1
|
Setianegara J, Wang A, Gerard N, Nys J, Harold Li H, Chen RC, Gao H, Lin Y. Characterization of commercial detectors for absolute proton UHDR dosimetry on a compact clinical proton synchrocyclotron. Med Phys 2025. [PMID: 40268691 DOI: 10.1002/mp.17847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 04/04/2025] [Accepted: 04/05/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Modern compact proton synchrocyclotrons can achieve ultra-high dose rates ( ≥ $ \ge $ 40 Gy/s) to support ultra-high-dose-rate (UHDR) preclinical experiments utilizing pencil beam scanning (PBS) protons. Unique to synchrocyclotrons is a pulsed proton time structure as compared to the quasi-continuous nature of other proton accelerators like isochronous cyclotrons. Thus, high instantaneous proton currents in the order of several µA must be generated to achieve UHDRs. This will lead to high doses-per-pulse (DPP), which may cause significant charge recombination for ionization chambers, which must be characterized for accurate UHDR dosimetry programs. PURPOSE In this work, we investigate the suitability of various commercial radiation detectors for accurate proton UHDR dosimetry using PBS proton beams from a compact proton synchrocyclotron (IBA ProteusONE). This is achieved by cross-calibrating them with conventional dose rates, measuring UHDR recombination (Pion) and polarity correction factors (Ppol) for ionization chambers, and determining the absorbed proton UHDR dose delivered for all detectors. METHODS An IBA ProteusONE synchrocyclotron was initially tuned to achieve UHDRs with 228 MeV protons at 0° gantry angle. Various detectors, including Razor Chamber, Razor Nano Chamber, Razor Diode, and microDiamond, were cross-calibrated against a PPC05 plane-parallel ionization chamber (PPIC) that had an ADCL calibration coefficient of 59.23 cGy/nC. Then, all ionization chambers were exposed to UHDR protons with the Ppol and Pion subsequently calculated. Pion was calculated using two methods: TRS-398 methods and Niatel's model. Finally, the absolute UHDR proton doses delivered were determined for all detectors and cross-compared. RESULTS Faraday cup measurements were performed for a single spot proton UHDR beam, and the nozzle current at the isocenter was determined to be 129.5 nA during UHDR irradiations at 98.61% of the maximum theoretical dose rate. Repeated Faraday cup measurements of the UHDR beam yielded a percentage standard deviation of 0.8%, which was higher than 0.120% when similar repeated measurements were performed with conventional proton beams. Ppol was found to be relatively dose-rate independent for all ionization chambers investigated. Pion was found to be the lowest for the PPC05 ionization chamber (1.0097) compared to corresponding values of 1.0214 and 1.0294 for the Razor and Razor Nano detectors, respectively, for UHDRs. Pion values calculated using Niatel's model closely matched values from TRS-398 if the VH/VL ratio were kept at 2.5 for the PPC05 and Razor detectors and 2.0 for the Razor Nano detector. Absolute proton UHDR doses determined using cross-calibration factors were generally within ± 1% of PPC05 measurements. However, Razor Diode was found to over-respond by up to 3.79% within UHDR proton beams, rendering them unsuitable for proton UHDR dosimetry. CONCLUSION In this work, we comprehensively evaluated the suitability of various commercial detectors for absolute dosimetry with a pulsed UHDR beam structure from a proton synchrocyclotron. PPC05 had the lowest ionic recombination correction compared to Razor and Razor Nano ion chambers. Other than the diode detector, all other investigated detectors (PPC05, Razor, Razor Nano, microDiamond) were within ± 1% of one another and can be used for accurate absolute proton UHDR dosimetry.
Collapse
Affiliation(s)
- Jufri Setianegara
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Aoxiang Wang
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | | | - Jarrick Nys
- Ion Beam Applications (IBA), Louvain-la-Neuve, Belgium
| | - H Harold Li
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Ronald C Chen
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Hao Gao
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Yuting Lin
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
2
|
Klesse M, Schanz O, Heine A. Establishing a low-dose x-ray irradiation protocol for experimental acute graft-versus-host disease. Exp Hematol 2025; 146:104765. [PMID: 40164325 DOI: 10.1016/j.exphem.2025.104765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/27/2025] [Accepted: 03/13/2025] [Indexed: 04/02/2025]
Abstract
The investigation of graft-versus-host disease (GvHD) after allogeneic stem cell transplantation heavily relies on the use of experimental animal models and total body irradiation (TBI) as a conditioning regimen. However, 137Cs is gradually being replaced as the main source of radiation due to safety concerns, and the transfer of established irradiation protocols to x-ray irradiators has proven difficult. Here, we describe the establishment of an x-ray-based irradiation protocol in an experimental mouse model for acute GvHD (C57BL6 → BALB/c). Our data show that commonly reported dosages of 6-9 Gy did not result in a viable model. Instead, irradiation with 5 Gy led to the development of clinical symptoms of GvHD in mice after transplantation with allogeneic bone marrow and T cells. Mice with GvHD displayed altered hemograms and increased serum levels of proinflammatory cytokines compared with mice without GvHD, which was accompanied by sequestration of donor lymphocytes within organs. Donor chimerism and hemogram analyses also indicated sufficient myeloablation and hematopoietic reconstitution. Overall, we show that low-dose x-ray TBI effectively promotes acute GvHD in a mismatched mouse model. We also propose that the transfer of previously established gamma-ray TBI protocols should be carefully evaluated according to individual circumstances.
Collapse
Affiliation(s)
- Michelle Klesse
- Medical Clinic III for Oncology, Hematology, Rheumatology and Stem Cell Transplantation, University Hospital Bonn, Bonn, Germany
| | - Oliver Schanz
- Medical Clinic III for Oncology, Hematology, Rheumatology and Stem Cell Transplantation, University Hospital Bonn, Bonn, Germany
| | - Annkristin Heine
- Medical Clinic III for Oncology, Hematology, Rheumatology and Stem Cell Transplantation, University Hospital Bonn, Bonn, Germany; Clinical Division of Hematology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria.
