1
|
Zheng D, Preuss K, Milano MT, He X, Gou L, Shi Y, Marples B, Wan R, Yu H, Du H, Zhang C. Mathematical modeling in radiotherapy for cancer: a comprehensive narrative review. Radiat Oncol 2025; 20:49. [PMID: 40186295 PMCID: PMC11969940 DOI: 10.1186/s13014-025-02626-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/17/2025] [Indexed: 04/07/2025] Open
Abstract
Mathematical modeling has long been a cornerstone of radiotherapy for cancer, guiding treatment prescription, planning, and delivery through versatile applications. As we enter the era of medical big data, where the integration of molecular, imaging, and clinical data at both the tumor and patient levels could promise more precise and personalized cancer treatment, the role of mathematical modeling has become even more critical. This comprehensive narrative review aims to summarize the main applications of mathematical modeling in radiotherapy, bridging the gap between classical models and the latest advancements. The review covers a wide range of applications, including radiobiology, clinical workflows, stereotactic radiosurgery/stereotactic body radiotherapy (SRS/SBRT), spatially fractionated radiotherapy (SFRT), FLASH radiotherapy (FLASH-RT), immune-radiotherapy, and the emerging concept of radiotherapy digital twins. Each of these areas is explored in depth, with a particular focus on how newer trends and innovations are shaping the future of radiation cancer treatment. By examining these diverse applications, this review provides a comprehensive overview of the current state of mathematical modeling in radiotherapy. It also highlights the growing importance of these models in the context of personalized medicine and multi-scale, multi-modal data integration, offering insights into how they can be leveraged to enhance treatment precision and patient outcomes. As radiotherapy continues to evolve, the insights gained from this review will help guide future research and clinical practice, ensuring that mathematical modeling continues to propel innovations in radiation cancer treatment.
Collapse
Affiliation(s)
- Dandan Zheng
- Department of Radiation Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, 601 Elmwood Avenue, Box 647, Rochester, NY, 14642, USA.
| | | | - Michael T Milano
- Department of Radiation Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, 601 Elmwood Avenue, Box 647, Rochester, NY, 14642, USA
| | - Xiuxiu He
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Lang Gou
- Department of Radiation Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, 601 Elmwood Avenue, Box 647, Rochester, NY, 14642, USA
| | - Yu Shi
- School of Biological Sciences, University of Nebraska Lincoln, Lincoln, USA
| | - Brian Marples
- Department of Radiation Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, 601 Elmwood Avenue, Box 647, Rochester, NY, 14642, USA
| | - Raphael Wan
- Department of Radiation Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, 601 Elmwood Avenue, Box 647, Rochester, NY, 14642, USA
| | - Hongfeng Yu
- Department of Computer Science, University of Nebraska Lincoln, Lincoln, USA
| | - Huijing Du
- Department of Mathematics, University of Nebraska Lincoln, Lincoln, USA
| | - Chi Zhang
- School of Biological Sciences, University of Nebraska Lincoln, Lincoln, USA
| |
Collapse
|
2
|
de Lima MC, de Castro CC, Aguiar KEC, Monte N, da Costa Nunes GG, da Costa ACA, Rodrigues JCG, Guerreiro JF, Ribeiro-dos-Santos Â, de Assumpção PP, Burbano RMR, Fernandes MR, dos Santos SEB, dos Santos NPC. Molecular Profile of Important Genes for Radiogenomics in the Amazon Indigenous Population. J Pers Med 2024; 14:484. [PMID: 38793065 PMCID: PMC11122349 DOI: 10.3390/jpm14050484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
Radiotherapy is focused on the tumor but also reaches healthy tissues, causing toxicities that are possibly related to genomic factors. In this context, radiogenomics can help reduce the toxicity, increase the effectiveness of radiotherapy, and personalize treatment. It is important to consider the genomic profiles of populations not yet studied in radiogenomics, such as the indigenous Amazonian population. Thus, our objective was to analyze important genes for radiogenomics, such as ATM, TGFB1, RAD51, AREG, XRCC4, CDK1, MEG3, PRKCE, TANC1, and KDR, in indigenous people and draw a radiogenomic profile of this population. The NextSeq 500® platform was used for sequencing reactions; for differences in the allelic frequency between populations, Fisher's Exact Test was used. We identified 39 variants, 2 of which were high impact: 1 in KDR (rs41452948) and another in XRCC4 (rs1805377). We found four modifying variants not yet described in the literature in PRKCE. We did not find any variants in TANC1-an important gene for personalized medicine in radiotherapy-that were associated with toxicities in previous cohorts, configuring a protective factor for indigenous people. We identified four SNVs (rs664143, rs1801516, rs1870377, rs1800470) that were associated with toxicity in previous studies. Knowing the radiogenomic profile of indigenous people can help personalize their radiotherapy.
Collapse
Affiliation(s)
- Milena Cardoso de Lima
- Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (M.C.d.L.); (C.C.d.C.); (K.E.C.A.); (N.M.); (G.G.d.C.N.); (A.C.A.d.C.); (J.C.G.R.); (J.F.G.); (P.P.d.A.); (R.M.R.B.); (M.R.F.)
| | - Cinthia Costa de Castro
- Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (M.C.d.L.); (C.C.d.C.); (K.E.C.A.); (N.M.); (G.G.d.C.N.); (A.C.A.d.C.); (J.C.G.R.); (J.F.G.); (P.P.d.A.); (R.M.R.B.); (M.R.F.)
| | - Kaio Evandro Cardoso Aguiar
- Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (M.C.d.L.); (C.C.d.C.); (K.E.C.A.); (N.M.); (G.G.d.C.N.); (A.C.A.d.C.); (J.C.G.R.); (J.F.G.); (P.P.d.A.); (R.M.R.B.); (M.R.F.)
| | - Natasha Monte
- Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (M.C.d.L.); (C.C.d.C.); (K.E.C.A.); (N.M.); (G.G.d.C.N.); (A.C.A.d.C.); (J.C.G.R.); (J.F.G.); (P.P.d.A.); (R.M.R.B.); (M.R.F.)
| | - Giovanna Gilioli da Costa Nunes
- Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (M.C.d.L.); (C.C.d.C.); (K.E.C.A.); (N.M.); (G.G.d.C.N.); (A.C.A.d.C.); (J.C.G.R.); (J.F.G.); (P.P.d.A.); (R.M.R.B.); (M.R.F.)
| | - Ana Caroline Alves da Costa
- Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (M.C.d.L.); (C.C.d.C.); (K.E.C.A.); (N.M.); (G.G.d.C.N.); (A.C.A.d.C.); (J.C.G.R.); (J.F.G.); (P.P.d.A.); (R.M.R.B.); (M.R.F.)
| | - Juliana Carla Gomes Rodrigues
- Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (M.C.d.L.); (C.C.d.C.); (K.E.C.A.); (N.M.); (G.G.d.C.N.); (A.C.A.d.C.); (J.C.G.R.); (J.F.G.); (P.P.d.A.); (R.M.R.B.); (M.R.F.)
| | - João Farias Guerreiro
- Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (M.C.d.L.); (C.C.d.C.); (K.E.C.A.); (N.M.); (G.G.d.C.N.); (A.C.A.d.C.); (J.C.G.R.); (J.F.G.); (P.P.d.A.); (R.M.R.B.); (M.R.F.)
- Laboratory of Human and Medical Genetics, Federal University of Pará, Belém 66075-110, PA, Brazil;
| | | | - Paulo Pimentel de Assumpção
- Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (M.C.d.L.); (C.C.d.C.); (K.E.C.A.); (N.M.); (G.G.d.C.N.); (A.C.A.d.C.); (J.C.G.R.); (J.F.G.); (P.P.d.A.); (R.M.R.B.); (M.R.F.)
| | - Rommel Mario Rodríguez Burbano
- Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (M.C.d.L.); (C.C.d.C.); (K.E.C.A.); (N.M.); (G.G.d.C.N.); (A.C.A.d.C.); (J.C.G.R.); (J.F.G.); (P.P.d.A.); (R.M.R.B.); (M.R.F.)
| | - Marianne Rodrigues Fernandes
- Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (M.C.d.L.); (C.C.d.C.); (K.E.C.A.); (N.M.); (G.G.d.C.N.); (A.C.A.d.C.); (J.C.G.R.); (J.F.G.); (P.P.d.A.); (R.M.R.B.); (M.R.F.)
| | - Sidney Emanuel Batista dos Santos
- Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (M.C.d.L.); (C.C.d.C.); (K.E.C.A.); (N.M.); (G.G.d.C.N.); (A.C.A.d.C.); (J.C.G.R.); (J.F.G.); (P.P.d.A.); (R.M.R.B.); (M.R.F.)
