkpoint inhibitors and ultimately predict their response to immunotherapy. Data from patients who had surgical resections (cohort 1) were employed to construct a radiomic model capable of predicting the TIME. This model was then applied to forecast the TIME for patients under immunotherapy (cohort 2). Conclusively, the study delved into the association between the predicted TIME from the radiomic model and the immunotherapeutic outcomes of the patients. Result For the immune cell infiltration radiomic prediction models in cohort 1, the AUC values achieved 0.765, 0.763, and 0.675 in the test set of CD3+ T, CD8+ T, and CD8+ TRM, respectively. While the AUC values for the TIME-immunotherapy predictive value were 0.651, 0.763, and 0.829 in the CD3-immunotherapy response model, CD8-immunotherapy response model, and CD8+ TRM-immunotherapy response model in cohort 2, respectively. The CD8+ TRM-immunotherapy model exhibited the highest predictive value and was significantly better than the CD3-immunotherapy model in predicting the immunotherapy response. The progression-free survival (PFS) analysis based on the predicted levels of CD3+ T, CD8+ T, and CD8+ TRM immune cell infiltration showed that the CD8+ T cell infiltration level was an independent factor (P=0.014, HR=0.218) with an AUC value of 0.938. Discussion Our empirical evidence reveals that patients with substantial CD8+ T cell infiltration experience a markedly improved PFS compared with those with minimal infiltration, asserting the status of the CD8+ T cell as an independent prognosticator of PFS in the context of immunotherapy. Although CD8+ TRM cells demonstrated the greatest predictive accuracy for immunotherapy response, their predictive strength for PFS was marginally surpassed by that of CD8+ T cells. These insights advocate for the application of the proposed non-invasive radiomic model, which utilizes TIME analysis, as a reliable predictor for immunotherapy outcomes and PFS in NSCLC patients.
Collapse
Affiliation(s)
- Jie Min
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fei Dong
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yongyuan Chen
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenshan Li
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yimin Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yanbin Tan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fan Yang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Pin Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ying Chai
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Sun R, Henry T, Laville A, Carré A, Hamaoui A, Bockel S, Chaffai I, Levy A, Chargari C, Robert C, Deutsch E. Imaging approaches and radiomics: toward a new era of ultraprecision radioimmunotherapy? J Immunother Cancer 2022; 10:e004848. [PMID: 35793875 PMCID: PMC9260846 DOI: 10.1136/jitc-2022-004848] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
Strong rationale and a growing number of preclinical and clinical studies support combining radiotherapy and immunotherapy to improve patient outcomes. However, several critical questions remain, such as the identification of patients who will benefit from immunotherapy and the identification of the best modalities of treatment to optimize patient response. Imaging biomarkers and radiomics have recently emerged as promising tools for the non-invasive assessment of the whole disease of the patient, allowing comprehensive analysis of the tumor microenvironment, the spatial heterogeneity of the disease and its temporal changes. This review presents the potential applications of medical imaging and the challenges to address, in order to help clinicians choose the optimal modalities of both radiotherapy and immunotherapy, to predict patient's outcomes and to assess response to these promising combinations.
Collapse
Affiliation(s)
- Roger Sun
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
| | - Théophraste Henry
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
- Department of Nuclear Medicine, Gustave Roussy, Villejuif, France
| | - Adrien Laville
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
| | - Alexandre Carré
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
| | - Anthony Hamaoui
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
| | - Sophie Bockel
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
| | - Ines Chaffai
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
| | - Antonin Levy
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
| | - Cyrus Chargari
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
- Department of Radiation Oncology, Brachytherapy Unit, Gustave Roussy, Villejuif, France
| | - Charlotte Robert
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
| | - Eric Deutsch
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
- INSERM U1030, Gustave Roussy, Villejuif, France
| |
Collapse
|
3
|
Falahatpour Z, Geramifar P, Mahdavi SR, Abdollahi H, Salimi Y, Nikoofar A, Ay MR. Potential advantages of FDG-PET radiomic feature map for target volume delineation in lung cancer radiotherapy. J Appl Clin Med Phys 2022; 23:e13696. [PMID: 35699200 PMCID: PMC9512354 DOI: 10.1002/acm2.13696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 04/20/2022] [Accepted: 05/27/2022] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To investigate the potential benefits of FDG PET radiomic feature maps (RFMs) for target delineation in non-small cell lung cancer (NSCLC) radiotherapy. METHODS Thirty-two NSCLC patients undergoing FDG PET/CT imaging were included. For each patient, nine grey-level co-occurrence matrix (GLCM) RFMs were generated. gross target volume (GTV) and clinical target volume (CTV) were contoured on CT (GTVCT , CTVCT ), PET (GTVPET40 , CTVPET40 ), and RFMs (GTVRFM , CTVRFM ,). Intratumoral heterogeneity areas were segmented as GTVPET50-Boost and radiomic boost target volume (RTVBoost ) on PET and RFMs, respectively. GTVCT in homogenous tumors and GTVPET40 in heterogeneous tumors were considered as GTVgold standard (GTVGS ). One-way analysis of variance was conducted to determine the threshold that finds the best conformity for GTVRFM with GTVGS . Dice similarity coefficient (DSC) and mean absolute percent error (MAPE) were calculated. Linear regression analysis was employed to report the correlations between the gold standard and RFM-derived target volumes. RESULTS Entropy, contrast, and Haralick correlation (H-correlation) were selected for tumor segmentation. The threshold values of 80%, 50%, and 10% have the best conformity of GTVRFM-entropy , GTVRFM-contrast , and GTVRFM-H-correlation with GTVGS , respectively. The linear regression results showed a positive correlation between GTVGS and GTVRFM-entropy (r = 0.98, p < 0.001), between GTVGS and GTVRFM-contrast (r = 0.93, p < 0.001), and between GTVGS and GTVRFM-H-correlation (r = 0.91, p < 0.001). The average threshold values of 45% and 15% were resulted in the best segmentation matching between CTVRFM-entropy and CTVRFM-contrast with CTVGS , respectively. Moreover, we used RFM to determine RTVBoost in the heterogeneous tumors. Comparison of RTVBoost with GTVPET50-Boost MAPE showed the volume error differences of 31.7%, 36%, and 34.7% in RTVBoost-entropy , RTVBoost-contrast , and RTVBoost-H-correlation , respectively. CONCLUSIONS FDG PET-based radiomics features in NSCLC demonstrated a promising potential for decision support in radiotherapy, helping radiation oncologists delineate tumors and generate accurate segmentation for heterogeneous region of tumors.