| |
Collapse
|
3
|
Liu K, Waldrop T, Aguilar E, Mims N, Neill D, Delahoussaye A, Li Z, Swanson D, Lin SH, Koong AC, Taniguchi CM, Loo BW, Mitra D, Schüler E. Redefining FLASH Radiation Therapy: The Impact of Mean Dose Rate and Dose Per Pulse in the Gastrointestinal Tract. Int J Radiat Oncol Biol Phys 2025; 121:1063-1076. [PMID: 39424078 DOI: 10.1016/j.ijrobp.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/07/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
PURPOSE The understanding of how varying radiation beam parameter settings affect the induction and magnitude of the FLASH effect remains limited. We sought to systematically evaluate how the magnitude of radiation-induced gastrointestinal toxicity depends on the interplay between mean dose rate (MDR) and dose per pulse (DPP). METHODS AND MATERIALS C57BL/6J mice received total abdominal irradiation (TAI, 11-14 Gy single fraction) through either conventional (CONV) irradiation (low-DPP and low MDR, CONV) or through various combinations of DPP and MDR up to ultra-high-dose-rate beam conditions. DPPs ranging from 1 to 6 Gy were evaluated, while the total dose and MDR (>100 Gy/s) were kept constant; the effects of MDR were evaluated for the range of 0.3 to 1440 Gy/s, while the total dose and DPP were kept constant. Radiation-induced gastrointestinal toxicity was quantified in nontumor-bearing mice through the regenerating crypt assay and survival assessment. Tumor response was evaluated through tumor growth delay. RESULTS Within each tested total dose using a constant MDR (>100 Gy/s), increasing DPP led to an increase in sparing (an increase in the number of regenerating crypts), with a more prominent effect seen at 12- and 14-Gy TAI. Interestingly, at DPPs of >4 Gy, a similar level of crypt sparing was demonstrated irrespective of the MDR used (from 0.3 to 1440 Gy/s). At a fixed high-DPP of 4.7 Gy, survival was equivalently improved relative to CONV irrespective of MDR. However, at a lower DPP of 0.93 Gy, an MDR of 104 Gy/s produced a greater survival effect compared with 0.3 Gy/s. We also confirmed that high-DPP, regardless of MDR, produced the same magnitude of tumor growth delay relative to CONV using a clinically relevant melanoma mouse model. CONCLUSIONS This study demonstrates the strong influence that the beam parameter settings have on the magnitude of the FLASH effect. Both high-DPP and ultra-high-dose-rate appeared independently sufficient to produce FLASH sparing of gastrointestinal toxicity while isoeffective tumor response was maintained across all conditions.
Collapse
Affiliation(s)
- Kevin Liu
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas; The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Trey Waldrop
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas; The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Edgardo Aguilar
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nefetiti Mims
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Denae Neill
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Abagail Delahoussaye
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ziyi Li
- Division of Basic Sciences, Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David Swanson
- Division of Basic Sciences, Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Steven H Lin
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Albert C Koong
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cullen M Taniguchi
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Billy W Loo
- Department of Radiation Oncology & Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Devarati Mitra
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Emil Schüler
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas; The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas.
| |
Collapse
|
4
|
de Leeuw ALMP, Giralt J, Tao Y, Benavente S, Nguyen TVF, Hoebers FJP, Hoeben A, Terhaard CHJ, Lee LW, Friesland S, Steenbakkers RJHM, Tans L, van Kranen SR, van de Kamer JB, Bartelink H, Rasch CRN, Sonke JJ, Hamming-Vrieze O. Protocol compliance in a multicentric phase III trial investigating scheduled adaptive radiotherapy and dose painting in head and neck cancer. Radiother Oncol 2025; 202:110612. [PMID: 39522824 DOI: 10.1016/j.radonc.2024.110612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/17/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE To report on quality assurance (QA) and protocol adherence (PA) in a multicentre phase III trial for head and neck cancer, evaluate patterns of protocol deviations and investigate the effect of PA on study outcomes. METHODS All 221 patients from the ARTFORCE trial (NCT01504815) were included in this study. Pre- and per-treatment QA measures included protocol guidelines, a dummy run, early case reviews and trial meetings. FDG-PET-guided dose painting and scheduled adaptive radiotherapy were reviewed in patients in the experimental arm (eRT). Patient and disease characteristics, as well as institutes' accrual rate and timing were examined for correlation with PA. Cox regression was used to determine the impact of PA on outcome. RESULTS The dummy run was completed in all nine institutes and early case reviews were completed in five out of nine institutes that contributed 190 out of 221 patients. Among all patients randomized to eRT, 64 % had at least one deviation of the experimental trial components. Protocol deviations were significantly correlated with the institute patients were treated at (Cramer'sV 0.34-0.48). Despite early identification of institute-specific deviations in QA, these continued during the trial. No significant associations were seen between deviations and accrual timing or rate (P ≥ 0.26). Within eRT, no significant relation was observed between experimental PA and locoregional control (LRC), the primary endpoint of the trial (P≥.15). CONCLUSIONS Despite QA, protocol deviations persisted during the trial, which were mostly institute-specific. However, deviations of the experimental treatment strategy did not significantly impact LRC and therefore the trial conclusion.
Collapse
Affiliation(s)
- Anna Liza M P de Leeuw
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jordi Giralt
- Department of Radiation Oncology, Hospital General Vall d'Hebron, Barcelona, Spain; Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Yungan Tao
- Department of Radiation Oncology, Institut Gustave Roussy, Villejuif, France
| | - Sergi Benavente
- Department of Radiation Oncology, Hospital General Vall d'Hebron, Barcelona, Spain; Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Thanh-Vân F Nguyen
- Department of Radiation Oncology, Institut Gustave Roussy, Villejuif, France
| | - Frank J P Hoebers
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Ann Hoeben
- Division of Medical Oncology, Department of Internal Medicine, GROW-School of Oncology and Developmental Biology Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Chris H J Terhaard
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Lip Wai Lee
- Department of Radiation Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Signe Friesland
- Department of Radiation Oncology, Karolinska Institute, Stockholm, Sweden
| | - Roel J H M Steenbakkers
- Department of Radiation Oncology, University Medical Center Groningen, Groningen, the Netherlands
| | - Lisa Tans
- Department of Radiation Oncology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Simon R van Kranen
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jeroen B van de Kamer
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Harry Bartelink
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Coen R N Rasch
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jan-Jakob Sonke
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Olga Hamming-Vrieze
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
5
|
West N, Covington E, Vasquez Osorio E, Stroom J, Duchateau M, Day M, Hardcastle N, Ayadi M, Jackson A, Rønde HS, Mayo C, Appelt A. Consistency in reirradiation scenarios: Terminology, tissue recovery in calculations, units and reporting. Radiother Oncol 2025; 202:110587. [PMID: 39423959 DOI: 10.1016/j.radonc.2024.110587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/21/2024]
Affiliation(s)
- Nick West
- Northern Centre for Cancer Care, Newcastle upon Tyne, United Kingdom.
| | | | | | - Joep Stroom
- Radiation Oncology Department, Champalimaud Clinical Centre, Lisbon, Portugal
| | | | - Madalyne Day
- Department of Radiation Oncology, University Hospital Zürich, Zürich, Switzerland
| | - Nick Hardcastle
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Myriam Ayadi
- Radiotherapy Oncology Department, Centre Léon Bérard, Lyon, France
| | | | - Heidi S Rønde
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | | | - Ane Appelt
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
6
|
Jiang L, Xu D, Xu Q, Chatziioannou A, Iwamoto KS, Hui S, Sheng K. Robust Automated Mouse Micro-CT Segmentation Using Swin UNEt TRansformers. Bioengineering (Basel) 2024; 11:1255. [PMID: 39768073 PMCID: PMC11673508 DOI: 10.3390/bioengineering11121255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/07/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Image-guided mouse irradiation is essential to understand interventions involving radiation prior to human studies. Our objective is to employ Swin UNEt TRansformers (Swin UNETR) to segment native micro-CT and contrast-enhanced micro-CT scans and benchmark the results against 3D no-new-Net (nnU-Net). Swin UNETR reformulates mouse organ segmentation as a sequence-to-sequence prediction task using a hierarchical Swin Transformer encoder to extract features at five resolution levels, and it connects to a Fully Convolutional Neural Network (FCNN)-based decoder via skip connections. The models were trained and evaluated on open datasets, with data separation based on individual mice. Further evaluation on an external mouse dataset acquired on a different micro-CT with lower kVp and higher imaging noise was also employed to assess model robustness and generalizability. The results indicate that Swin UNETR consistently outperforms nnU-Net and AIMOS in terms of the average dice similarity coefficient (DSC) and the Hausdorff distance (HD95p), except in two mice for intestine contouring. This superior performance is especially evident in the external dataset, confirming the model's robustness to variations in imaging conditions, including noise and quality, and thereby positioning Swin UNETR as a highly generalizable and efficient tool for automated contouring in pre-clinical workflows.