- Laboratory of Human and Medical Genetics, Federal University of Pará, Belém 66075-110, PA, Brazil;
| | - Ney Pereira Carneiro dos Santos
- Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (M.C.d.L.); (C.C.d.C.); (K.E.C.A.); (N.M.); (G.G.d.C.N.); (A.C.A.d.C.); (J.C.G.R.); (J.F.G.); (P.P.d.A.); (R.M.R.B.); (M.R.F.)
| |
Collapse
|
3
|
Dudas D, Dilling TJ, El Naqa I. Improved outcome models with denoising diffusion. Phys Med 2024; 119:103307. [PMID: 38325221 PMCID: PMC10939775 DOI: 10.1016/j.ejmp.2024.103307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/12/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024] Open
Abstract
PURPOSE Radiotherapy outcome modelling often suffers from class imbalance in the modelled endpoints. One of the main options to address this issue is by introducing new synthetically generated datapoints, using generative models, such as Denoising Diffusion Probabilistic Models (DDPM). In this study, we implemented DDPM to improve performance of a tumor local control model, trained on imbalanced dataset, and compare this approach with other common techniques. METHODS A dataset of 535 NSCLC patients treated with SBRT (50 Gy/5 fractions) was used to train a deep learning outcome model for tumor local control prediction. The dataset included complete treatment planning data (planning CT images, 3D planning dose distribution and patient demographics) with sparsely distributed endpoints (6-7 % experiencing local failure). Consequently, we trained a novel conditional 3D DDPM model to generate synthetic treatment planning data. Synthetically generated treatment planning datapoints were used to supplement the real training dataset and the improvement in the model's performance was studied. Obtained results were also compared to other common techniques for class imbalanced training, such as Oversampling, Undersampling, Augmentation, Class Weights, SMOTE and ADASYN. RESULTS Synthetic DDPM-generated data were visually trustworthy, with Fréchet inception distance (FID) below 50. Extending the training dataset with the synthetic data improved the model's performance by more than 10%, while other techniques exhibited only about 4% improvement. CONCLUSIONS DDPM introduces a novel approach to class-imbalanced outcome modelling problems. The model generates realistic synthetic radiotherapy planning data, with a strong potential to increase performance and robustness of outcome models.
Collapse
Affiliation(s)
- D Dudas
- H. Lee Moffitt Cancer Center and Research Institute, Department of Machine Learning, Tampa, FL, USA; Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Prague, Czechia.
| | - T J Dilling
- H. Lee Moffitt Cancer Center and Research Institute, Department of Machine Learning, Tampa, FL, USA
| | - I El Naqa
- H. Lee Moffitt Cancer Center and Research Institute, Department of Machine Learning, Tampa, FL, USA
| |
Collapse
|
4
|
Ger RB, Wei L, Naqa IE, Wang J. The Promise and Future of Radiomics for Personalized Radiotherapy Dosing and Adaptation. Semin Radiat Oncol 2023; 33:252-261. [PMID: 37331780 PMCID: PMC11214660 DOI: 10.1016/j.semradonc.2023.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Quantitative image analysis, also known as radiomics, aims to analyze large-scale quantitative features extracted from acquired medical images using hand-crafted or machine-engineered feature extraction approaches. Radiomics has great potential for a variety of clinical applications in radiation oncology, an image-rich treatment modality that utilizes computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) for treatment planning, dose calculation, and image guidance. A promising application of radiomics is in predicting treatment outcomes after radiotherapy such as local control and treatment-related toxicity using features extracted from pretreatment and on-treatment images. Based on these individualized predictions of treatment outcomes, radiotherapy dose can be sculpted to meet the specific needs and preferences of each patient. Radiomics can aid in tumor characterization for personalized targeting, especially for identifying high-risk regions within a tumor that cannot be easily discerned based on size or intensity alone. Radiomics-based treatment response prediction can aid in developing personalized fractionation and dose adjustments. In order to make radiomics models more applicable across different institutions with varying scanners and patient populations, further efforts are needed to harmonize and standardize the acquisition protocols by minimizing uncertainties within the imaging data.
Collapse
Affiliation(s)
- Rachel B Ger
- Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Medicine, Baltimore, MD
| | - Lise Wei
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI
| | - Issam El Naqa
- Department of Machine Learning, Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Jing Wang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX..
| |
Collapse
|
5
|
Abdollahi H, Dehesh T, Abdalvand N, Rahmim A. Radiomics and dosiomics-based prediction of radiotherapy-induced xerostomia in head and neck cancer patients. Int J Radiat Biol 2023; 99:1669-1683. [PMID: 37171485 DOI: 10.1080/09553002.2023.2214206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/05/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND AND AIM Dose-response modeling for radiotherapy-induced xerostomia in head and neck cancer (HN) patients is a promising frontier for personalized therapy. Feature extraction from diagnostic and therapeutic images (radiomics and dosiomics features) can be used for data-driven response modeling. The aim of this study is to develop xerostomia predictive models based on radiomics-dosiomics features. METHODS Data from the cancer imaging archive (TCIA) for 31 HN cancer patients were employed. For all patients, parotid CT radiomics features were extracted, utilizing Lasso regression for feature selection and multivariate modeling. The models were developed by selected features from pretreatment (CT1), mid-treatment (CT2), post-treatment (CT3), and delta features (ΔCT2-1, ΔCT3-1, ΔCT3-2). We also considered dosiomics features extracted from the parotid dose distribution images (Dose model). Thus, combination models of radio-dosiomics (CT + dose & ΔCT + dose) were developed. Moreover, clinical, and dose-volume histogram (DVH) models were built. Nested 10-fold cross-validation was used to assess the predictive classification of patients into those with and without xerostomia, and the area under the receiver operative characteristic curve (AUC) was used to compare the predictive power of the models. The sensitivity and accuracy of models also were obtained. RESULTS In total, 59 parotids were assessed, and 13 models were developed. Our results showed three models with AUC of 0.89 as most predictive, namely ΔCT2-1 + Dose (Sensitivity 0.99, Accuracy 0.94 & Specificity 0.86), CT3 model (Sensitivity 0.96, Accuracy 0.94 & Specificity 0.86) and DVH (Sensitivity 0.93, Accuracy 0.89 & Specificity 0.84). These models were followed by Clinical (AUC 0.89, Sensitivity 0.81, Accuracy 0.97 & Specificity 0.89) and CT2 & Dose (AUC 0.86, Sensitivity 0.97, Accuracy 0.87 & Specificity 0.82). The Dose model (developed by dosiomics features only) had AUC, Sensitivity, Specificity, and Accuracy of 0.72, 0.98, 0.33, and 0.79 respectively. CONCLUSION Quantitative features extracted from diagnostic imaging during and after radiotherapy alone or in combination with dosiomics markers obtained from dose distribution images can be used for radiotherapy response modeling, opening up prospects for personalization of therapies toward improved therapeutic outcomes.
Collapse
Affiliation(s)
- Hamid Abdollahi
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Tania Dehesh
- Modelling in Health Research Center, Institute for Future Studies in Health, Kerman University ofMedical Sciences, Kerman, Iran
| | - Neda Abdalvand
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Arman Rahmim
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Departments of Radiology and Physics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Niraula D, Sun W, Jin J, Dinov ID, Cuneo K, Jamaluddin J, Matuszak MM, Luo Y, Lawrence TS, Jolly S, Ten Haken RK, El Naqa I. A clinical decision support system for AI-assisted decision-making in response-adaptive radiotherapy (ARCliDS). Sci Rep 2023; 13:5279. [PMID: 37002296 PMCID: PMC10066294 DOI: 10.1038/s41598-023-32032-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
Involvement of many variables, uncertainty in treatment response, and inter-patient heterogeneity challenge objective decision-making in dynamic treatment regime (DTR) in oncology. Advanced machine learning analytics in conjunction with information-rich dense multi-omics data have the ability to overcome such challenges. We have developed a comprehensive artificial intelligence (AI)-based optimal decision-making framework for assisting oncologists in DTR. In this work, we demonstrate the proposed framework to Knowledge Based Response-Adaptive Radiotherapy (KBR-ART) applications by developing an interactive software tool entitled Adaptive Radiotherapy Clinical Decision Support (ARCliDS). ARCliDS is composed of two main components: Artifcial RT Environment (ARTE) and Optimal Decision Maker (ODM). ARTE is designed as a Markov decision process and modeled via supervised learning. Given a patient's pre- and during-treatment information, ARTE can estimate treatment outcomes for a selected daily dosage value (radiation fraction size). ODM is formulated using reinforcement learning and is trained on ARTE. ODM can recommend optimal daily dosage adjustments to maximize the tumor local control probability and minimize the side effects. Graph Neural Networks (GNN) are applied to exploit the inter-feature relationships for improved modeling performance and a novel double GNN architecture is designed to avoid nonphysical treatment response. Datasets of size 117 and 292 were available from two clinical trials on adaptive RT in non-small cell lung cancer (NSCLC) patients and adaptive stereotactic body RT (SBRT) in hepatocellular carcinoma (HCC) patients, respectively. For training and validation, dense data with 297 features were available for 67 NSCLC patients and 110 features for 71 HCC patients. To increase the sample size for ODM training, we applied Generative Adversarial Networks to generate 10,000 synthetic patients. The ODM was trained on the synthetic patients and validated on the original dataset. We found that, Double GNN architecture was able to correct the nonphysical dose-response trend and improve ARCliDS recommendation. The average root mean squared difference (RMSD) between ARCliDS recommendation and reported clinical decisions using double GNNs were 0.61 [0.03] Gy/frac (mean [sem]) for adaptive RT in NSCLC patients and 2.96 [0.42] Gy/frac for adaptive SBRT HCC compared to the single GNN's RMSDs of 0.97 [0.12] Gy/frac and 4.75 [0.16] Gy/frac, respectively. Overall, For NSCLC and HCC, ARCliDS with double GNNs was able to reproduce 36% and 50% of the good clinical decisions (local control and no side effects) and improve 74% and 30% of the bad clinical decisions, respectively. In conclusion, ARCliDS is the first web-based software dedicated to assist KBR-ART with multi-omics data. ARCliDS can learn from the reported clinical decisions and facilitate AI-assisted clinical decision-making for improving the outcomes in DTR.