Collapse
Affiliation(s)
- Zahra Falahatpour
- Department of Medical Physics, Tehran University of Medical Sciences, Tehran, Iran
| | - Parham Geramifar
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Rabie Mahdavi
- Department of Medical Physics, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Abdollahi
- Department of Radiology Technology, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Yazdan Salimi
- Department of Biomedical Engineering and Medical Physics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Nikoofar
- Department of Radiation Oncology, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Ay
- Department of Medical Physics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Sun R, Deutsch E, Fournier L. [Artificial intelligence and medical imaging]. Bull Cancer 2021; 109:83-88. [PMID: 34782120 DOI: 10.1016/j.bulcan.2021.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 01/06/2023]
Abstract
The use of artificial intelligence methods for image recognition is one of the most developed branches of the AI field and these technologies are now commonly used in our daily lives. In the field of medical imaging, approaches based on artificial intelligence are particularly promising, with numerous applications and a strong interest in the search for new biomarkers. Here, we will present the general methods used in these approaches as well as the potential areas of application.
Collapse
Affiliation(s)
- Roger Sun
- Gustave Roussy Cancer Campus, université Paris-Saclay, département de Radiothérapie, Inserm U1030, 94805 Villejuif, France.
| | - Eric Deutsch
- Gustave Roussy Cancer Campus, université Paris-Saclay, département de Radiothérapie, Inserm U1030, 94805 Villejuif, France
| | - Laure Fournier
- Hôpital Européen Georges-Pompidou, département de radiologie, 20, rue Leblanc, 75015 Paris, France
| |
Collapse
|
5
|
Radiomics for Predicting Lung Cancer Outcomes Following Radiotherapy: A Systematic Review. Clin Oncol (R Coll Radiol) 2021; 34:e107-e122. [PMID: 34763965 DOI: 10.1016/j.clon.2021.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/24/2021] [Accepted: 10/14/2021] [Indexed: 12/13/2022]
Abstract
Lung cancer's radiomic phenotype may potentially inform clinical decision-making with respect to radical radiotherapy. At present there are no validated biomarkers available for the individualisation of radical radiotherapy in lung cancer and the mortality rate of this disease remains the highest of all other solid tumours. MEDLINE was searched using the terms 'radiomics' and 'lung cancer' according to the Preferred Reporting Items for Systematic Reviews and Met-Analyses (PRISMA) guidance. Radiomics studies were defined as those manuscripts describing the extraction and analysis of at least 10 quantifiable imaging features. Only those studies assessing disease control, survival or toxicity outcomes for patients with lung cancer following radical radiotherapy ± chemotherapy were included. Study titles and abstracts were reviewed by two independent reviewers. The Radiomics Quality Score was applied to the full text of included papers. Of 244 returned results, 44 studies met the eligibility criteria for inclusion. End points frequently reported were local (17%), regional (17%) and distant control (31%), overall survival (79%) and pulmonary toxicity (4%). Imaging features strongly associated with clinical outcomes include texture features belonging to the subclasses Gray level run length matrix, Gray level co-occurrence matrix and kurtosis. The median cohort size for model development was 100 (15-645); in the 11 studies with external validation in a separate independent population, the median cohort size was 84 (21-295). The median number of imaging features extracted was 184 (10-6538). The median Radiomics Quality Score was 11% (0-47). Patient-reported outcomes were not incorporated within any studies identified. No studies externally validated a radiomics signature in a registered prospective study. Imaging-derived indices attained through radiomic analyses could equip thoracic oncologists with biomarkers for treatment response, patterns of failure, normal tissue toxicity and survival in lung cancer. Based on routine scans, their non-invasive nature and cost-effectiveness are major advantages over conventional pathological assessment. Improved tools are required for the appraisal of radiomics studies, as significant barriers to clinical implementation remain, such as standardisation of input scan data, quality of reporting and external validation of signatures in randomised, interventional clinical trials.
Collapse
|
6
|
Sun R, Lerousseau M, Henry T, Carré A, Leroy A, Estienne T, Niyoteka S, Bockel S, Rouyar A, Alvarez Andres É, Benzazon N, Battistella E, Classe M, Robert C, Scoazec JY, Deutsch É. [Artificial intelligence, radiomics and pathomics to predict response and survival of patients treated with radiations]. Cancer Radiother 2021; 25:630-637. [PMID: 34284970 DOI: 10.1016/j.canrad.2021.06.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/19/2021] [Indexed: 12/24/2022]
Abstract
Artificial intelligence approaches in medicine are more and more used and are extremely promising due to the growing number of data produced and the variety of data they allow to exploit. Thus, the computational analysis of medical images in particular, radiological (radiomics), or anatomopathological (pathomics), has shown many very interesting results for the prediction of the prognosis and the response of cancer patients. Radiotherapy is a discipline that particularly benefits from these new approaches based on computer science and imaging. This review will present the main principles of an artificial intelligence approach and in particular machine learning, the principles of a radiomic and pathomic approach and the potential of their use for the prediction of the prognosis of patients treated with radiotherapy.