Collapse
Affiliation(s)
- Lu Jiang
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94115, USA; (L.J.)
| | - Di Xu
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94115, USA; (L.J.)
| | - Qifan Xu
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94115, USA; (L.J.)
| | - Arion Chatziioannou
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Keisuke S. Iwamoto
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Susanta Hui
- Department of Radiation Oncology, City of Hope, Duarte, CA 91010, USA
| | - Ke Sheng
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94115, USA; (L.J.)
| |
Collapse
|
7
|
Drayson OGG, Melemenidis S, Katila N, Viswanathan V, Kramár EA, Zhang R, Kim R, Ru N, Petit B, Dutt S, Manjappa R, Ramish Ashraf M, Lau B, Soto L, Skinner L, Yu AS, Surucu M, Maxim PG, Zebadua-Ballasteros P, Wood MA, Montay-Gruel P, Baulch JE, Vozenin MC, Loo BW, Limoli CL. A multi-institutional study to investigate the sparing effect after whole brain electron FLASH in mice: Reproducibility and temporal evolution of functional, electrophysiological, and neurogenic endpoints. Radiother Oncol 2024; 201:110534. [PMID: 39293721 PMCID: PMC11588524 DOI: 10.1016/j.radonc.2024.110534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/13/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Abstract
BACKGROUND AND PURPOSE Ultra-high dose-rate radiotherapy (FLASH) has been shown to mitigate normal tissue toxicities associated with conventional dose rate radiotherapy (CONV) without compromising tumor killing in preclinical models. A prominent challenge in preclinical radiation research, including FLASH, is validating both the physical dosimetry and the biological effects across multiple institutions. MATERIALS AND METHODS We previously demonstrated dosimetric reproducibility of two different electron FLASH devices at separate institutions using standardized phantoms and dosimeters. In this study, tumor-free adult female mice were given 10 Gy whole brain FLASH and CONV irradiation at both institutions and evaluated for the reproducibility and temporal evolution of multiple neurobiological endpoints. RESULTS FLASH sparing of behavioral performance on novel object recognition (4 months post-irradiation) and of electrophysiologic long-term potentiation (LTP, 5 months post-irradiation) was reproduced between institutions. Differences between FLASH and CONV on the endpoints of hippocampal neurogenesis (Sox2, doublecortin), neuroinflammation (microglial activation), and electrophysiology (LTP) were not observed at early times (48 h to 2 weeks), but recovery of immature neurons by 3 weeks was greater with FLASH. CONCLUSION In summary, we demonstrated reproducible FLASH sparing effects on the brain between two different beams at two different institutions with validated dosimetry. FLASH sparing effects on the endpoints evaluated manifested at later but not the earliest time points.
Collapse
Affiliation(s)
- Olivia G G Drayson
- Department of Radiation Oncology, University of California, Irvine, CA 92697, USA
| | - Stavros Melemenidis
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nikita Katila
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vignesh Viswanathan
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Enikö A Kramár
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Richard Zhang
- Department of Radiation Oncology, University of California, Irvine, CA 92697, USA
| | - Rachel Kim
- Department of Radiation Oncology, University of California, Irvine, CA 92697, USA
| | - Ning Ru
- Department of Radiation Oncology, University of California, Irvine, CA 92697, USA
| | - Benoit Petit
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Suparna Dutt
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rakesh Manjappa
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - M Ramish Ashraf
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Brianna Lau
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Luis Soto
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lawrie Skinner
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amu S Yu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Murat Surucu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peter G Maxim
- Department of Radiation Oncology, University of California, Irvine, CA 92697, USA
| | - Paola Zebadua-Ballasteros
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Switzerland; Laboratorio de Fisica Medica, Instituto Nacional de Neurología y Neurocirugía MVS, México City 14269, Mexico
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Pierre Montay-Gruel
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Switzerland; Radiation Oncology Department, Iridium Netwerk, Wilrijk, Antwerp, Belgium; Antwerp Research in Radiation Oncology (AReRO), Centre for Oncological Research (CORE), University of Antwerp, Antwerp, Belgium
| | - Janet E Baulch
- Department of Radiation Oncology, University of California, Irvine, CA 92697, USA
| | - Marie-Catherine Vozenin
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Switzerland.
| | - Billy W Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
8
|
Teixeira da Silva JA, Daly T, Türp JC, Sabel BA, Kendall G. The undeclared use of third-party service providers in academic publishing is unethical: an epistemic reflection and scoping review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9435-9447. [PMID: 38990307 PMCID: PMC11582143 DOI: 10.1007/s00210-024-03177-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 05/21/2024] [Indexed: 07/12/2024]
Abstract
There is a substantial body of scientific literature on the use of third-party services (TPS) by academics to assist as "publication consultants" in scholarly publishing. TPS provide a wide range of scholarly services to research teams that lack the equipment, skills, motivation, or time to produce a paper without external assistance. While services such as language editing, statistical support, or graphic design are common and often legitimate, some TPS also provide illegitimate services and send unsolicited e-mails (spam) to academics offering these services. Such illegitimate types of TPS have the potential to threaten the integrity of the peer-reviewed scientific literature. In extreme cases, for-profit agencies known as "paper mills" even offer fake scientific publications or authorship slots for sale. The use of such illegitimate services as well as the failure to acknowledge their use is an ethical violation in academic publishing, while the failure to declare support for a TPS can be considered a form of contract fraud. We discuss some literature on TPS, highlight services currently offered by ten of the largest commercial publishers and expect authors to be transparent about the use of these services in their publications. From an ethical/moral (i.e., non-commercial) point of view, it is the responsibility of editors, journals, and publishers, and it should be in their best interest to ensure that illegitimate TPS are identified and prohibited, while publisher-employed TPS should be properly disclosed in their publications.
Collapse
Affiliation(s)
| | - Timothy Daly
- Bioethics Program, FLACSO Argentina, Buenos Aires, Argentina.
- Science Norms Democracy, UMR 8011, Sorbonne Université, Paris, France.
| | - Jens C Türp
- Department of Oral Health & Medicine, University Center for Dental Medicine UZB, University of Basel, Basel, Switzerland.
| | - Bernhard A Sabel
- Institute of Medical Psychology, Medical Faculty, Otto-von-Guericke University of Magdeburg, Leipziger Straße 44, Magdeburg, 39120, Germany.
| | - Graham Kendall
- School of Engineering and Computing, MILA University, No. 1, Persiaran MIU, 71800 Putra Nilai, Negeri Sembilan Darul Khusus, Malaysia.