Collapse
Affiliation(s)
- Dipesh Niraula
- Department of Machine Learning, Moffitt Cancer Center, Tampa, FL, 33612, USA.
| | - Wenbo Sun
- University of Michigan Transport Research Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jionghua Jin
- Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ivo D Dinov
- Department of Health Behavior and Biological Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kyle Cuneo
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jamalina Jamaluddin
- Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Martha M Matuszak
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yi Luo
- Department of Machine Learning, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Theodore S Lawrence
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Shruti Jolly
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Randall K Ten Haken
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Issam El Naqa
- Department of Machine Learning, Moffitt Cancer Center, Tampa, FL, 33612, USA
| |
Collapse
|
7
|
Niraula D, Cui S, Pakela J, Wei L, Luo Y, Ten Haken RK, El Naqa I. Current status and future developments in predicting outcomes in radiation oncology. Br J Radiol 2022; 95:20220239. [PMID: 35867841 PMCID: PMC9793488 DOI: 10.1259/bjr.20220239] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Advancements in data-driven technologies and the inclusion of information-rich multiomics features have significantly improved the performance of outcomes modeling in radiation oncology. For this current trend to be sustainable, challenges related to robust data modeling such as small sample size, low size to feature ratio, noisy data, as well as issues related to algorithmic modeling such as complexity, uncertainty, and interpretability, need to be mitigated if not resolved. Emerging computational technologies and new paradigms such as federated learning, human-in-the-loop, quantum computing, and novel interpretability methods show great potential in overcoming these challenges and bridging the gap towards precision outcome modeling in radiotherapy. Examples of these promising technologies will be presented and their potential role in improving outcome modeling will be discussed.
Collapse
Affiliation(s)
- Dipesh Niraula
- Department of Machine Learning, H Lee Moffitt Cancer Center and Research Institute, Tampa, USA
| | - Sunan Cui
- Department of Radiation Oncology, Stanford Medicine, Stanford University, Stanford, USA
| | - Julia Pakela
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Lise Wei
- Department of Radiation Oncology, University of Michigan, Ann Arbor, USA
| | - Yi Luo
- Department of Machine Learning, H Lee Moffitt Cancer Center and Research Institute, Tampa, USA
| | | | - Issam El Naqa
- Department of Machine Learning, H Lee Moffitt Cancer Center and Research Institute, Tampa, USA
| |
Collapse
|
8
|
Abdollahi H, Chin E, Clark H, Hyde DE, Thomas S, Wu J, Uribe CF, Rahmim A. Radiomics-guided radiation therapy: opportunities and challenges. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac6fab] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/13/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Radiomics is an advanced image-processing framework, which extracts image features and considers them as biomarkers towards personalized medicine. Applications include disease detection, diagnosis, prognosis, and therapy response assessment/prediction. As radiation therapy aims for further individualized treatments, radiomics could play a critical role in various steps before, during and after treatment. Elucidation of the concept of radiomics-guided radiation therapy (RGRT) is the aim of this review, attempting to highlight opportunities and challenges underlying the use of radiomics to guide clinicians and physicists towards more effective radiation treatments. This work identifies the value of RGRT in various steps of radiotherapy from patient selection to follow-up, and subsequently provides recommendations to improve future radiotherapy using quantitative imaging features.
Collapse
|
9
|
Barragán-Montero A, Bibal A, Dastarac MH, Draguet C, Valdés G, Nguyen D, Willems S, Vandewinckele L, Holmström M, Löfman F, Souris K, Sterpin E, Lee JA. Towards a safe and efficient clinical implementation of machine learning in radiation oncology by exploring model interpretability, explainability and data-model dependency. Phys Med Biol 2022; 67:10.1088/1361-6560/ac678a. [PMID: 35421855 PMCID: PMC9870296 DOI: 10.1088/1361-6560/ac678a] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/14/2022] [Indexed: 01/26/2023]
Abstract
The interest in machine learning (ML) has grown tremendously in recent years, partly due to the performance leap that occurred with new techniques of deep learning, convolutional neural networks for images, increased computational power, and wider availability of large datasets. Most fields of medicine follow that popular trend and, notably, radiation oncology is one of those that are at the forefront, with already a long tradition in using digital images and fully computerized workflows. ML models are driven by data, and in contrast with many statistical or physical models, they can be very large and complex, with countless generic parameters. This inevitably raises two questions, namely, the tight dependence between the models and the datasets that feed them, and the interpretability of the models, which scales with its complexity. Any problems in the data used to train the model will be later reflected in their performance. This, together with the low interpretability of ML models, makes their implementation into the clinical workflow particularly difficult. Building tools for risk assessment and quality assurance of ML models must involve then two main points: interpretability and data-model dependency. After a joint introduction of both radiation oncology and ML, this paper reviews the main risks and current solutions when applying the latter to workflows in the former. Risks associated with data and models, as well as their interaction, are detailed. Next, the core concepts of interpretability, explainability, and data-model dependency are formally defined and illustrated with examples. Afterwards, a broad discussion goes through key applications of ML in workflows of radiation oncology as well as vendors' perspectives for the clinical implementation of ML.
Collapse
Affiliation(s)
- Ana Barragán-Montero
- Molecular Imaging, Radiation and Oncology (MIRO) Laboratory, Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Belgium
| | - Adrien Bibal
- PReCISE, NaDI Institute, Faculty of Computer Science, UNamur and CENTAL, ILC, UCLouvain, Belgium
| | - Margerie Huet Dastarac
- Molecular Imaging, Radiation and Oncology (MIRO) Laboratory, Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Belgium
| | - Camille Draguet
- Molecular Imaging, Radiation and Oncology (MIRO) Laboratory, Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Belgium
- Department of Oncology, Laboratory of Experimental Radiotherapy, KU Leuven, Belgium
| | - Gilmer Valdés
- Department of Radiation Oncology, Department of Epidemiology and Biostatistics, University of California, San Francisco, United States of America
| | - Dan Nguyen
- Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center, United States of America
| | - Siri Willems
- ESAT/PSI, KU Leuven Belgium & MIRC, UZ Leuven, Belgium
| | | | | | | | - Kevin Souris
- Molecular Imaging, Radiation and Oncology (MIRO) Laboratory, Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Belgium
| | - Edmond Sterpin
- Molecular Imaging, Radiation and Oncology (MIRO) Laboratory, Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Belgium
- Department of Oncology, Laboratory of Experimental Radiotherapy, KU Leuven, Belgium
| | - John A Lee
- Molecular Imaging, Radiation and Oncology (MIRO) Laboratory, Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Belgium
| |
Collapse
|
10
|
Krauze AV, Zhuge Y, Zhao R, Tasci E, Camphausen K. AI-Driven Image Analysis in Central Nervous System Tumors-Traditional Machine Learning, Deep Learning and Hybrid Models. JOURNAL OF BIOTECHNOLOGY AND BIOMEDICINE 2022; 5:1-19. [PMID: 35106480 PMCID: PMC8802234 DOI: 10.26502/jbb.2642-91280046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The interpretation of imaging in medicine in general and in oncology specifically remains problematic due to several limitations which include the need to incorporate detailed clinical history, patient and disease-specific history, clinical exam features, previous and ongoing treatment, and account for the dependency on reproducible human interpretation of multiple factors with incomplete data linkage. To standardize reporting, minimize bias, expedite management, and improve outcomes, the use of Artificial Intelligence (AI) has gained significant prominence in imaging analysis. In oncology, AI methods have as a result been explored in most cancer types with ongoing progress in employing AI towards imaging for oncology treatment, assessing treatment response, and understanding and communicating prognosis. Challenges remain with limited available data sets, variability in imaging changes over time augmented by a growing heterogeneity in analysis approaches. We review the imaging analysis workflow and examine how hand-crafted features also referred to as traditional Machine Learning (ML), Deep Learning (DL) approaches, and hybrid analyses, are being employed in AI-driven imaging analysis in central nervous system tumors. ML, DL, and hybrid approaches coexist, and their combination may produce superior results although data in this space is as yet novel, and conclusions and pitfalls have yet to be fully explored. We note the growing technical complexities that may become increasingly separated from the clinic and enforce the acute need for clinician engagement to guide progress and ensure that conclusions derived from AI-driven imaging analysis reflect that same level of scrutiny lent to other avenues of clinical research.
Collapse
Affiliation(s)
- A V Krauze
- Center for Cancer Research, National Cancer Institute, NIH, Building 10, Room B2-3637, Bethesda, USA
| | - Y Zhuge
- Center for Cancer Research, National Cancer Institute, NIH, Building 10, Room B2-3637, Bethesda, USA
| | - R Zhao
- University of British Columbia, Faculty of Medicine, 317 - 2194 Health Sciences Mall, Vancouver, Canada
| | - E Tasci
- Center for Cancer Research, National Cancer Institute, NIH, Building 10, Room B2-3637, Bethesda, USA
| | - K Camphausen
- Center for Cancer Research, National Cancer Institute, NIH, Building 10, Room B2-3637, Bethesda, USA
| |
Collapse
|
11
|
Krauze AV, Camphausen K. Molecular Biology in Treatment Decision Processes-Neuro-Oncology Edition. Int J Mol Sci 2021; 22:13278. [PMID: 34948075 PMCID: PMC8703419 DOI: 10.3390/ijms222413278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 11/30/2022] Open
Abstract
Computational approaches including machine learning, deep learning, and artificial intelligence are growing in importance in all medical specialties as large data repositories are increasingly being optimised. Radiation oncology as a discipline is at the forefront of large-scale data acquisition and well positioned towards both the production and analysis of large-scale oncologic data with the potential for clinically driven endpoints and advancement of patient outcomes. Neuro-oncology is comprised of malignancies that often carry poor prognosis and significant neurological sequelae. The analysis of radiation therapy mediated treatment and the potential for computationally mediated analyses may lead to more precise therapy by employing large scale data. We analysed the state of the literature pertaining to large scale data, computational analysis, and the advancement of molecular biomarkers in neuro-oncology with emphasis on radiation oncology. We aimed to connect existing and evolving approaches to realistic avenues for clinical implementation focusing on low grade gliomas (LGG), high grade gliomas (HGG), management of the elderly patient with HGG, rare central nervous system tumors, craniospinal irradiation, and re-irradiation to examine how computational analysis and molecular science may synergistically drive advances in personalised radiation therapy (RT) and optimise patient outcomes.