Collapse
Affiliation(s)
- R Sun
- Université Paris-Saclay, institut Gustave-Roussy, Inserm, Radiothérapie moléculaire et innovation thérapeutique, 94800 Villejuif, France; Département de radiothérapie, Gustave-Roussy Cancer Campus, 94800 Villejuif, France; Faculté de médecine, université Paris-Sud Paris-Saclay, 94270 Kremlin-Bicêtre, France.
| | - M Lerousseau
- Université Paris-Saclay, institut Gustave-Roussy, Inserm, Radiothérapie moléculaire et innovation thérapeutique, 94800 Villejuif, France
| | - T Henry
- Université Paris-Saclay, institut Gustave-Roussy, Inserm, Radiothérapie moléculaire et innovation thérapeutique, 94800 Villejuif, France; Département de médecine nucléaire, Gustave-Roussy Cancer Campus, 94800 Villejuif, France
| | - A Carré
- Université Paris-Saclay, institut Gustave-Roussy, Inserm, Radiothérapie moléculaire et innovation thérapeutique, 94800 Villejuif, France
| | - A Leroy
- Université Paris-Saclay, institut Gustave-Roussy, Inserm, Radiothérapie moléculaire et innovation thérapeutique, 94800 Villejuif, France; TheraPanacea, Paris, France
| | - T Estienne
- Université Paris-Saclay, institut Gustave-Roussy, Inserm, Radiothérapie moléculaire et innovation thérapeutique, 94800 Villejuif, France
| | - S Niyoteka
- Université Paris-Saclay, institut Gustave-Roussy, Inserm, Radiothérapie moléculaire et innovation thérapeutique, 94800 Villejuif, France
| | - S Bockel
- Département de radiothérapie, Gustave-Roussy Cancer Campus, 94800 Villejuif, France; Faculté de médecine, université Paris-Sud Paris-Saclay, 94270 Kremlin-Bicêtre, France
| | - A Rouyar
- Université Paris-Saclay, institut Gustave-Roussy, Inserm, Radiothérapie moléculaire et innovation thérapeutique, 94800 Villejuif, France
| | - É Alvarez Andres
- Université Paris-Saclay, institut Gustave-Roussy, Inserm, Radiothérapie moléculaire et innovation thérapeutique, 94800 Villejuif, France; TheraPanacea, Paris, France
| | - N Benzazon
- Université Paris-Saclay, institut Gustave-Roussy, Inserm, Radiothérapie moléculaire et innovation thérapeutique, 94800 Villejuif, France
| | - E Battistella
- Université Paris-Saclay, institut Gustave-Roussy, Inserm, Radiothérapie moléculaire et innovation thérapeutique, 94800 Villejuif, France
| | | | - C Robert
- Université Paris-Saclay, institut Gustave-Roussy, Inserm, Radiothérapie moléculaire et innovation thérapeutique, 94800 Villejuif, France; Département de radiothérapie, Gustave-Roussy Cancer Campus, 94800 Villejuif, France; Faculté de médecine, université Paris-Sud Paris-Saclay, 94270 Kremlin-Bicêtre, France
| | - J Y Scoazec
- Faculté de médecine, université Paris-Sud Paris-Saclay, 94270 Kremlin-Bicêtre, France; Département de biologie et pathologie médicales, Gustave-Roussy Cancer Campus, 94800 Villejuif, France
| | - É Deutsch
- Université Paris-Saclay, institut Gustave-Roussy, Inserm, Radiothérapie moléculaire et innovation thérapeutique, 94800 Villejuif, France; Département de radiothérapie, Gustave-Roussy Cancer Campus, 94800 Villejuif, France; Faculté de médecine, université Paris-Sud Paris-Saclay, 94270 Kremlin-Bicêtre, France
| |
Collapse
|
7
|
Ammari S, Pitre-Champagnat S, Dercle L, Chouzenoux E, Moalla S, Reuze S, Talbot H, Mokoyoko T, Hadchiti J, Diffetocq S, Volk A, El Haik M, Lakiss S, Balleyguier C, Lassau N, Bidault F. Influence of Magnetic Field Strength on Magnetic Resonance Imaging Radiomics Features in Brain Imaging, an In Vitro and In Vivo Study. Front Oncol 2021; 10:541663. [PMID: 33552944 PMCID: PMC7855708 DOI: 10.3389/fonc.2020.541663] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The development and clinical adoption of quantitative imaging biomarkers (radiomics) has established the need for the identification of parameters altering radiomics reproducibility. The aim of this study was to assess the impact of magnetic field strength on magnetic resonance imaging (MRI) radiomics features in neuroradiology clinical practice. METHODS T1 3D SPGR sequence was acquired on two phantoms and 10 healthy volunteers with two clinical MR devices from the same manufacturer using two different magnetic fields (1.5 and 3T). Phantoms varied in terms of gadolinium concentrations and textural heterogeneity. 27 regions of interest were segmented (phantom: 21, volunteers: 6) using the LIFEX software. 34 features were analyzed. RESULTS In the phantom dataset, 10 (67%) out of 15 radiomics features were significantly different when measured at 1.5T or 3T (student's t-test, p < 0.05). Gray levels resampling, and pixel size also influence part of texture features. These findings were validated in healthy volunteers. CONCLUSIONS According to daily used protocols for clinical examinations, radiomic features extracted on 1.5T should not be used interchangeably with 3T when evaluating texture features. Such confounding factor should be adjusted when adapting the results of a study to a different platform, or when designing a multicentric trial.