- School of Computer Science, The University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom.
| |
Collapse
|
9
|
Hueso-González F, Berthold J, Wohlfahrt P, Bortfeld T, Khamfongkhruea C, Tattenberg S, Zarifi M, Verburg J, Richter C. Inter-center comparison of proton range verification prototypes with an anthropomorphic head phantom . Phys Med Biol 2024; 69:225010. [PMID: 39526382 DOI: 10.1088/1361-6560/ad8856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Objective. To compare in reproducible and equalized conditions the performance of two independent proton range verification systems based on prompt gamma-ray detectors from two different proton therapy centers.Approach. An anthropomorphic head phantom with calibrated stopping power, serving as ground truth, was irradiated with comparable treatment plans, spot positions and energies in both facilities. Clinical beam current, tumor contour and dose were used. The absolute range measurement was compared to the expected value according to the ground truth. The statistical precision was assessed by repeating each measurement ten times. Sensitivity to relative range shifts was evaluated by introducing 2 mm and 5 mm plastic slabs on half of the field.Main results. The resulting absolute range accuracy was within 2.4 mm in all cases. Relative range shifts were detected with deviations lower than 14%.Significance. The performance of both systems was deemed worthy of clinical application for the detection of range deviations. This study represents the first comparison of independent prompt gamma-ray-based proton range verification systems under equalized conditions with realistic treatment fields and beam currents.
Collapse
Affiliation(s)
- Fernando Hueso-González
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Jonathan Berthold
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Patrick Wohlfahrt
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Thomas Bortfeld
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Chirasak Khamfongkhruea
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Medical Physics Program, Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Sebastian Tattenberg
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Melek Zarifi
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Joost Verburg
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Christian Richter
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
10
|
Tobias Böhlen T, Psoroulas S, Aylward JD, Beddar S, Douralis A, Delpon G, Garibaldi C, Gasparini A, Schüler E, Stephan F, Moeckli R, Subiel A. Recording and reporting of ultra-high dose rate "FLASH" delivery for preclinical and clinical settings. Radiother Oncol 2024; 200:110507. [PMID: 39245070 DOI: 10.1016/j.radonc.2024.110507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024]
Abstract
Treatments at ultra-high dose rate (UHDR) have the potential to improve the therapeutic index of radiation therapy (RT) by sparing normal tissues compared to conventional dose rate irradiations. Insufficient and inconsistent reporting in physics and dosimetry of preclinical and translational studies may have contributed to a reproducibility crisis of radiobiological data in the field. Consequently, the development of a common terminology, as well as common recording, reporting, dosimetry, and metrology standards is required. In the context of UHDR irradiations, the temporal dose delivery parameters are of importance, and under-reporting of these parameters is also a concern.This work proposes a standardization of terminology, recording, and reporting to enhance comparability of both preclinical and clinical UHDR studies and and to allow retrospective analyses to aid the understanding of the conditions which give rise to the FLASH effect.
Collapse
Affiliation(s)
- Till Tobias Böhlen
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Serena Psoroulas
- Center for Proton Therapy, Paul Scherrer Institute, Villigen PSI, Switzerland; Klinik für Radio-Onkologie, UniversitätsSpital Zürich, Switzerland
| | - Jack D Aylward
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK; Medical Physics, School of Applied Sciences, University of the West of England, Bristol, UK
| | - Sam Beddar
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Grégory Delpon
- Institut de Cancérologie de l'Ouest, Medical Physics Department, Saint-Herblain, France; Nantes Université, IMT Atlantique, CNRS/IN2P3, SUBATECH, Nantes, France
| | - Cristina Garibaldi
- IEO, Unit of Radiation Research, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Alessia Gasparini
- CORE, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Medical Physics Department, Iridium Netwerk, Wilrijk, Belgium
| | - Emil Schüler
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Frank Stephan
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - Raphaël Moeckli
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland.
| | - Anna Subiel
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK; University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
11
|
Li J, Chabaytah N, Babik J, Behmand B, Bekerat H, Connell T, Evans M, Ruo R, Vuong T, Abbasinejad Enger S. Relative biological effectiveness of clinically relevant photon energies for the survival of human colorectal, cervical, and prostate cancer cell lines. Phys Med Biol 2024; 69:205008. [PMID: 39299263 DOI: 10.1088/1361-6560/ad7d5a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024]
Abstract
Objective.Relative biological effectiveness (RBE) differs between radiation qualities. However, an RBE of 1.0 has been established for photons regardless of the wide range of photon energies used clinically, the lack of reproducibility in radiobiological studies, and outdated reference energies used in the experimental literature. Moreover, due to intrinsic radiosensitivity, different cancer types have different responses to radiation. This study aimed to characterize the RBE of clinically relevant high and low photon energiesin vitrofor three human cancer cell lines: HCT116 (colon), HeLa (cervix), and PC3 (prostate).Approach.Experiments were conducted following dosimetry protocols provided by the American Association of Physicists in Medicine. Cells were irradiated with 6 MV x-rays, an192Ir brachytherapy source, 225 kVp and 50 kVp x-rays. Cell survival post-irradiation was assessed using the clonogenic assay. Survival fractions were fitted using the linear quadratic model, and survival curves were generated for RBE calculations.Main results.Cell killing was more efficient with decreasing photon energy. Using 225 kVp x-rays as the reference, the HCT116 RBESF0.1for 6 MV x-rays,192Ir, and 50 kVp x-rays were 0.89 ± 0.03, 0.95 ± 0.03, and 1.24 ± 0.04; the HeLa RBESF0.1were 0.95 ± 0.04, 0.97 ± 0.05, and 1.09 ± 0.03, and the PC3 RBESF0.1were 0.84 ± 0.01, 0.84 ± 0.01, and 1.13 ± 0.02, respectively. HeLa and PC3 cells had varying radiosensitivity when irradiated with 225 and 50 kVp x-rays.Significance.This difference supports the notion that RBE may not be 1.0 for all photons through experimental investigations that employed precise dosimetry. It highlights that different cancer types may not have identical responses to the same irradiation quality. Additionally, the RBE of clinically relevant photons was updated to the reference energy of 225 kVp x-rays.