Collapse
Affiliation(s)
- Andra V. Krauze
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, 9000 Rockville Pike, Building 10, Bethesda, MD 20892, USA;
| | | |
Collapse
|
12
|
Bagher Ebadian H, Siddiqui F, Ghanem A, Zhu S, Lu M, Movsas B, Chetty IJ. Radiomics outperforms clinical factors in characterizing human papilloma virus (HPV) for patients with oropharyngeal squamous cell carcinomas. Biomed Phys Eng Express 2021; 8. [PMID: 34781281 DOI: 10.1088/2057-1976/ac39ab] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/15/2021] [Indexed: 11/11/2022]
Abstract
Purpose:To utilize radiomic features extracted from CT images to characterize Human Papilloma Virus (HPV) for patients with oropharyngeal cancer squamous cell carcinoma (OPSCC).Methods:One hundred twenty-eight OPSCC patients with known HPV-status (60-HPV+ and 68-HPV-, confirmed by immunohistochemistry-P16-protein testing) were retrospectively studied. Radiomic features (11 feature-categories) were extracted in 3D from contrast-enhanced (CE)-CT images of gross-tumor-volumes using 'in-house' software ('ROdiomiX') developed and validated following the image-biomarker-standardization-initiative (IBSI) guidelines. Six clinical factors were investigated: Age-at-Diagnosis, Gender, Total-Charlson, Alcohol-Use, Smoking-History, and T-Stage. A Least-Absolute-Shrinkage-and-Selection-Operation (Lasso) technique combined with a Generalized-Linear-Model (Lasso-GLM) were applied to perform regularization in the radiomic and clinical feature spaces to identify the ranking of optimal feature subsets with most representative information for prediction of HPV. Lasso-GLM models/classifiers based on clinical factors only, radiomics only, and combined clinical and radiomics (ensemble/integrated) were constructed using random-permutation-sampling. Tests of significance (One-way ANOVA), average Area-Under-Receiver-Operating-Characteristic (AUC), and Positive and Negative Predictive values (PPV and NPV) were computed to estimate the generalization-error and prediction performance of the classifiers.Results:Five clinical factors, including T-stage, smoking status, and age, and 14 radiomic features, including tumor morphology, and intensity contrast were found to be statistically significant discriminators between HPV positive and negative cohorts. Performances for prediction of HPV for the 3 classifiers were: Radiomics-Lasso-GLM: AUC/PPV/NPV=0.789/0.755/0.805; Clinical-Lasso-GLM: 0.676/0.747/0.672, and Integrated/Ensemble-Lasso-GLM: 0.895/0.874/0.844. Results imply that the radiomics-based classifier enabled better characterization and performance prediction of HPV relative to clinical factors, and that the combination of both radiomics and clinical factors yields even higher accuracy characterization and predictive performance.Conclusion:Albeit subject to confirmation in a larger cohort, this pilot study presents encouraging results in support of the role of radiomic features towards characterization of HPV in patients with OPSCC.
Collapse
Affiliation(s)
- Hassan Bagher Ebadian
- Department of Radiation Oncology , Henry Ford Hospital, 2799 West Grand Blvd., Detroit, Detroit, Michigan, 48202, UNITED STATES
| | - Farzan Siddiqui
- Radiation Oncology, Henry Ford Hospital, 2799 West Grand Blvd., Detroit, Michigan, 48202, UNITED STATES
| | - Ahmed Ghanem
- Radiation Oncology, Henry Ford Hospital, 2799 West Grand Blvd., Detroit, Michigan, 48202, UNITED STATES
| | - Simeng Zhu
- Radiation Oncology, Henry Ford Hospital, 2799 West Grand Blvd., Detroit, Michigan, 48202, UNITED STATES
| | - Mei Lu
- Henry Ford Hospital, 2799 West Grand Blvd., Detroit, Michigan, 48202, UNITED STATES
| | - Benjamin Movsas
- Dept of Radiation Oncology, Henry Ford Hospital, 2799 West Grand Blvd., Detroit, 48202, UNITED STATES
| | - Indrin J Chetty
- Dept of Radiation Oncology, Henry Ford Hospital, 2799 West Grand Blvd, Detroit, MI 48202-2689, USA, Detroit, Michigan, 48202, UNITED STATES
| |
Collapse
|
13
|
Modiri A, Vogelius I, Rechner LA, Nygård L, Bentzen SM, Specht L. Outcome-based multiobjective optimization of lymphoma radiation therapy plans. Br J Radiol 2021; 94:20210303. [PMID: 34541859 PMCID: PMC8553178 DOI: 10.1259/bjr.20210303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 02/04/2023] Open
Abstract
At its core, radiation therapy (RT) requires balancing therapeutic effects against risk of adverse events in cancer survivors. The radiation oncologist weighs numerous disease and patient-level factors when considering the expected risk-benefit ratio of combined treatment modalities. As part of this, RT plan optimization software is used to find a clinically acceptable RT plan delivering a prescribed dose to the target volume while respecting pre-defined radiation dose-volume constraints for selected organs at risk. The obvious limitation to the current approach is that it is virtually impossible to ensure the selected treatment plan could not be bettered by an alternative plan providing improved disease control and/or reduced risk of adverse events in this individual. Outcome-based optimization refers to a strategy where all planning objectives are defined by modeled estimates of a specific outcome's probability. Noting that various adverse events and disease control are generally incommensurable, leads to the concept of a Pareto-optimal plan: a plan where no single objective can be improved without degrading one or more of the remaining objectives. Further benefits of outcome-based multiobjective optimization are that quantitative estimates of risks and benefit are obtained as are the effects of choosing a different trade-off between competing objectives. Furthermore, patient-level risk factors and combined treatment modalities may be integrated directly into plan optimization. Here, we present this approach in the clinical setting of multimodality therapy for malignant lymphoma, a malignancy with marked heterogeneity in biology, target localization, and patient characteristics. We discuss future research priorities including the potential of artificial intelligence.