Collapse
Affiliation(s)
- Samy Ammari
- Department of Radiology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- BioMaps (UMR1281), Université Paris-Saclay, CNRS, INSERM, CEA, Orsay and Gustave Roussy, Villejuif, France
| | - Stephanie Pitre-Champagnat
- BioMaps (UMR1281), Université Paris-Saclay, CNRS, INSERM, CEA, Orsay and Gustave Roussy, Villejuif, France
| | - Laurent Dercle
- Department of Radiology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Immunology of Tumours and Immunotherapy INSERM U1015, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
- Radiology Department, Columbia University Medical Center, New York Presbyterian Hospital, New York, NY, United States
| | - Emilie Chouzenoux
- Center for Visual Computing, CentraleSupelec, Inria, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Salma Moalla
- Department of Radiology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Sylvain Reuze
- Department of Radiotherapy - Medical Physics, Gustave Roussy, Université ParisSaclay, Villejuif, France
| | - Hugues Talbot
- Center for Visual Computing, CentraleSupelec, Inria, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Tite Mokoyoko
- Department of Radiology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Joya Hadchiti
- Department of Radiology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Sebastien Diffetocq
- Department of Radiology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Andreas Volk
- BioMaps (UMR1281), Université Paris-Saclay, CNRS, INSERM, CEA, Orsay and Gustave Roussy, Villejuif, France
| | - Mickeal El Haik
- Department of Radiology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Sara Lakiss
- Department of Radiology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Corinne Balleyguier
- Department of Radiology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- BioMaps (UMR1281), Université Paris-Saclay, CNRS, INSERM, CEA, Orsay and Gustave Roussy, Villejuif, France
| | - Nathalie Lassau
- Department of Radiology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- BioMaps (UMR1281), Université Paris-Saclay, CNRS, INSERM, CEA, Orsay and Gustave Roussy, Villejuif, France
| | - Francois Bidault
- Department of Radiology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- BioMaps (UMR1281), Université Paris-Saclay, CNRS, INSERM, CEA, Orsay and Gustave Roussy, Villejuif, France
| |
Collapse
|
8
|
Bibault JE, Denis F, Roué A, Gibon D, Fumagalli I, Hennequin C, Barillot I, Quéro L, Paumier A, Mahé MA, Servagi Vernat S, Créhange G, Lapeyre M, Blanchard P, Pointreau Y, Lafond C, Huguet F, Mornex F, Latorzeff I, de Crevoisier R, Martin V, Kreps S, Durdux C, Antoni D, Noël G, Giraud P. [Siriade 2.0: An e-learning platform for radiation oncology contouring]. Cancer Radiother 2018; 22:773-777. [PMID: 30360973 DOI: 10.1016/j.canrad.2018.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/23/2018] [Accepted: 02/08/2018] [Indexed: 12/26/2022]
Abstract
PURPOSE In 2008, the French national society of radiation oncology (SFRO) and the association for radiation oncology continued education (AFCOR) created Siriade, an e-learning website dedicated to contouring. MATERIAL AND METHODS Between 2015 and 2017, this platform was updated using the latest digital online tools available. Two main sections were needed: a theoretical part and another section of online workshops. RESULTS Teaching courses are available as online commented videos, available on demand. The practical section of the website is an online contouring workshop that automatically generates a report quantifying the quality of the user's delineation compared with the experts'. CONCLUSION Siriade 2.0 is an innovating digital tool for radiation oncology initial and continuous education.
Collapse
Affiliation(s)
- J-E Bibault
- Service d'oncologie radiothérapie, hôpital européen Georges-Pompidou, 20, rue Leblanc, 75015 Paris, France; Université Paris Descartes, Paris Sorbonne Cité, 20, rue Leblanc, 75015 Paris, France
| | - F Denis
- Service de radiothérapie, centre Jean-Bernard, 9, rue Beauverger, 72000 Le Mans, France
| | - A Roué
- Institut national des sciences et techniques nucléaires, centre CEA de Saclay, D36, 91191 Gif-sur-Yvette, France
| | - D Gibon
- Aquilab, parc Eurasanté, biocentre Fleming, 250, rue Salvador-Allende, 59120 Loos, France
| | - I Fumagalli
- Service d'oncologie radiothérapie, hôpital Saint-Louis, 1, avenue Claude-Vellefau, 75010 Paris, France
| | - C Hennequin
- Service d'oncologie radiothérapie, hôpital Saint-Louis, 1, avenue Claude-Vellefau, 75010 Paris, France
| | - I Barillot
- Service d'oncologie radiothérapie, centre universitaire de cancérologie Henry-S.-Kaplan, 2, boulevard Tonnellé, 37044 Tours, France; Université François-Rabelais, 2, boulevard Tonnellé, 37044 Tours, France
| | - L Quéro
- Service d'oncologie radiothérapie, hôpital Saint-Louis, 1, avenue Claude-Vellefau, 75010 Paris, France
| | - A Paumier
- Service d'oncologie radiothérapie, institut de cancérologie de l'Ouest René-Gauducheau, boulevard Professeur-Jacques-Monod, 44805 Saint-Herblain, France
| | - M-A Mahé
- Service d'oncologie radiothérapie, institut de cancérologie de l'Ouest René-Gauducheau, boulevard Professeur-Jacques-Monod, 44805 Saint-Herblain, France
| | - S Servagi Vernat
- Service d'oncologie radiothérapie, institut Jean-Godinot, 1, rue Koenig, 51100 Reims, France
| | - G Créhange
- Service d'oncologie radiothérapie, centre Georges-François-Leclerc, 1, rue du Professeur-Marion, 21000 Dijon, France
| | - M Lapeyre
- Service d'oncologie radiothérapie, centre Jean-Perrin, 58, rue Montalembert, 63011 Clermont-Ferrand, France