Collapse
Affiliation(s)
- Joanna Li
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Naim Chabaytah
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Joud Babik
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Behnaz Behmand
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Hamed Bekerat
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Jewish General Hospital, Montreal, Quebec, Canada
| | - Tanner Connell
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- McGill University Health Centre, Montreal, Quebec, Canada
| | - Michael Evans
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- McGill University Health Centre, Montreal, Quebec, Canada
| | - Russell Ruo
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- McGill University Health Centre, Montreal, Quebec, Canada
| | - Te Vuong
- Jewish General Hospital, Montreal, Quebec, Canada
| | - Shirin Abbasinejad Enger
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
12
|
Gardner LL, Thompson SJ, O'Connor JD, McMahon SJ. Modelling radiobiology. Phys Med Biol 2024; 69:18TR01. [PMID: 39159658 DOI: 10.1088/1361-6560/ad70f0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/19/2024] [Indexed: 08/21/2024]
Abstract
Radiotherapy has played an essential role in cancer treatment for over a century, and remains one of the best-studied methods of cancer treatment. Because of its close links with the physical sciences, it has been the subject of extensive quantitative mathematical modelling, but a complete understanding of the mechanisms of radiotherapy has remained elusive. In part this is because of the complexity and range of scales involved in radiotherapy-from physical radiation interactions occurring over nanometres to evolution of patient responses over months and years. This review presents the current status and ongoing research in modelling radiotherapy responses across these scales, including basic physical mechanisms of DNA damage, the immediate biological responses this triggers, and genetic- and patient-level determinants of response. Finally, some of the major challenges in this field and potential avenues for future improvements are also discussed.
Collapse
Affiliation(s)
- Lydia L Gardner
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, United Kingdom
| | - Shannon J Thompson
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, United Kingdom
| | - John D O'Connor
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, United Kingdom
- Ulster University School of Engineering, York Street, Belfast BT15 1AP, United Kingdom
| | - Stephen J McMahon
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, United Kingdom
| |
Collapse
|
13
|
Ashraf MR, Melemenidis S, Liu K, Grilj V, Jansen J, Velasquez B, Connell L, Schulz JB, Bailat C, Libed A, Manjappa R, Dutt S, Soto L, Lau B, Garza A, Larsen W, Skinner L, Yu AS, Surucu M, Graves EE, Maxim PG, Kry SF, Vozenin MC, Schüler E, Loo BW. Multi-Institutional Audit of FLASH and Conventional Dosimetry With a 3D Printed Anatomically Realistic Mouse Phantom. Int J Radiat Oncol Biol Phys 2024; 120:287-300. [PMID: 38493902 DOI: 10.1016/j.ijrobp.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/03/2024] [Accepted: 03/10/2024] [Indexed: 03/19/2024]
Abstract
PURPOSE We conducted a multi-institutional dosimetric audit between FLASH and conventional dose rate (CONV) electron irradiations by using an anatomically realistic 3-dimensional (3D) printed mouse phantom. METHODS AND MATERIALS A computed tomography (CT) scan of a live mouse was used to create a 3D model of bony anatomy, lungs, and soft tissue. A dual-nozzle 3D printer was used to print the mouse phantom using acrylonitrile butadiene styrene (∼1.02 g/cm3) and polylactic acid (∼1.24 g/cm3) simultaneously to simulate soft tissue and bone densities, respectively. The lungs were printed separately using lightweight polylactic acid (∼0.64 g/cm3). Hounsfield units (HU), densities, and print-to-print stability of the phantoms were assessed. Three institutions were each provided a phantom and each institution performed 2 replicates of irradiations at selected anatomic regions. The average dose difference between FLASH and CONV dose distributions and deviation from the prescribed dose were measured with radiochromic film. RESULTS Compared with the reference CT scan, CT scans of the phantom demonstrated mass density differences of 0.10 g/cm3 for bone, 0.12 g/cm3 for lung, and 0.03 g/cm3 for soft tissue regions. Differences in HU between phantoms were <10 HU for soft tissue and bone, with lung showing the most variation (54 HU), but with minimal effect on dose distribution (<0.5%). Mean differences between FLASH and CONV decreased from the first to the second replicate (4.3%-1.2%), and differences from the prescribed dose decreased for both CONV (3.6%-2.5%) and FLASH (6.4%-2.7%). Total dose accuracy suggests consistent pulse dose and pulse number, although these were not specifically assessed. Positioning variability was observed, likely due to the absence of robust positioning aids or image guidance. CONCLUSIONS This study marks the first dosimetric audit for FLASH using a nonhomogeneous phantom, challenging conventional calibration practices reliant on homogeneous phantoms. The comparison protocol offers a framework for credentialing multi-institutional studies in FLASH preclinical research to enhance reproducibility of biologic findings.
Collapse
Affiliation(s)
- M Ramish Ashraf
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Stavros Melemenidis
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Kevin Liu
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Veljko Grilj
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Jeannette Jansen
- Radiation Oncology Laboratory, Department of Radiation Oncology, Lausanne, University Hospital and University of Lausanne, Switzerland
| | - Brett Velasquez
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Luke Connell
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joseph B Schulz
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Claude Bailat
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Aaron Libed
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Rakesh Manjappa
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Suparna Dutt
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Luis Soto
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Brianna Lau
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Aaron Garza
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - William Larsen
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Lawrie Skinner
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Amy S Yu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Murat Surucu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Edward E Graves
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Peter G Maxim
- Department of Radiation Oncology, University of California, Irvine, California
| | - Stephen F Kry
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Imaging and Radiation Oncology Core, MD Anderson Cancer Center, Houston, USA
| | - Marie-Catherine Vozenin
- Radiation Oncology Laboratory, Department of Radiation Oncology, Lausanne, University Hospital and University of Lausanne, Switzerland; Radiotherapy and Radiobiology Sector, Radiation Therapy Service, University Hospital of Geneva, Geneva, Switzerland.
| | - Emil Schüler
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Billy W Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
14
|
Subiel A, Bourgouin A, Kranzer R, Peier P, Frei F, Gomez F, Knyziak A, Fleta C, Bailat C, Schüller A. Metrology for advanced radiotherapy using particle beams with ultra-high dose rates. Phys Med Biol 2024; 69:14TR01. [PMID: 38830362 DOI: 10.1088/1361-6560/ad539d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
Dosimetry of ultra-high dose rate beams is one of the critical components which is required for safe implementation of FLASH radiotherapy (RT) into clinical practice. In the past years several national and international programmes have emerged with the aim to address some of the needs that are required for translation of this modality to clinics. These involve the establishment of dosimetry standards as well as the validation of protocols and dosimetry procedures. This review provides an overview of recent developments in the field of dosimetry for FLASH RT, with particular focus on primary and secondary standard instruments, and provides a brief outlook on the future work which is required to enable clinical implementation of FLASH RT.