Collapse
Affiliation(s)
- Arezoo Modiri
- Department of Radiation Oncology, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Ivan Vogelius
- Department of Oncology, Section of Radiotherapy, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Laura Ann Rechner
- Department of Oncology, Section of Radiotherapy, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Lotte Nygård
- Department of Oncology, Section of Radiotherapy, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Søren M Bentzen
- Department of Epidemiology and Public Health, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Lena Specht
- Department of Oncology, Section of Radiotherapy, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Bagher-Ebadian H, Zhu S, Siddiqui F, Lu M, Movsas B, Chetty IJ. Technical Note: On the development of an outcome-driven frequency filter for improving Radiomics-based modeling of Human Papilloma Virus (HPV) in patients with oropharyngeal squamous cell carcinomas. Med Phys 2021; 48:7552-7562. [PMID: 34390003 DOI: 10.1002/mp.15159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/08/2021] [Accepted: 08/03/2021] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To implement an outcome-driven frequency filter for improving radiomics-based modeling of human papilloma virus (HPV) for patients with oropharyngeal squamous cell carcinoma (OPSCC). METHODS AND MATERIALS One hundred twenty-eight OPSCC patients with known HPV status (60-HPV+ and 68-HPV-, confirmed by immunohistochemistry-P16 protein testing) were retrospectively studied. A 3D Discrete Fourier Transform was applied on contrast-enhanced CT images of patient gross tumor volumes (GTV's) to transform intensity distributions to the frequency domain and estimate frequency power spectrums of HPV- and HPV+ patient cohorts. Statistical analyses were performed to rank frequency bands contributing towards prediction of HPV status. An outcome-driven frequency filter was designed accordingly and applied to GTV frequency information. 3D Inverse-Discrete-Fourier-Transform was applied to reconstruct HPV-related frequency-filtered images. Radiomics features (11 feature-categories) were extracted from pre- and post- frequency filtered images using our previously published 'ROdiomiX' software. Least-Absolute-Shrinkage-and-Selection-Operation (Lasso) combined with a Generalized-Linear-Model (Lasso-GLM) was developed to identify and rank feature subsets with optimal information for prediction of HPV+/-. Radiomics-based Lasso-GLM classifiers (pre- and post-frequency filtered) were constructed and validated using a random permutation sampling and nested cross-validation techniques. Average Area Under Receiver Operating Characteristic (AUC), and Positive and Negative Predictive values (PPV, NPV) were computed to estimate generalization error and prediction performance. RESULTS Among 192 radiomic features, 15 features were found to be statistically significant discriminators between HPV+/- cohorts on post-frequency filtered CE-CT images; 14 such radiomic features were observed on pre-frequency filtered datasets. Discriminant features included tumor morphology and intensity contrast. Performances for prediction of HPV for the pre- and post-frequency filtered Lasso-GLM classifiers were: AUC/PPV/NPV = 0.789/0.755/0.805 and 0.850/0.808/0.877 respectively. Nested-CV performances for prediction of HPV for the pre- and post-frequency filtered Lasso-GLM classifiers were: AUC/PPV/NPV = 0.814/0.725/0.877 and 0.890/0.820/0.911 respectively. CONCLUSION Albeit subject to confirmation in a larger cohort, this pilot study presents encouraging results on the importance of frequency analysis prior to radiomic feature extraction toward enhancement of model performance for characterizing HPV in patients with OPSCC. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hassan Bagher-Ebadian
- Department of Radiation Oncology, Henry Ford Hospital, 2799 West Grand Blvd, Detroit, MI, 48202, USA
| | - Simeng Zhu
- Department of Radiation Oncology, Henry Ford Hospital, 2799 West Grand Blvd, Detroit, MI, 48202, USA
| | - Farzan Siddiqui
- Department of Radiation Oncology, Henry Ford Hospital, 2799 West Grand Blvd, Detroit, MI, 48202, USA
| | - Mei Lu
- Department of Public Health, Henry Ford Health System, Michigan, MI, 48202, USA
| | - Benjamin Movsas
- Department of Radiation Oncology, Henry Ford Hospital, 2799 West Grand Blvd, Detroit, MI, 48202, USA
| | - Indrin J Chetty
- Department of Radiation Oncology, Henry Ford Hospital, 2799 West Grand Blvd, Detroit, MI, 48202, USA
| |
Collapse
|
15
|
Meikle SR, Sossi V, Roncali E, Cherry SR, Banati R, Mankoff D, Jones T, James M, Sutcliffe J, Ouyang J, Petibon Y, Ma C, El Fakhri G, Surti S, Karp JS, Badawi RD, Yamaya T, Akamatsu G, Schramm G, Rezaei A, Nuyts J, Fulton R, Kyme A, Lois C, Sari H, Price J, Boellaard R, Jeraj R, Bailey DL, Eslick E, Willowson KP, Dutta J. Quantitative PET in the 2020s: a roadmap. Phys Med Biol 2021; 66:06RM01. [PMID: 33339012 PMCID: PMC9358699 DOI: 10.1088/1361-6560/abd4f7] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Positron emission tomography (PET) plays an increasingly important role in research and clinical applications, catalysed by remarkable technical advances and a growing appreciation of the need for reliable, sensitive biomarkers of human function in health and disease. Over the last 30 years, a large amount of the physics and engineering effort in PET has been motivated by the dominant clinical application during that period, oncology. This has led to important developments such as PET/CT, whole-body PET, 3D PET, accelerated statistical image reconstruction, and time-of-flight PET. Despite impressive improvements in image quality as a result of these advances, the emphasis on static, semi-quantitative 'hot spot' imaging for oncologic applications has meant that the capability of PET to quantify biologically relevant parameters based on tracer kinetics has not been fully exploited. More recent advances, such as PET/MR and total-body PET, have opened up the ability to address a vast range of new research questions, from which a future expansion of applications and radiotracers appears highly likely. Many of these new applications and tracers will, at least initially, require quantitative analyses that more fully exploit the exquisite sensitivity of PET and the tracer principle on which it is based. It is also expected that they will require more sophisticated quantitative analysis methods than those that are currently available. At the same time, artificial intelligence is revolutionizing data analysis and impacting the relationship between the statistical quality of the acquired data and the information we can extract from the data. In this roadmap, leaders of the key sub-disciplines of the field identify the challenges and opportunities to be addressed over the next ten years that will enable PET to realise its full quantitative potential, initially in research laboratories and, ultimately, in clinical practice.
Collapse
Affiliation(s)
- Steven R Meikle
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Australia
- Brain and Mind Centre, The University of Sydney, Australia
| | - Vesna Sossi
- Department of Physics and Astronomy, University of British Columbia, Canada
| | - Emilie Roncali
- Department of Biomedical Engineering, University of California, Davis, United States of America
| | - Simon R Cherry
- Department of Biomedical Engineering, University of California, Davis, United States of America
- Department of Radiology, University of California, Davis, United States of America
| | - Richard Banati
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Australia
- Brain and Mind Centre, The University of Sydney, Australia
- Australian Nuclear Science and Technology Organisation, Sydney, Australia
| | - David Mankoff
- Department of Radiology, University of Pennsylvania, United States of America
| | - Terry Jones
- Department of Radiology, University of California, Davis, United States of America
| | - Michelle James
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), CA, United States of America
- Department of Neurology and Neurological Sciences, Stanford University, CA, United States of America
| | - Julie Sutcliffe
- Department of Biomedical Engineering, University of California, Davis, United States of America
- Department of Internal Medicine, University of California, Davis, CA, United States of America
| | - Jinsong Ouyang
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Yoann Petibon
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Chao Ma
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Suleman Surti
- Department of Radiology, University of Pennsylvania, United States of America
| | - Joel S Karp
- Department of Radiology, University of Pennsylvania, United States of America
| | - Ramsey D Badawi
- Department of Biomedical Engineering, University of California, Davis, United States of America
- Department of Radiology, University of California, Davis, United States of America
| | - Taiga Yamaya
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Go Akamatsu
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Georg Schramm
- Department of Imaging and Pathology, Nuclear Medicine & Molecular imaging, KU Leuven, Belgium
| | - Ahmadreza Rezaei
- Department of Imaging and Pathology, Nuclear Medicine & Molecular imaging, KU Leuven, Belgium
| | - Johan Nuyts
- Department of Imaging and Pathology, Nuclear Medicine & Molecular imaging, KU Leuven, Belgium
| | - Roger Fulton
- Brain and Mind Centre, The University of Sydney, Australia
- Department of Medical Physics, Westmead Hospital, Sydney, Australia
| | - André Kyme
- Brain and Mind Centre, The University of Sydney, Australia
- School of Biomedical Engineering, Faculty of Engineering and IT, The University of Sydney, Australia
| | - Cristina Lois
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Hasan Sari
- Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States of America
- Athinoula A. Martinos Center, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States of America
| | - Julie Price
- Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States of America
- Athinoula A. Martinos Center, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States of America
| | - Ronald Boellaard
- Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Center, location VUMC, Netherlands
| | - Robert Jeraj
- Departments of Medical Physics, Human Oncology and Radiology, University of Wisconsin, United States of America
- Faculty of Mathematics and Physics, University of Ljubljana, Slovenia
| | - Dale L Bailey
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Australia
- Department of Nuclear Medicine, Royal North Shore Hospital, Sydney, Australia
- Faculty of Science, The University of Sydney, Australia
| | - Enid Eslick
- Department of Nuclear Medicine, Royal North Shore Hospital, Sydney, Australia
| | - Kathy P Willowson
- Department of Nuclear Medicine, Royal North Shore Hospital, Sydney, Australia
- Faculty of Science, The University of Sydney, Australia
| | - Joyita Dutta
- Department of Electrical and Computer Engineering, University of Massachusetts Lowell, United States of America
| |
Collapse
|
16
|
El Naqa I, Li H, Fuhrman J, Hu Q, Gorre N, Chen W, Giger ML. Lessons learned in transitioning to AI in the medical imaging of COVID-19. J Med Imaging (Bellingham) 2021; 8:010902-10902. [PMID: 34646912 PMCID: PMC8488974 DOI: 10.1117/1.jmi.8.s1.010902] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has wreaked havoc across the world. It also created a need for the urgent development of efficacious predictive diagnostics, specifically, artificial intelligence (AI) methods applied to medical imaging. This has led to the convergence of experts from multiple disciplines to solve this global pandemic including clinicians, medical physicists, imaging scientists, computer scientists, and informatics experts to bring to bear the best of these fields for solving the challenges of the COVID-19 pandemic. However, such a convergence over a very brief period of time has had unintended consequences and created its own challenges. As part of Medical Imaging Data and Resource Center initiative, we discuss the lessons learned from career transitions across the three involved disciplines (radiology, medical imaging physics, and computer science) and draw recommendations based on these experiences by analyzing the challenges associated with each of the three associated transition types: (1) AI of non-imaging data to AI of medical imaging data, (2) medical imaging clinician to AI of medical imaging, and (3) AI of medical imaging to AI of COVID-19 imaging. The lessons learned from these career transitions and the diffusion of knowledge among them could be accomplished more effectively by recognizing their associated intricacies. These lessons learned in the transitioning to AI in the medical imaging of COVID-19 can inform and enhance future AI applications, making the whole of the transitions more than the sum of each discipline, for confronting an emergency like the COVID-19 pandemic or solving emerging problems in biomedicine.