| | - P Blanchard
- Service d'oncologie radiothérapie Gustave-Roussy, 114, rue Édouard-Vaillant, 94805 Villejuif, France
| | - Y Pointreau
- Service de radiothérapie, centre Jean-Bernard, 9, rue Beauverger, 72000 Le Mans, France
| | - C Lafond
- Service de radiothérapie, centre Jean-Bernard, 9, rue Beauverger, 72000 Le Mans, France
| | - F Huguet
- Service d'oncologie radiothérapie, hôpital Tenon, Hôpitaux universitaires de l'Est parisien, 4, rue de la Chine, 75020 Paris, France; Université Pierre-et-Marie-Curie, 4, rue de la Chine, 75020 Paris, France
| | - F Mornex
- Service d'oncologie radiothérapie, CHU Lyon Sud, 65, chemin du Grand-Revoyet, 69495 Pierre-Bénite, France
| | - I Latorzeff
- Service d'oncologie radiothérapie, clinique Pasteur, 1, rue de la Petite-Vitesse, 31300 Toulouse, France
| | - R de Crevoisier
- Service d'oncologie radiothérapie, centre Eugène-Marquis, avenue de la Bataille-Flandre-Dunkerque, 35700 Rennes, France
| | - V Martin
- Service d'oncologie radiothérapie, hôpital Saint-Louis, 1, avenue Claude-Vellefau, 75010 Paris, France
| | - S Kreps
- Service d'oncologie radiothérapie, hôpital européen Georges-Pompidou, 20, rue Leblanc, 75015 Paris, France; Université Paris Descartes, Paris Sorbonne Cité, 20, rue Leblanc, 75015 Paris, France
| | - C Durdux
- Service d'oncologie radiothérapie, hôpital européen Georges-Pompidou, 20, rue Leblanc, 75015 Paris, France; Université Paris Descartes, Paris Sorbonne Cité, 20, rue Leblanc, 75015 Paris, France
| | - D Antoni
- Département universitaire de radiothérapie, centre Paul-Strauss, 3, rue de la Porte-de-l'Hôpital, 67065 Strasbourg, France
| | - G Noël
- Département universitaire de radiothérapie, centre Paul-Strauss, 3, rue de la Porte-de-l'Hôpital, 67065 Strasbourg, France
| | - P Giraud
- Service d'oncologie radiothérapie, hôpital européen Georges-Pompidou, 20, rue Leblanc, 75015 Paris, France; Université Paris Descartes, Paris Sorbonne Cité, 20, rue Leblanc, 75015 Paris, France.
| |
Collapse
|
9
|
Sun R, Limkin EJ, Vakalopoulou M, Dercle L, Champiat S, Han SR, Verlingue L, Brandao D, Lancia A, Ammari S, Hollebecque A, Scoazec JY, Marabelle A, Massard C, Soria JC, Robert C, Paragios N, Deutsch E, Ferté C. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study. Lancet Oncol 2018; 19:1180-1191. [PMID: 30120041 DOI: 10.1016/s1470-2045(18)30413-3] [Citation(s) in RCA: 817] [Impact Index Per Article: 116.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/18/2018] [Accepted: 05/23/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Because responses of patients with cancer to immunotherapy can vary in success, innovative predictors of response to treatment are urgently needed to improve treatment outcomes. We aimed to develop and independently validate a radiomics-based biomarker of tumour-infiltrating CD8 cells in patients included in phase 1 trials of anti-programmed cell death protein (PD)-1 or anti-programmed cell death ligand 1 (PD-L1) monotherapy. We also aimed to evaluate the association between the biomarker, and tumour immune phenotype and clinical outcomes of these patients. METHODS In this retrospective multicohort study, we used four independent cohorts of patients with advanced solid tumours to develop and validate a radiomic signature predictive of immunotherapy response by combining contrast-enhanced CT images and RNA-seq genomic data from tumour biopsies to assess CD8 cell tumour infiltration. To develop the radiomic signature of CD8 cells, we used the CT images and RNA sequencing data of 135 patients with advanced solid malignant tumours who had been enrolled into the MOSCATO trial between May 1, 2012, and March 31, 2016, in France (training set). The genomic data, which are based on the CD8B gene, were used to estimate the abundance of CD8 cells in the samples and data were then aligned with the images to generate the radiomic signatures. The concordance of the radiomic signature (primary endpoint) was validated in a Cancer Genome Atlas [TGCA] database dataset including 119 patients who had available baseline preoperative imaging data and corresponding transcriptomic data on June 30, 2017. From 84 input variables used for the machine-learning method (78 radiomic features, five location variables, and one technical variable), a radiomics-based predictor of the CD8 cell expression signature was built by use of machine learning (elastic-net regularised regression method). Two other independent cohorts of patients with advanced solid tumours were used to evaluate this predictor. The immune phenotype internal cohort (n=100), were randomly selected from the Gustave Roussy Cancer Campus database of patient medical records based on previously described, extreme tumour-immune phenotypes: immune-inflamed (with dense CD8 cell infiltration) or immune-desert (with low CD8 cell infiltration), irrespective of treatment delivered; these data were used to analyse the correlation of the immune phenotype with this biomarker. Finally, the immunotherapy-treated dataset (n=137) of patients recruited from Dec 1, 2011, to Jan 31, 2014, at the Gustave Roussy Cancer Campus, who had been treated with anti-PD-1 and anti-PD-L1 monotherapy in phase 1 trials, was used to assess the predictive value of this biomarker in terms of clinical outcome. FINDINGS We developed a radiomic signature for CD8 cells that included eight variables, which was validated with the gene expression signature of CD8 cells in the TCGA dataset (area under the curve [AUC]=0·67; 95% CI 0·57-0·77; p=0·0019). In the cohort with assumed immune