Collapse
Affiliation(s)
- Anna Subiel
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, United Kingdom
- University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Alexandra Bourgouin
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany
- National Research Council of Canada (NRC), 1200 Montreal Road, Ottawa, ON, K1A0R6, Canada
| | | | - Peter Peier
- Federal Institute of Metrology METAS, Lindenweg 50, 3003 Bern-Wabern, Switzerland
| | - Franziska Frei
- Federal Institute of Metrology METAS, Lindenweg 50, 3003 Bern-Wabern, Switzerland
| | - Faustino Gomez
- University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Adrian Knyziak
- Central Office of Measures (GUM), Elektoralna 2 Str., 00-139 Warsaw, Poland
| | - Celeste Fleta
- Instituto de Microelectrónica de Barcelona, Centro Nacional de Microelectrónica, IMB-CNM (CSIC), Barcelona, Spain
| | - Claude Bailat
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Andreas Schüller
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany
| |
Collapse
|
15
|
Loo BW, Verginadis II, Sørensen BS, Mascia AE, Perentesis JP, Koong AC, Schüler E, Rankin EB, Maxim PG, Limoli CL, Vozenin MC. Navigating the Critical Translational Questions for Implementing FLASH in the Clinic. Semin Radiat Oncol 2024; 34:351-364. [PMID: 38880544 DOI: 10.1016/j.semradonc.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The "FLASH effect" is an increased therapeutic index, that is, reduced normal tissue toxicity for a given degree of anti-cancer efficacy, produced by ultra-rapid irradiation delivered on time scales orders of magnitude shorter than currently conventional in the clinic for the same doses. This phenomenon has been observed in numerous preclinical in vivo tumor and normal tissue models. While the underlying biological mechanism(s) remain to be elucidated, a path to clinical implementation of FLASH can be paved by addressing several critical translational questions. Technological questions pertinent to each beam type (eg, electron, proton, photon) also dictate the logical progression of experimentation required to move forward in safe and decisive clinical trials. Here we review the available preclinical data pertaining to these questions and how they may inform strategies for FLASH cancer therapy clinical trials.
Collapse
Affiliation(s)
- Billy W Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA.
| | - Ioannis I Verginadis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Brita Singers Sørensen
- Danish Centre for Particle Therapy & Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Anthony E Mascia
- Division of Oncology, Cincinnati Children's Hospital and Departments of Pediatrics and Radiation Oncology, College of Medicine, University of Cincinnati, Cincinnati, OH
| | - John P Perentesis
- Division of Oncology, Cincinnati Children's Hospital and Departments of Pediatrics and Radiation Oncology, College of Medicine, University of Cincinnati, Cincinnati, OH
| | - Albert C Koong
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Emil Schüler
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Erinn B Rankin
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA; Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA
| | - Peter G Maxim
- Department of Radiation Oncology, University of California, Irvine School of Medicine, Irvine, CA
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine School of Medicine, Irvine, CA
| | - Marie-Catherine Vozenin
- Secteur Radio-Oncologie et Radiobiologie, Hôpitaux Universitaires de Genève, Geneva, Switzerland; LiRR - laboratory of innovation in radiobiology applied to radiotherapy, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Laboratory of Radiation Oncology, Radiation Oncology Service, Department of Oncology, CHUV Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
16
|
Polizzi M, Valerie K, Kim S. Commissioning and Assessment of Radiation Field and Dose Inhomogeneity for a Dual X-ray Tube Cabinet Irradiator: To Ensure Accurate Dosimetry in Radiation Biology Experiments. Adv Radiat Oncol 2024; 9:101486. [PMID: 38699670 PMCID: PMC11063221 DOI: 10.1016/j.adro.2024.101486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 02/26/2024] [Indexed: 05/05/2024] Open
Abstract
Purpose Standardization of x-ray cabinet irradiator dose, geometry, and calibration reporting is an ongoing process. Multi-tube designs have been introduced into the preclinical market and give a theoretical benefit but have not been widely assessed for use in preclinical irradiation conditions. The aim of this study was to report our experience commissioning a dual x-ray source cabinet irradiator (CIXD, Xstrahl Limited, United Kingdom) and assess the dose distribution for various experimental conditions. Methods and Materials Half-value layer (HVL) measurement, profile measurements, and output calibration were performed using a calibrated ion chamber. Constancy measurements were performed twice daily over 2 weeks to assess output fluctuations. Film measurements were completed using solid water to assess percent depth dose and homogeneity within the field and within variable thicknesses of solid water and phosphate-buffered saline solution. Film measurements were repeated for various arrangements of petri dishes filled with phosphate-buffered saline or water and in a 3D-printed mouse phantom. Results The x-ray tubes had a measured in-air output of 1.27 Gy/min. The HVL was 1.7 mm Cu. The upper and lower tubes both exhibited the heel effect, but when operated simultaneously, the effect was reduced. Ion chamber measurements revealed a 15% dose inhomogeneity within the tray area (18 × 18 cm2). Film measurements in the petri dishes indicated minor nonuniformities in the arrangements of the experimental apparatus. Measurements from the mouse phantom with film agreed with ion chamber measurements for various phantom placements and orientations. Conclusions X-ray cell culture and animal irradiation with dual tube cabinet irradiation is efficient and robust when using established dosimetric tools to confirm output and homogeneity. The conditions assumed for calibrations are often not maintained during experiments. We have confirmed that inhomogeneities are present for single-tube use; however, they are reduced with simultaneous tube use. Additional dosimetric monitoring should be performed for each unique irradiation setup.
Collapse
Affiliation(s)
- Mitchell Polizzi
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia
| | - Kristoffer Valerie
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Siyong Kim
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
17
|
Das IJ, Khan AU, Dogan SK, Longo M. Grid/lattice therapy: consideration of small field dosimetry. Br J Radiol 2024; 97:1088-1098. [PMID: 38552328 PMCID: PMC11135801 DOI: 10.1093/bjr/tqae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 05/31/2024] Open
Abstract
Small-field dosimetry used in special procedures such as gamma knife, Cyberknife, Tomotherapy, IMRT, and VMAT has been in evolution after several radiation incidences with very significant (70%) errors due to poor understanding of the dosimetry. IAEA-TRS-483 and AAPM-TG-155 have provided comprehensive information on small-fields dosimetry in terms of code of practice and relative dosimetry. Data for various detectors and conditions have been elaborated. It turns out that with a suitable detectors dose measurement accuracy can be reasonably (±3%) achieved for 6 MV beams for fields >1×1 cm2. For grid therapy, even though the treatment is performed with small fields created by either customized blocks, multileaf collimator (MLC), or specialized devices, it is multiple small fields that creates combined treatment. Hence understanding the dosimetry in collection of holes of small field is a separate challenge that needs to be addressed. It is more critical to understand the scattering conditions from multiple holes that form the treatment grid fields. Scattering changes the beam energy (softer) and hence dosimetry protocol needs to be properly examined for having suitable dosimetric parameters. In lieu of beam parameter unavailability in physical grid devices, MLC-based forward and inverse planning is an alternative path for bulky tumours. Selection of detectors in small field measurement is critical and it is more critical in mixed beams created by scattering condition. Ramification of small field concept used in grid therapy along with major consideration of scattering condition is explored. Even though this review article is focussed mainly for dosimetry for low-energy megavoltage photon beam (6 MV) but similar procedures could be adopted for high energy beams. To eliminate small field issues, lattice therapy with the help of MLC is a preferrable choice.