Collapse
Affiliation(s)
- Issam El Naqa
- Moffitt Cancer Center, Department of Machine Learning, Tampa, Florida, United States
- The University of Chicago, Medical Imaging Data and Resource Center, Chicago, Illinois, United States
| | - Hui Li
- The University of Chicago, Medical Imaging Data and Resource Center, Chicago, Illinois, United States
- The University of Chicago, Department of Radiology, Chicago, Illinois, United States
| | - Jordan Fuhrman
- The University of Chicago, Medical Imaging Data and Resource Center, Chicago, Illinois, United States
- The University of Chicago, Department of Radiology, Chicago, Illinois, United States
| | - Qiyuan Hu
- The University of Chicago, Medical Imaging Data and Resource Center, Chicago, Illinois, United States
- The University of Chicago, Department of Radiology, Chicago, Illinois, United States
| | - Naveena Gorre
- Moffitt Cancer Center, Department of Machine Learning, Tampa, Florida, United States
- The University of Chicago, Medical Imaging Data and Resource Center, Chicago, Illinois, United States
| | - Weijie Chen
- The University of Chicago, Medical Imaging Data and Resource Center, Chicago, Illinois, United States
- US FDA, CDRH, Office of Science and Engineering Laboratories, Division of Imaging, Diagnosis, and Software Reliability, Silver Spring, Maryland, United States
| | - Maryellen L. Giger
- The University of Chicago, Medical Imaging Data and Resource Center, Chicago, Illinois, United States
- The University of Chicago, Department of Radiology, Chicago, Illinois, United States
| |
Collapse
|
17
|
Bagher-Ebadian H, Chetty IJ. Technical Note: ROdiomiX: A validated software for radiomics analysis of medical images in radiation oncology. Med Phys 2020; 48:354-365. [PMID: 33169367 DOI: 10.1002/mp.14590] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 10/27/2020] [Accepted: 11/03/2020] [Indexed: 12/19/2022] Open
Abstract
PURPOSE This study introduces an in-house-designed software platform (ROdiomiX) for the radiomics analysis of medical images in radiation oncology. ROdiomiX is a MATLAB-based framework for the computation of radiomic features and feature aggregation techniques in compliance with the Image-Biomarker-Standardization-Initiative (IBSI) guidelines, which includes preprocessing protocols and quantitative benchmark results for analysis of computational phantom images. METHODS AND MATERIALS The ROdiomiX software system consists of a series of computation cores implemented on the basis of the guidelines proposed by the IBSI. It is capable of quantitative computation of the following 11 different feature categories: Local-Intensity, Intensity-Histogram, Intensity-Based-Statistical, Intensity-Volume-Histogram, Gray-Level-Co-occurrence, Gray-Level-Run-Length, Gray-Level-Size-Zone, Gray-Level-Distance-Zone, Neighborhood-Grey-Tone-Difference, Neighboring-Grey-Level-Dependence, and Morphological feature. ROdiomiX was validated against benchmark values for the IBSI 3D digital phantom, as well as one designed in-house (HFH). The intraclass correlation coefficient (ICC) for estimating the degree of absolute agreement between ROdiomiX computation and benchmark values for different features at the 95% confidence level (CL) was used for comparison. RESULTS Among the 11 feature categories with 149 total features including 10 different feature aggregation methods (following the IBSI guidelines), the percent difference between absolute feature values computed by the ROdiomiX software and benchmark values reported for IBSI and HFH digital phantoms were 0.14% + 0.43% and 0.11% + 0.27%, respectively. The ICC values were >0.997 for all ten feature categories for both the IBSI and HFH digital phantoms. CONCLUSION The authors successfully developed a platform for computation of quantitative radiomic features. The image preprocessing and computational software cores were designed following the procedures specified by the IBSI. Benchmarking testing was in excellent agreement against the IBSI- and HFH-designed computational phantoms.
Collapse
Affiliation(s)
- Hassan Bagher-Ebadian
- Department of Radiation Oncology, Henry Ford Health System, 2799 West Grand Blvd, Detroit, MI, 48202, USA
| | - Indrin J Chetty
- Department of Radiation Oncology, Henry Ford Health System, 2799 West Grand Blvd, Detroit, MI, 48202, USA
| |
Collapse
|
18
|
Grand challenges for medical physics in radiation oncology. Radiother Oncol 2020; 153:7-14. [DOI: 10.1016/j.radonc.2020.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/02/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022]
|
19
|
Desideri I, Loi M, Francolini G, Becherini C, Livi L, Bonomo P. Application of Radiomics for the Prediction of Radiation-Induced Toxicity in the IMRT Era: Current State-of-the-Art. Front Oncol 2020; 10:1708. [PMID: 33117669 PMCID: PMC7574641 DOI: 10.3389/fonc.2020.01708] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022] Open
Abstract
Normal tissue complication probability (NTCP) models that were formulated in the Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC) are one of the pillars in support of everyday’s clinical radiation oncology. Because of steady therapeutic refinements and the availability of cutting-edge technical solutions, the ceiling of organs-at-risk-sparing has been reached for photon-based intensity modulated radiotherapy (IMRT). The possibility to capture heterogeneity of patients and tissues in the prediction of toxicity is still an unmet need in modern radiation therapy. Potentially, a major step towards a wider therapeutic index could be obtained from refined assessment of radiation-induced morbidity at an individual level. The rising integration of quantitative imaging and machine learning applications into radiation oncology workflow offers an unprecedented opportunity to further explore the biologic interplay underlying the normal tissue response to radiation. Based on these premises, in this review we focused on the current-state-of-the-art on the use of radiomics for the prediction of toxicity in the field of head and neck, lung, breast and prostate radiotherapy.
Collapse
Affiliation(s)
- Isacco Desideri
- Radiation Oncology, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
| | - Mauro Loi
- Radiation Oncology, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
| | - Giulio Francolini
- Radiation Oncology, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
| | - Carlotta Becherini
- Radiation Oncology, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
| | - Lorenzo Livi
- Radiation Oncology, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
| | - Pierluigi Bonomo
- Radiation Oncology, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
| |
Collapse
|
20
|
Lee SH, Han P, Hales RK, Voong KR, Noro K, Sugiyama S, Haller JW, McNutt TR, Lee J. Multi-view radiomics and dosiomics analysis with machine learning for predicting acute-phase weight loss in lung cancer patients treated with radiotherapy. Phys Med Biol 2020; 65:195015. [PMID: 32235058 DOI: 10.1088/1361-6560/ab8531] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We propose a multi-view data analysis approach using radiomics and dosiomics (R&D) texture features for predicting acute-phase weight loss (WL) in lung cancer radiotherapy. Baseline weight of 388 patients who underwent intensity modulated radiation therapy (IMRT) was measured between one month prior to and one week after the start of IMRT. Weight change between one week and two months after the commencement of IMRT was analyzed, and dichotomized at 5% WL. Each patient had a planning CT and contours of gross tumor volume (GTV) and esophagus (ESO). A total of 355 features including clinical parameter (CP), GTV and ESO (GTV&ESO) dose-volume histogram (DVH), GTV radiomics, and GTV&ESO dosiomics features were extracted. R&D features were categorized as first- (L1), second- (L2), higher-order (L3) statistics, and three combined groups, L1 + L2, L2 + L3 and L1 + L2 + L3. Multi-view texture analysis was performed to identify optimal R&D input features. In the training set (194 earlier patients), feature selection was performed using Boruta algorithm followed by collinearity removal based on variance inflation factor. Machine-learning models were developed using Laplacian kernel support vector machine (lpSVM), deep neural network (DNN) and their averaged ensemble classifiers. Prediction performance was tested on an independent test set (194 more recent patients), and compared among seven different input conditions: CP-only, DVH-only, R&D-only, DVH + CP, R&D + CP, R&D + DVH and R&D + DVH + CP. Combined GTV L1 + L2 + L3 radiomics and GTV&ESO L3 dosiomics were identified as optimal input features, which achieved the best performance with an ensemble classifier (AUC = 0.710), having statistically significantly higher predictability compared with DVH and/or CP features (p < 0.05). When this performance was compared to that with full R&D-only features which reflect traditional single-view data, there was a statistically significant difference (p < 0.05). Using optimized multi-view R&D input features is beneficial for predicting early WL in lung cancer radiotherapy, leading to improved performance compared to using conventional DVH and/or CP features.
Collapse
Affiliation(s)
- Sang Ho Lee
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States of America
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Tseng CL, Stewart J, Whitfield G, Verhoeff JJC, Bovi J, Soliman H, Chung C, Myrehaug S, Campbell M, Atenafu EG, Heyn C, Das S, Perry J, Ruschin M, Sahgal A. Glioma consensus contouring recommendations from a MR-Linac International Consortium Research Group and evaluation of a CT-MRI and MRI-only workflow. J Neurooncol 2020; 149:305-314. [PMID: 32860571 PMCID: PMC7541359 DOI: 10.1007/s11060-020-03605-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 08/23/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION This study proposes contouring recommendations for radiation treatment planning target volumes and organs-at-risk (OARs) for both low grade and high grade gliomas. METHODS Ten cases consisting of 5 glioblastomas and 5 grade II or III gliomas, including their respective gross tumor volume (GTV), clinical target volume (CTV), and OARs were each contoured by 6 experienced neuro-radiation oncologists from 5 international institutions. Each case was first contoured using only MRI sequences (MRI-only), and then re-contoured with the addition of a fused planning CT (CT-MRI). The level of agreement among all contours was assessed using simultaneous truth and performance level estimation (STAPLE) with the kappa statistic and Dice similarity coefficient. RESULTS A high level of agreement was observed between the GTV and CTV contours in the MRI-only workflow with a mean kappa of 0.88 and 0.89, respectively, with no statistically significant differences compared to the CT-MRI workflow (p = 0.88 and p = 0.82 for GTV and CTV, respectively). Agreement in cochlea contours improved from a mean kappa of 0.39 to 0.41, to 0.69 to 0.71 with the addition of CT information (p < 0.0001 for both cochleae). Substantial to near perfect level of agreement was observed in all other contoured OARs with a mean kappa range of 0.60 to 0.90 in both MRI-only and CT-MRI workflows. CONCLUSIONS Consensus contouring recommendations for low grade and high grade gliomas were established using the results from the consensus STAPLE contours, which will serve as a basis for further study and clinical trials by the MR-Linac Consortium.