phenotypes, the signature was also able to discriminate inflamed tumours from immune-desert tumours (0·76; 0·66-0·86; p<0·0001). In patients treated with anti-PD-1 and PD-L1, a high baseline radiomic score (relative to the median) was associated with a higher proportion of patients who achieved an objective response at 3 months (vs those with progressive disease or stable disease; p=0·049) and a higher proportion of patients who had an objective response (vs those with progressive disease or stable disease; p=0·025) or stable disease (vs those with progressive disease; p=0·013) at 6 months. A high baseline radiomic score was also associated with improved overall survival in univariate (median overall survival 24·3 months in the high radiomic score group, 95% CI 18·63-42·1; vs 11·5 months in the low radiomic score group, 7·98-15·6; hazard ratio 0·58, 95% CI 0·39-0·87; p=0·0081) and multivariate analyses (0·52, 0·35-0·79; p=0·0022). INTERPRETATION The radiomic signature of CD8 cells was validated in three independent cohorts. This imaging predictor provided a promising way to predict the immune phenotype of tumours and to infer clinical outcomes for patients with cancer who had been treated with anti-PD-1 and PD-L1. Our imaging biomarker could be useful in estimating CD8 cell count and predicting clinical outcomes of patients treated with immunotherapy, when validated by further prospective randomised trials. FUNDING Fondation pour la Recherche Médicale, and SIRIC-SOCRATE 2.0, French Society of Radiation Oncology.
Collapse
Affiliation(s)
- Roger Sun
- Gustave Roussy-CentraleSupélec-Therapanacea Centre of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France; Radiomics Team, Molecular Radiotherapy INSERM U1030, Paris-Sud University, Gustave Roussy Cancer Campus, and University of Paris-Saclay, Villejuif, France; Department of Radiation Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Elaine Johanna Limkin
- Gustave Roussy-CentraleSupélec-Therapanacea Centre of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France; Radiomics Team, Molecular Radiotherapy INSERM U1030, Paris-Sud University, Gustave Roussy Cancer Campus, and University of Paris-Saclay, Villejuif, France; Department of Radiation Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Maria Vakalopoulou
- Gustave Roussy-CentraleSupélec-Therapanacea Centre of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France; Centre for Visual Computing, University of Paris-Saclay, Gif-sur-Yvette, France
| | - Laurent Dercle
- Immunology of Tumours and Immunotherapy INSERM U1015, Paris-Sud University, Gustave Roussy Cancer Campus, and University of Paris-Saclay, Villejuif, France; Department of Nuclear Medicine and Endocrine Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Stéphane Champiat
- Department of Drug Development, Gustave Roussy Cancer Campus, Villejuif, France
| | - Shan Rong Han
- Department of Pathology, North Franche-Comté Hospital, Trevenans, France
| | - Loïc Verlingue
- Department of Drug Development, Gustave Roussy Cancer Campus, Villejuif, France
| | - David Brandao
- Haematology and Pathology INSERM U1170, Paris-Sud University, Gustave Roussy Cancer Campus, and University of Paris-Saclay, Villejuif, France
| | - Andrea Lancia
- Gustave Roussy-CentraleSupélec-Therapanacea Centre of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France; Radiomics Team, Molecular Radiotherapy INSERM U1030, Paris-Sud University, Gustave Roussy Cancer Campus, and University of Paris-Saclay, Villejuif, France; Department of Diagnostic Imaging, Molecular Imaging, Interventional Radiology, and Radiotherapy, Tor Vergata General Hospital, Rome, Italy
| | - Samy Ammari
- Department of Radiology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Antoine Hollebecque
- Department of Drug Development, Gustave Roussy Cancer Campus, Villejuif, France
| | - Jean-Yves Scoazec
- Department of Pathology, Gustave Roussy Cancer Campus, Villejuif, France; Faculty of Medicine, Paris-Sud University, Kremlin-Bicêtre, France
| | - Aurélien Marabelle
- Department of Drug Development, Gustave Roussy Cancer Campus, Villejuif, France
| | - Christophe Massard
- Department of Drug Development, Gustave Roussy Cancer Campus, Villejuif, France
| | - Jean-Charles Soria
- Department of Drug Development, Gustave Roussy Cancer Campus, Villejuif, France; Faculty of Medicine, Paris-Sud University, Kremlin-Bicêtre, France
| | - Charlotte Robert
- Gustave Roussy-CentraleSupélec-Therapanacea Centre of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France; Radiomics Team, Molecular Radiotherapy INSERM U1030, Paris-Sud University, Gustave Roussy Cancer Campus, and University of Paris-Saclay, Villejuif, France; Medical Physics Unit, Gustave Roussy Cancer Campus, Villejuif, France; Faculty of Medicine, Paris-Sud University, Kremlin-Bicêtre, France
| | - Nikos Paragios
- Gustave Roussy-CentraleSupélec-Therapanacea Centre of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France; Centre for Visual Computing, University of Paris-Saclay, Gif-sur-Yvette, France
| | - Eric Deutsch
- Gustave Roussy-CentraleSupélec-Therapanacea Centre of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France; Radiomics Team, Molecular Radiotherapy INSERM U1030, Paris-Sud University, Gustave Roussy Cancer Campus, and University of Paris-Saclay, Villejuif, France; Department of Radiation Oncology, Gustave Roussy Cancer Campus, Villejuif, France; Department of Drug Development, Gustave Roussy Cancer Campus, Villejuif, France; Faculty of Medicine, Paris-Sud University, Kremlin-Bicêtre, France.