Collapse
Affiliation(s)
- Indra J Das
- Department of Radiation Oncology, Northwest Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Ahtesham Ullah Khan
- San Bortolo Hospital, Medical Physics Department, Viale F. Rodolfi 37, 36100 Vicenza, Italy
| | - Serpil K Dogan
- Department of Radiation Oncology, Northwest Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Mariaconcetta Longo
- San Bortolo Hospital, Medical Physics Department, Viale F. Rodolfi 37, 36100 Vicenza, Italy
| |
Collapse
|
18
|
Tamarat R, Satyamitra MM, Benderitter M, DiCarlo AL. Radiation-induced gastrointestinal and cutaneous injuries: understanding models, pathologies, assessments, and clinically accepted practices. Int J Radiat Biol 2024; 100:969-981. [PMID: 38787685 PMCID: PMC11494497 DOI: 10.1080/09553002.2024.2356544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/02/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024]
Abstract
PURPOSE A U. S. and European joint effort fostering the development of medical countermeasures (MCMs) operable in case of radiological or nuclear emergencies. METHODS Based on the joint engagement between the U.S. National Institute of Allergy and Infectious Diseases (NIAID) and the French Institut de Radioprotection et de Sûreté Nucléaire (IRSN), a Statement of Intent to Collaborate was signed in 2014 and a series of working group meeting were established. In December 2022, the NIAID and IRSN hosted a five-day, U.S./European meeting titled 'Radiation-Induced Cutaneous and Gastrointestinal Injuries: Advances in Understanding Pathologies, Assessment, and Clinically Accepted Practices' in Paris, France. The goals of the meeting were to bring together U.S. and European investigators to explore new research avenues for the medical management of skin and gastrointestinal injuries, including specific diagnostics for each organ system, animal models, and promising medical countermeasures (MCMs) to mitigate radiation damage. There was also an emphasis on exploring additional areas of medicine and response to understand best practices from other emergency scenarios, which could be leveraged to improve radiation preparedness, and the importance of accurate dosimetry in preclinical work. RESULTS Subsequent to the workshop, seven collaborative projects, funded by both organizations, were established on topics ranging from MCMs and predictive biomarkers, and using physical methods to assess cutaneous radiation injuries, to mechanistic studies to understand radiation-induced damage in multiple organ systems. The importance of accurate dosimetry in preclinical works was highlighted and two recently published U.S./European commentaries that focus on the need for dosimetry standardization in the reported literature had their origins in this meeting. This commentary summarizes the workshop and open discussions among academic investigators, industry researchers, and U.S. and IRSN program representatives. CONCLUSIONS Given the substantive progress made due to these interactions, both groups plan to expand out these meetings by incorporating high-level investigators from across the globe, while endeavoring to maintain the informal setting that was conducive to in-depth scientific discussion and enhanced the state of the science in radiation research.
Collapse
Affiliation(s)
- Radia Tamarat
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | - Merriline M. Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology, and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA
| | - Marc Benderitter
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | - Andrea L. DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology, and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA
| |
Collapse
|
19
|
Wojcik A, Thierry-Chef I, Friedl AA, Rühm W. Minimum reporting standards about dosimetry of radiation sources used in radiation research studies. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2024; 63:181-183. [PMID: 38376815 DOI: 10.1007/s00411-024-01063-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The necessity of precise dosimetry and its documentation in research is less obvious than in medicine and in radiological protection. However, in radiation research, results can only be validated if experiments were carried out with sufficient precision and described with sufficient details, especially information regarding dosimetry. In order to ensure this, an initiative was launched to establish reproducible dosimetry reporting parameters in published studies. Minimum standards for reporting radiation dosimetry information were developed and published in parallel in the International Journal of Radiation Biology and Radiation Research. As editors of Radiation and Environmental Biophysics, we support this initiative and reproduce the agreed minimum irradiation parameters that should be reported in publications on radiation biology submitted to our journal.
Collapse
Affiliation(s)
- Andrzej Wojcik
- MBW Department, Centre for Radiation Protection Research, Stockholm University, Stockholm, Sweden.
| | | | - Anna A Friedl
- University Hospital, Ludwig-Maximilians-University LMU Munich, Munich, Germany
| | - Werner Rühm
- Federal Office for Radiation Protection, Neuherberg, Germany
| |
Collapse
|
20
|
Liu K, Waldrop T, Aguilar E, Mims N, Neill D, Delahoussaye A, Li Z, Swanson D, Lin SH, Koong AC, Taniguchi CM, Loo BW, Mitra D, Schüler E. Redefining FLASH RT: the impact of mean dose rate and dose per pulse in the gastrointestinal tract. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.590158. [PMID: 38712109 PMCID: PMC11071383 DOI: 10.1101/2024.04.19.590158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Background The understanding of how varying radiation beam parameter settings affect the induction and magnitude of the FLASH effect remains limited. Purpose We sought to evaluate how the magnitude of radiation-induced gastrointestinal (GI) toxicity (RIGIT) depends on the interplay between mean dose rate (MDR) and dose per pulse (DPP). Methods C57BL/6J mice were subjected to total abdominal irradiation (11-14 Gy single fraction) under conventional irradiation (low DPP and low MDR, CONV) and various combinations of DPP and MDR up to ultra-high-dose-rate (UHDR) beam conditions. The effects of DPP were evaluated for DPPs of 1-6 Gy while the total dose and MDR were kept constant; the effects of MDR were evaluated for the range 0.3- 1440 Gy/s while the total dose and DPP were kept constant. RIGIT was quantified in non-tumor-bearing mice through the regenerating crypt assay and survival assessment. Tumor response was evaluated through tumor growth delay. Results Within each tested total dose using a constant MDR (>100 Gy/s), increasing DPP led to better sparing of regenerating crypts, with a more prominent effect seen at 12 and 14 Gy TAI. However, at fixed DPPs >4 Gy, similar sparing of crypts was demonstrated irrespective of MDR (from 0.3 to 1440 Gy/s). At a fixed high DPP of 4.7 Gy, survival was equivalently improved relative to CONV for all MDRs from 0.3 Gy/s to 104 Gy/s, but at a lower DPP of 0.93 Gy, increasing MDR produced a greater survival effect. We also confirmed that high DPP, regardless of MDR, produced the same magnitude of tumor growth delay relative to CONV using a clinically relevant melanoma mouse model. Conclusions This study demonstrates the strong influence that the beam parameter settings have on the magnitude of the FLASH effect. Both high DPP and UHDR appeared independently sufficient to produce FLASH sparing of GI toxicity, while isoeffective tumor response was maintained across all conditions.
Collapse
|
21
|
Hill MA, Staut N, Thompson JM, Verhaegen F. Dosimetric validation of SmART-RAD Monte Carlo modelling for x-ray cabinet radiobiology irradiators. Phys Med Biol 2024; 69:095014. [PMID: 38518380 PMCID: PMC11031639 DOI: 10.1088/1361-6560/ad3720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/23/2024] [Accepted: 03/22/2024] [Indexed: 03/24/2024]
Abstract
Objective. Accuracy and reproducibility in the measurement of radiation dose and associated reporting are critically important for the validity of basic and preclinical radiobiological studies performed with kilovolt x-ray radiation cabinets. This is essential to enable results of radiobiological studies to be repeated, as well as enable valid comparisons between laboratories. In addition, the commonly used single point dose value hides the 3D dose heterogeneity across the irradiated sample. This is particularly true for preclinical rodent models, and is generally difficult to measure directly. Radiation transport simulations integrated in an easy to use application could help researchers improve quality of dosimetry and reporting.Approach. This paper describes the use and dosimetric validation of a newly-developed Monte Carlo (MC) tool, SmART-RAD, to simulate the x-ray field in a range of standard commercial x-ray cabinet irradiators used for preclinical irradiations. Comparisons are made between simulated and experimentally determined dose distributions for a range of configurations to assess the potential use of this tool in determining dose distributions through samples, based on more readily available air-kerma calibration point measurements.Main results. Simulations gave very good dosimetric agreement with measured depth dose distributions in phantoms containing both water and bone equivalent materials. Good spatial and dosimetric agreement between simulated and measured dose distributions was obtained when using beam-shaping shielding.Significance. The MC simulations provided by SmART-RAD provide a useful tool to go from a limited number of dosimetry measurements to detailed 3D dose distributions through a non-homogeneous irradiated sample. This is particularly important when trying to determine the dose distribution in more complex geometries. The use of such a tool can improve reproducibility and dosimetry reporting in preclinical radiobiological research.