Collapse
Affiliation(s)
- Chia-Lin Tseng
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada.
| | - James Stewart
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| | - Gillian Whitfield
- Manchester Academic Health Science Centre, University of Manchester, The Christie NHS Foundation Trust, Manchester, UK
| | - Joost J C Verhoeff
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Joseph Bovi
- Department of Radiation Oncology, Froedtert Memorial Lutheran Hospital, Milwaukee, WI, USA
| | - Hany Soliman
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| | - Caroline Chung
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sten Myrehaug
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| | - Mikki Campbell
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| | - Eshetu G Atenafu
- Departments of Biostatistics, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Chinthaka Heyn
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Sunit Das
- Division of Neurosurgery, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - James Perry
- Department of Medicine, Division of Neurology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Mark Ruschin
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| |
Collapse
|
22
|
Kerns SL, Fachal L, Dorling L, Barnett GC, Baran A, Peterson DR, Hollenberg M, Hao K, Narzo AD, Ahsen ME, Pandey G, Bentzen SM, Janelsins M, Elliott RM, Pharoah PDP, Burnet NG, Dearnaley DP, Gulliford SL, Hall E, Sydes MR, Aguado-Barrera ME, Gómez-Caamaño A, Carballo AM, Peleteiro P, Lobato-Busto R, Stock R, Stone NN, Ostrer H, Usmani N, Singhal S, Tsuji H, Imai T, Saito S, Eeles R, DeRuyck K, Parliament M, Dunning AM, Vega A, Rosenstein BS, West CML. Radiogenomics Consortium Genome-Wide Association Study Meta-Analysis of Late Toxicity After Prostate Cancer Radiotherapy. J Natl Cancer Inst 2020; 112:179-190. [PMID: 31095341 PMCID: PMC7019089 DOI: 10.1093/jnci/djz075] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/20/2019] [Accepted: 04/29/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND A total of 10%-20% of patients develop long-term toxicity following radiotherapy for prostate cancer. Identification of common genetic variants associated with susceptibility to radiotoxicity might improve risk prediction and inform functional mechanistic studies. METHODS We conducted an individual patient data meta-analysis of six genome-wide association studies (n = 3871) in men of European ancestry who underwent radiotherapy for prostate cancer. Radiotoxicities (increased urinary frequency, decreased urinary stream, hematuria, rectal bleeding) were graded prospectively. We used grouped relative risk models to test associations with approximately 6 million genotyped or imputed variants (time to first grade 2 or higher toxicity event). Variants with two-sided Pmeta less than 5 × 10-8 were considered statistically significant. Bayesian false discovery probability provided an additional measure of confidence. Statistically significant variants were evaluated in three Japanese cohorts (n = 962). All statistical tests were two-sided. RESULTS Meta-analysis of the European ancestry cohorts identified three genomic signals: single nucleotide polymorphism rs17055178 with rectal bleeding (Pmeta = 6.2 × 10-10), rs10969913 with decreased urinary stream (Pmeta = 2.9 × 10-10), and rs11122573 with hematuria (Pmeta = 1.8 × 10-8). Fine-scale mapping of these three regions was used to identify another independent signal (rs147121532) associated with hematuria (Pconditional = 4.7 × 10-6). Credible causal variants at these four signals lie in gene-regulatory regions, some modulating expression of nearby genes. Previously identified variants showed consistent associations (rs17599026 with increased urinary frequency, rs7720298 with decreased urinary stream, rs1801516 with overall toxicity) in new cohorts. rs10969913 and rs17599026 had similar effects in the photon-treated Japanese cohorts. CONCLUSIONS This study increases the understanding of the architecture of common genetic variants affecting radiotoxicity, points to novel radio-pathogenic mechanisms, and develops risk models for testing in clinical studies. Further multinational radiogenomics studies in larger cohorts are worthwhile.
Collapse
Affiliation(s)
- Sarah L Kerns
- Departments of Radiation Oncology and Surgery, University of Rochester Medical Center, Rochester, NY
| | | | | | - Gillian C Barnett
- Department of Public Health and Primary Care
- Centre for Cancer Genetic Epidemiology, Strangeways Research Laboratory, University of Cambridge, Cambridge, UK; Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Andrea Baran
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY
| | - Derick R Peterson
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY
| | | | - Ke Hao
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Antonio Di Narzo
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Mehmet Eren Ahsen
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Gaurav Pandey
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Søren M Bentzen
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland Greenebaum Cancer Center, School of Medicine, University of Maryland, Baltimore
| | - Michelle Janelsins
- Departments of Radiation Oncology and Surgery, University of Rochester Medical Center, Rochester, NY
| | - Rebecca M Elliott
- Division of Cancer Sciences, the University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, UK
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Strangeways Research Laboratory, University of Cambridge, Cambridge, UK; Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Neil G Burnet
- Division of Cancer Sciences, the University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, UK
| | - David P Dearnaley
- Academic Urooncology Unit, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, UK
| | - Sarah L Gulliford
- Academic Urooncology Unit, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, UK
| | - Emma Hall
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, UK
| | - Matthew R Sydes
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology, University College London, London, UK
| | - Miguel E Aguado-Barrera
- Fundación Pública Galega de Medicina Xenómica-Servizo Galego de Saude (SERGAS & Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | | | | | | | | | - Richard Stock
- Complexo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain; Department of Radiation Oncology
| | | | - Harry Ostrer
- Icahn School of Medicine at Mount Sinai, New York, NY; Departments of Pathology and Genetics, Albert Einstein College of Medicine, Bronx, NY
| | - Nawaid Usmani
- Division of Radiation Oncology, Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Canada
| | - Sandeep Singhal
- Department of Pathology and Cell Biology, Columbia University, New York, NY
| | - Hiroshi Tsuji
- National Institute of Radiological Science, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Takashi Imai
- National Institute of Radiological Science, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Shiro Saito
- Department of Urology, National Tokyo Medical Center, Tokyo, Japan
| | - Rosalind Eeles
- Division of Genetics and Epidemiology, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, UK
| | - Kim DeRuyck
- Departments of Basic Medical Sciences and Radiotherapy, Ghent University Hospital, Ghent, Belgium
| | - Matthew Parliament
- Division of Radiation Oncology, Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Canada
| | | | - Ana Vega
- Fundación Pública Galega de Medicina Xenómica-Servizo Galego de Saude (SERGAS & Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Grupo de Medicina Xenómica, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Barry S Rosenstein
- Departments of Radiation Oncology & Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Catharine M L West
- Division of Cancer Sciences, the University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, UK
| |
Collapse
|
23
|
Bagher-Ebadian H, Lu M, Siddiqui F, Ghanem AI, Wen N, Wu Q, Liu C, Movsas B, Chetty IJ. Application of radiomics for the prediction of HPV status for patients with head and neck cancers. Med Phys 2020; 47:563-575. [PMID: 31853980 DOI: 10.1002/mp.13977] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 10/28/2019] [Accepted: 11/22/2019] [Indexed: 12/19/2022] Open
Abstract
PURPOSE To perform radiomic analysis of primary tumors extracted from pretreatment contrast-enhanced computed tomography (CE-CT) images for patients with oropharyngeal cancers to identify discriminant features and construct an optimal classifier for the characterization and prediction of human papilloma virus (HPV) status. MATERIALS AND METHODS One hundred and eighty seven patients with oropharyngeal cancers with known HPV status (confirmed by immunohistochemistry-p16 protein testing) were retrospectively studied as follows: Group A: 95 patients (19HPV- and 76HPV+) from the MICAII grand challenge. Group B: 92 patients (52HPV- and 40HPV+) from our institution. Radiomic features (172) were extracted from pretreatment diagnostic CE-CT images of the gross tumor volume (GTV). Levene and Kolmogorov-Smirnov's tests with absolute biserial correlation (>0.48) were used to identify the discriminant features between the HPV+ and HPV- groups. The discriminant features were used to train and test eight different classifiers. Area under receiver operating characteristic (AUC), positive predictive and negative predictive values (PPV and NPV, respectively) were used to evaluate the performance of the classifiers. Principal component analysis (PCA) was applied on the discriminant feature set and seven PCs were used to train and test a generalized linear model (GLM) classifier. RESULTS Among 172 radiomic features only 12 radiomic features (from 3 categories) were significantly different (P < 0.05, |BSC| > 0.48) between the HPV+ and HPV- groups. Among the eight classifiers trained and applied for prediction of HPV status, the GLM showed the highest performance for each discriminant feature and the combined 12 features: AUC/PPV/NPV = 0.878/0.834/0.811. The GLM high prediction power was AUC/PPV/NPV = 0.849/0.731/0.788 and AUC/PPV/NPV = 0.869/0.807/0.870 for unseen test datasets for groups A and B, respectively. After eliminating the correlation among discriminant features by applying PCA analysis, the performance of the GLM was improved by 3.3%, 2.2%, and 1.8% for AUC, PPV, and NPV, respectively. CONCLUSIONS Results imply that GTV's for HPV+ patients exhibit higher intensities, smaller lesion size, greater sphericity/roundness, and higher spatial intensity-variation/heterogeneity. Results are suggestive that radiomic features primarily associated with the spatial arrangement and morphological appearance of the tumor on contrast-enhanced diagnostic CT datasets may be potentially used for classification of HPV status.