| | - Charles Ferté
- Gustave Roussy-CentraleSupélec-Therapanacea Centre of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France; Radiomics Team, Molecular Radiotherapy INSERM U1030, Paris-Sud University, Gustave Roussy Cancer Campus, and University of Paris-Saclay, Villejuif, France; Department of Drug Development, Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
10
|
Radiomics in Nuclear Medicine Applied to Radiation Therapy: Methods, Pitfalls, and Challenges. Int J Radiat Oncol Biol Phys 2018; 102:1117-1142. [PMID: 30064704 DOI: 10.1016/j.ijrobp.2018.05.022] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 02/06/2023]
Abstract
Radiomics is a recent area of research in precision medicine and is based on the extraction of a large variety of features from medical images. In the field of radiation oncology, comprehensive image analysis is crucial to personalization of treatments. A better characterization of local heterogeneity and the shape of the tumor, depicting individual cancer aggressiveness, could guide dose planning and suggest volumes in which a higher dose is needed for better tumor control. In addition, noninvasive imaging features that could predict treatment outcome from baseline scans could help the radiation oncologist to determine the best treatment strategies and to stratify patients as at low risk or high risk of recurrence. Nuclear medicine molecular imaging reflects information regarding biological processes in the tumor thanks to a wide range of radiotracers. Many studies involving 18F-fluorodeoxyglucose positron emission tomography suggest an added value of radiomics compared with the use of conventional PET metrics such as standardized uptake value for both tumor diagnosis and prediction of recurrence or treatment outcome. However, these promising results should not hide technical difficulties that still currently prevent the approach from being widely studied or clinically used. These difficulties mostly pertain to the variability of the imaging features as a function of the acquisition device and protocol, the robustness of the models with respect to that variability, and the interpretation of the radiomic models. Addressing the impact of the variability in acquisition and reconstruction protocols is needed, as is harmonizing the radiomic feature calculation methods, to ensure the reproducibility of studies in a multicenter context and their implementation in a clinical workflow. In this review, we explain the potential impact of positron emission tomography radiomics for radiation therapy and underline the various aspects that need to be carefully addressed to make the most of this promising approach.
Collapse
|
11
|
Prediction of cervical cancer recurrence using textural features extracted from 18F-FDG PET images acquired with different scanners. Oncotarget 2018; 8:43169-43179. [PMID: 28574816 PMCID: PMC5522136 DOI: 10.18632/oncotarget.17856] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/11/2017] [Indexed: 02/07/2023] Open
Abstract
Objectives To identify an imaging signature predicting local recurrence for locally advanced cervical cancer (LACC) treated by chemoradiation and brachytherapy from baseline 18F-FDG PET images, and to evaluate the possibility of gathering images from two different PET scanners in a radiomic study. Methods 118 patients were included retrospectively. Two groups (G1, G2) were defined according to the PET scanner used for image acquisition. Eleven radiomic features were extracted from delineated cervical tumors to evaluate: (i) the predictive value of features for local recurrence of LACC, (ii) their reproducibility as a function of the scanner within a hepatic reference volume, (iii) the impact of voxel size on feature values. Results Eight features were statistically significant predictors of local recurrence in G1 (p < 0.05). The multivariate signature trained in G2 was validated in G1 (AUC=0.76, p<0.001) and identified local recurrence more accurately than SUVmax (p=0.022). Four features were significantly different between G1 and G2 in the liver. Spatial resampling was not sufficient to explain the stratification effect. Conclusion This study showed that radiomic features could predict local recurrence of LACC better than SUVmax. Further investigation is needed before applying a model designed using data from one PET scanner to another.
Collapse
|
12
|
Peeken JC, Bernhofer M, Wiestler B, Goldberg T, Cremers D, Rost B, Wilkens JJ, Combs SE, Nüsslin F. Radiomics in radiooncology - Challenging the medical physicist. Phys Med 2018; 48:27-36. [PMID: 29728226 DOI: 10.1016/j.ejmp.2018.03.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/07/2018] [Accepted: 03/20/2018] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Noticing the fast growing translation of artificial intelligence (AI) technologies to medical image analysis this paper emphasizes the future role of the medical physicist in this evolving field. Specific challenges are addressed when implementing big data concepts with high-throughput image data processing like radiomics and machine learning in a radiooncology environment to support clinical decisions. METHODS Based on the experience of our interdisciplinary radiomics working group, techniques for processing minable data, extracting radiomics features and associating this information with clinical, physical and biological data for the development of prediction models are described. A special emphasis was placed on the potential clinical significance of such an approach. RESULTS Clinical studies demonstrate the role of radiomics analysis as an additional independent source of information with the potential to influence the radiooncology practice, i.e. to predict patient prognosis, treatment response and underlying genetic changes. Extending the radiomics approach to integrate imaging, clinical, genetic and dosimetric data ('panomics') challenges the medical physicist as member of the radiooncology team. CONCLUSIONS The new field of big data processing in radiooncology offers opportunities to support clinical decisions, to improve predicting treatment outcome and to stimulate fundamental research on radiation response both of tumor and normal tissue. The integration of physical data (e.g. treatment planning, dosimetric, image guidance data) demands an involvement of the medical physicist in the radiomics approach of radiooncology. To cope with this challenge national and international organizations for medical physics should organize more training opportunities in artificial intelligence technologies in radiooncology.