Collapse
Affiliation(s)
| | - Mei Lu
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, USA
| | - Farzan Siddiqui
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, USA
| | - Ahmed I Ghanem
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, USA.,Department of Clinical Oncology, Alexandria University, Alexandria, Egypt
| | - Ning Wen
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, USA
| | - Qixue Wu
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, USA
| | - Chang Liu
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, USA
| | - Benjamin Movsas
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, USA
| | - Indrin J Chetty
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, USA
| |
Collapse
|
24
|
Grassberger C, Huber K, Jacob NK, Green MD, Mahler P, Prisciandaro J, Dominello M, Joiner MC, Burmeister J. Three discipline collaborative radiation therapy (3DCRT) special debate: The single most important factor in determining the future of SBRT is immune response. J Appl Clin Med Phys 2019; 20:6-12. [PMID: 31573143 PMCID: PMC6807212 DOI: 10.1002/acm2.12728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 08/29/2019] [Accepted: 09/04/2019] [Indexed: 12/26/2022] Open
Affiliation(s)
| | - Kathryn Huber
- Department of Radiation OncologyTufts Medical CenterBostonMAUSA
| | | | - Michael D. Green
- Department of Radiation OncologyUniversity of MichiganAnn ArborMIUSA
| | - Peter Mahler
- Department of Human OncologyUniversity of WisconsinMadisonWIUSA
| | | | - Michael Dominello
- Department of OncologyWayne State University School of MedicineDetroitMIUSA
| | - Michael C. Joiner
- Department of OncologyWayne State University School of MedicineDetroitMIUSA
| | - Jay Burmeister
- Department of OncologyWayne State University School of MedicineDetroitMIUSA
- Gershenson Radiation Oncology CenterBarbara Ann Karmanos Cancer InstituteDetroitMIUSA
| |
Collapse
|
25
|
Palma G, Monti S, Conson M, Pacelli R, Cella L. Normal tissue complication probability (NTCP) models for modern radiation therapy. Semin Oncol 2019; 46:210-218. [PMID: 31506196 DOI: 10.1053/j.seminoncol.2019.07.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023]
Abstract
Mathematical models of normal tissue complication probability (NTCP) able to robustly predict radiation-induced morbidities (RIM) play an essential role in the identification of a personalized optimal plan, and represent the key to maximizing the benefits of technological advances in radiation therapy (RT). Most modern RT techniques pose, however, new challenges in estimating the risk of RIM. The aim of this report is to schematically review NTCP models in the framework of advanced radiation therapy techniques. Issues relevant to hypofractionated stereotactic body RT and ion beam therapy are critically reviewed. Reirradiation scenarios for new or recurrent malignances and NTCP are also illustrated. A new phenomenological approach to predict RIM is suggested.
Collapse
Affiliation(s)
- Giuseppe Palma
- National Research Council, Institute of Biostructures and Bioimaging, Napoli, Italy
| | - Serena Monti
- National Research Council, Institute of Biostructures and Bioimaging, Napoli, Italy
| | - Manuel Conson
- Department of Advanced Biomedical Sciences, Federico II University School of Medicine, Naples, Italy
| | - Roberto Pacelli
- Department of Advanced Biomedical Sciences, Federico II University School of Medicine, Naples, Italy
| | - Laura Cella
- National Research Council, Institute of Biostructures and Bioimaging, Napoli, Italy.
| |
Collapse
|
26
|
Luo Y, Tseng HH, Cui S, Wei L, Ten Haken RK, El Naqa I. Balancing accuracy and interpretability of machine learning approaches for radiation treatment outcomes modeling. BJR Open 2019; 1:20190021. [PMID: 33178948 PMCID: PMC7592485 DOI: 10.1259/bjro.20190021] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/18/2019] [Accepted: 06/25/2019] [Indexed: 12/17/2022] Open
Abstract
Radiation outcomes prediction (ROP) plays an important role in personalized prescription and adaptive radiotherapy. A clinical decision may not only depend on an accurate radiation outcomes’ prediction, but also needs to be made based on an informed understanding of the relationship among patients’ characteristics, radiation response and treatment plans. As more patients’ biophysical information become available, machine learning (ML) techniques will have a great potential for improving ROP. Creating explainable ML methods is an ultimate task for clinical practice but remains a challenging one. Towards complete explainability, the interpretability of ML approaches needs to be first explored. Hence, this review focuses on the application of ML techniques for clinical adoption in radiation oncology by balancing accuracy with interpretability of the predictive model of interest. An ML algorithm can be generally classified into an interpretable (IP) or non-interpretable (NIP) (“black box”) technique. While the former may provide a clearer explanation to aid clinical decision-making, its prediction performance is generally outperformed by the latter. Therefore, great efforts and resources have been dedicated towards balancing the accuracy and the interpretability of ML approaches in ROP, but more still needs to be done. In this review, current progress to increase the accuracy for IP ML approaches is introduced, and major trends to improve the interpretability and alleviate the “black box” stigma of ML in radiation outcomes modeling are summarized. Efforts to integrate IP and NIP ML approaches to produce predictive models with higher accuracy and interpretability for ROP are also discussed.
Collapse
Affiliation(s)
- Yi Luo
- Department of Radiation Oncology, University of Michigan, 519 W William Street, Ann Arbor, MI, USA
| | - Huan-Hsin Tseng
- Department of Radiation Oncology, University of Michigan, 519 W William Street, Ann Arbor, MI, USA
| | - Sunan Cui
- Department of Radiation Oncology, University of Michigan, 519 W William Street, Ann Arbor, MI, USA
| | - Lise Wei
- Department of Radiation Oncology, University of Michigan, 519 W William Street, Ann Arbor, MI, USA
| | - Randall K Ten Haken
- Department of Radiation Oncology, University of Michigan, 519 W William Street, Ann Arbor, MI, USA
| | - Issam El Naqa
- Department of Radiation Oncology, University of Michigan, 519 W William Street, Ann Arbor, MI, USA
| |
Collapse
|
27
|
Objective risk stratification of prostate cancer using machine learning and radiomics applied to multiparametric magnetic resonance images. Sci Rep 2019; 9:1570. [PMID: 30733585 PMCID: PMC6367324 DOI: 10.1038/s41598-018-38381-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/27/2018] [Indexed: 12/24/2022] Open
Abstract
Multiparametric magnetic resonance imaging (mpMRI) has become increasingly important for the clinical assessment of prostate cancer (PCa), but its interpretation is generally variable due to its relatively subjective nature. Radiomics and classification methods have shown potential for improving the accuracy and objectivity of mpMRI-based PCa assessment. However, these studies are limited to a small number of classification methods, evaluation using the AUC score only, and a non-rigorous assessment of all possible combinations of radiomics and classification methods. This paper presents a systematic and rigorous framework comprised of classification, cross-validation and statistical analyses that was developed to identify the best performing classifier for PCa risk stratification based on mpMRI-derived radiomic features derived from a sizeable cohort. This classifier performed well in an independent validation set, including performing better than PI-RADS v2 in some aspects, indicating the value of objectively interpreting mpMRI images using radiomics and classification methods for PCa risk assessment.
Collapse
|
28
|
Sun ZQ, Hu SD, Li J, Wang T, Duan SF, Wang J. Radiomics study for differentiating gastric cancer from gastric stromal tumor based on contrast-enhanced CT images. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2019; 27:1021-1031. [PMID: 31640109 DOI: 10.3233/xst-190574] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
PURPOSE To test the feasibility of differentiate gastric cancer from gastric stromal tumor using a radiomics study based on contrast-enhanced CT images. MATERIALS AND METHODS The contrast-enhanced CT image data of 60 patients with gastric cancer and 40 patients with gastric stromal tumor confirmed by postoperative pathology were retrospectively analyzed. First, CT images were read by two senior radiologists to acquire subjective CT signs model, including perigastric fatty infiltration, perigastric enlarged lymph nodes, the enhancement and growth modes of gastric tumors. Second, the manual segmentation of gastric tumors from the CT images was performed by the two radiologists to extract radiomics features via ITK-SNAP software, and to construct radiomics signature model. Finally, a diagnostic model integrated with subjective CT signs and radiomics signatures was constructed. The diagnostic efficacy of three models in differentiating gastric cancer from gastric stromal tumor was compared by using receiver operating characteristic curves (ROC). RESULTS There are statistically significant differences between the gastric cancer and gastric stromal tumor in the perigastric enlarged lymph nodes, growth mode and radiomics signature (p < 0.05). The area under ROC curve (AUC), sensitivity and accuracy of subjective CT signs model were the lowest among the three models. While the combined model yields the highest AUC value (0.903), specificity (93.33%) and accuracy (86.00%) among the three models (p = 0.03). CONCLUSION The diagnostic model integrating subjective CT signs and radiomics signature can improve the diagnostic accuracy of gastric tumors.
Collapse
Affiliation(s)
- Zong-Qiong Sun
- Department of Radiology, Affiliated Hospital of Jiangnan University, The Fourth People's Hospital of Wuxi City, Jiangsu Province, China
| | - Shu-Dong Hu
- Department of Radiology, Affiliated Hospital of Jiangnan University, The Fourth People's Hospital of Wuxi City, Jiangsu Province, China
| | - Jie Li
- Department of Intervention Affiliated Hospital of Jiangnan University, The Fourth People's Hospital of Wuxi City, Jiangsu Province, China
| | - Teng Wang
- Department of Oncology, Affiliated Hospital of Jiangnan University, The Fourth People's Hospital of Wuxi City, Jiangsu Province, China
| | - Shao-Feng Duan
- General Electric Company (GE) Healthcare China, Pudong New Town, Shanghai, China
| | - Jun Wang
- Shanghai Institute for Advanced Communication and Data Science, School of Communication and Information Engineering, Shanghai University, Shanghai, China
| |
Collapse
|