Collapse
Affiliation(s)
- Jan C Peeken
- Department of Radiation Oncology, Klinikum rechts der Isar, Technical University of Munich (TUM), Ismaninger Straße 22, 81675 Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, Germany
| | - Michael Bernhofer
- Department of Informatics, Technical University of Munich (TUM), Boltzmannstraße 3, 85748 Garching, Germany
| | - Benedikt Wiestler
- Department of Neuroradiology, Klinikum rechts der Isar, Technical University of Munich (TUM), Ismaninger Straße 22, 81675 Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, Germany
| | | | - Daniel Cremers
- Department of Informatics, Technical University of Munich (TUM), Boltzmannstraße 3, 85748 Garching, Germany
| | - Burkhard Rost
- Department of Informatics, Technical University of Munich (TUM), Boltzmannstraße 3, 85748 Garching, Germany
| | - Jan J Wilkens
- Department of Radiation Oncology, Klinikum rechts der Isar, Technical University of Munich (TUM), Ismaninger Straße 22, 81675 Munich, Germany
| | - Stephanie E Combs
- Department of Radiation Oncology, Klinikum rechts der Isar, Technical University of Munich (TUM), Ismaninger Straße 22, 81675 Munich, Germany; Institute of Innovative Radiotherapy (iRT), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, Germany
| | - Fridtjof Nüsslin
- Department of Radiation Oncology, Klinikum rechts der Isar, Technical University of Munich (TUM), Ismaninger Straße 22, 81675 Munich, Germany.
| |
Collapse
|
13
|
Limkin EJ, Sun R, Dercle L, Zacharaki EI, Robert C, Reuzé S, Schernberg A, Paragios N, Deutsch E, Ferté C. Promises and challenges for the implementation of computational medical imaging (radiomics) in oncology. Ann Oncol 2018; 28:1191-1206. [PMID: 28168275 DOI: 10.1093/annonc/mdx034] [Citation(s) in RCA: 530] [Impact Index Per Article: 75.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Medical image processing and analysis (also known as Radiomics) is a rapidly growing discipline that maps digital medical images into quantitative data, with the end goal of generating imaging biomarkers as decision support tools for clinical practice. The use of imaging data from routine clinical work-up has tremendous potential in improving cancer care by heightening understanding of tumor biology and aiding in the implementation of precision medicine. As a noninvasive method of assessing the tumor and its microenvironment in their entirety, radiomics allows the evaluation and monitoring of tumor characteristics such as temporal and spatial heterogeneity. One can observe a rapid increase in the number of computational medical imaging publications-milestones that have highlighted the utility of imaging biomarkers in oncology. Nevertheless, the use of radiomics as clinical biomarkers still necessitates amelioration and standardization in order to achieve routine clinical adoption. This Review addresses the critical issues to ensure the proper development of radiomics as a biomarker and facilitate its implementation in clinical practice.
Collapse
Affiliation(s)
- E J Limkin
- Radiomics team, INSERM U1030, Gustave Roussy.,Department of Radiotherapy, Gustave Roussy, Paris-Saclay University, Villejuif
| | - R Sun
- Radiomics team, INSERM U1030, Gustave Roussy.,Department of Radiotherapy, Gustave Roussy, Paris-Saclay University, Villejuif.,Faculty of Medicine, Paris Sud University, Kremlin-Bicetre
| | - L Dercle
- Department of Nuclear Medicine and Endocrine Oncology, Gustave Roussy, Paris-Saclay University, Villejuif
| | - E I Zacharaki
- Center for Visual Computing, CentraleSupelec/Paris-Saclay University/Inria, Châtenay-Malabry
| | - C Robert
- Radiomics team, INSERM U1030, Gustave Roussy.,Department of Radiotherapy, Gustave Roussy, Paris-Saclay University, Villejuif.,Faculty of Medicine, Paris Sud University, Kremlin-Bicetre
| | - S Reuzé
- Radiomics team, INSERM U1030, Gustave Roussy.,Department of Radiotherapy, Gustave Roussy, Paris-Saclay University, Villejuif.,Faculty of Medicine, Paris Sud University, Kremlin-Bicetre
| | - A Schernberg
- Radiomics team, INSERM U1030, Gustave Roussy.,Department of Radiotherapy, Gustave Roussy, Paris-Saclay University, Villejuif.,Faculty of Medicine, Paris Sud University, Kremlin-Bicetre
| | - N Paragios
- Center for Visual Computing, CentraleSupelec/Paris-Saclay University/Inria, Châtenay-Malabry.,TheraPanacea, Paris
| | - E Deutsch
- Radiomics team, INSERM U1030, Gustave Roussy.,Department of Radiotherapy, Gustave Roussy, Paris-Saclay University, Villejuif
| | - C Ferté
- Radiomics team, INSERM U1030, Gustave Roussy.,Department of Head and Neck Oncology, Gustave Roussy, Paris-Saclay University, Villejuif, France
| |
Collapse
|
14
|
Sun R, Limkin E, Dercle L, Reuzé S, Zacharaki E, Chargari C, Schernberg A, Dirand A, Alexis A, Paragios N, Deutsch É, Ferté C, Robert C. Imagerie médicale computationnelle (radiomique) et potentiel en immuno-oncologie. Cancer Radiother 2017; 21:648-654. [DOI: 10.1016/j.canrad.2017.07.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 07/01/2017] [Indexed: 12/12/2022]
|
15
|
In Reply to Sun et al. Int J Radiat Oncol Biol Phys 2016; 95:1545-1546. [DOI: 10.1016/j.ijrobp.2016.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 03/28/2016] [Indexed: 10/21/2022]
|