Collapse
Affiliation(s)
- Mark A Hill
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, ORCRB Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Nick Staut
- SmART Scientific Solutions BV, Maastricht, The Netherlands
| | - James M Thompson
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, ORCRB Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Frank Verhaegen
- SmART Scientific Solutions BV, Maastricht, The Netherlands
- Department of Radiation Oncology (Maastro), Research Institute for Oncology & Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
22
|
Gardner LL, O'Connor JD, McMahon SJ. Benchmarking proton RBE models. Phys Med Biol 2024; 69:085022. [PMID: 38471187 DOI: 10.1088/1361-6560/ad3329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
Objective.To biologically optimise proton therapy, models which can accurately predict variations in proton relative biological effectiveness (RBE) are essential. Current phenomenological models show large disagreements in RBE predictions, due to different model assumptions and differences in the data to which they were fit. In this work, thirteen RBE models were benchmarked against a comprehensive proton RBE dataset to evaluate predictions when all models are fit using the same data and fitting techniques, and to assess the statistical robustness of the models.Approach.Model performance was initially evaluated by fitting to the full dataset, and then a cross-validation approach was applied to assess model generalisability and robustness. The impact of weighting the fit and the choice of biological endpoint (either single or multiple survival levels) was also evaluated.Main results.Fitting the models to a common dataset reduced differences between their predictions, however significant disagreements remained due to different underlying assumptions. All models performed poorly under cross-validation in the weighted fits, suggesting that some uncertainties on the experimental data were significantly underestimated, resulting in over-fitting and poor performance on unseen data. The simplest model, which depends linearly on the LET but has no tissue or dose dependence, performed best for a single survival level. However, when fitting to multiple survival levels simultaneously, more complex models with tissue dependence performed better. All models had significant residual uncertainty in their predictions compared to experimental data.Significance.This analysis highlights that poor quality of error estimation on the dose response parameters introduces substantial uncertainty in model fitting. The significant residual error present in all approaches illustrates the challenges inherent in fitting to large, heterogeneous datasets and the importance of robust statistical validation of RBE models.
Collapse
Affiliation(s)
- Lydia L Gardner
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
| | - John D O'Connor
- School of Engineering, Ulster University, Belfast, United Kingdom
| | - Stephen J McMahon
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
23
|
Stern W, Alaei P, Berbeco R, DeWerd LA, Kamen J, MacKenzie C, Moros EG, Poirier Y, Potter CA, Schaue D, Patallo IS, Abend M, Swarts S, Trompier F. Recommendations for harmonized reporting of radiation Dosimetry by adoption of Compatibility in Irradiation Research Protocols Expert Roundtable (CIRPER). Int J Radiat Biol 2024; 100:821-823. [PMID: 38568854 DOI: 10.1080/09553002.2024.2331130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024]
Affiliation(s)
- Warren Stern
- Nonproliferation and National Security Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Parham Alaei
- Department of Radiation Oncology, University of Minnesota, Minneapolis, MN, USA
| | - Ross Berbeco
- Department of Radiation Oncology Brigham and Women's Hospital, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, MA, USA
| | - Larry A DeWerd
- Medical Radiation Research Center, Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Jacob Kamen
- Department of Radiology, Mount Sinai Health System, New York, NY, USA
| | | | - Eduardo G Moros
- H. Lee Moffitt Cancer Center and Research Institute, Department of Oncological Sciences and Department of Physics, University of South Florida, Tampa, FL, USA
| | - Yannick Poirier
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MA, USA
| | | | - Dörthe Schaue
- Department of Radiation Oncology, David Geffen School of Medicine, University of California Los Angelos, Los Angeles, CA, USA
| | - Ileana Silvestre Patallo
- Medical Radiation Physics and Science Groups, National Physical Laboratory (NPL), Guilford, UK
- RadNet Standardization Dosimetry Group (Co-chair), Cancer Research UK (CRUK), London, UK
| | - Michael Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - Steven Swarts
- Department of Radiation Oncology, University of Florida, Gainesville, FL, USA
| | - François Trompier
- Ionizing Radiation Dosimetry Laboratory (LDRI), Human Radiation Protection Unity, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Rose, France
| |
Collapse
|
24
|
Stern W, Alaei P, Berbeco R, DeWerd LA, Kamen J, MacKenzie C, Moros EG, Poirier Y, Potter CA, Schaue D, Patallo IS, Abend M, Swarts S, Trompier F. Achieving Consistent Reporting of Radiation Dosimetry by Adoption of Compatibility in Irradiation Research Protocols Expert Roundtable (CIRPER) Recommendations. Radiat Res 2024; 201:267-269. [PMID: 38205905 DOI: 10.1667/rade-23-00234.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Affiliation(s)
- Warren Stern
- Nonproliferation and National Security Department, Brookhaven National Laboratory, Upton, New York
| | - Parham Alaei
- Department of Radiation Oncology, University of Minnesota, Minneapolis, Minnesota
| | - Ross Berbeco
- Department of Radiation Oncology Brigham and Women's Hospital, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts
| | - Larry A DeWerd
- Medical Radiation Research Center, Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Jacob Kamen
- Department of Radiology, Mount Sinai Health System, New York, New York
| | | | - Eduardo G Moros
- H. Lee Moffitt Cancer Center and Research Institute, Department of Oncological Sciences and Department of Physics, University of South Florida, Tampa, Florida
| | - Yannick Poirier
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | | | - Dörthe Schaue
- Department of Radiation Oncology, David Geffen School of Medicine, University of California Los Angeles, California
| | - Ileana Silvestre Patallo
- Medical Radiation Physics and Science Groups, National Physical Laboratory (NPL), Teddington, United Kingdom; RadNet Standardization Dosimetry Group (Co-chair), Cancer Research UK (CRUK), London, United Kingdom
| | - Michael Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - Steven Swarts
- Department of Radiation Oncology, University of Florida, Gainesville, Florida
| | - François Trompier
- Ionizing Radiation Dosimetry Laboratory (LDRI), Human Radiation Protection Unity, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Rose, France
| |
Collapse
|
25
|
Guillou M, L'Homme B, Trompier F, Errabii A, Marcoux T, Gruel G, Prezado Y, Dos Santos M. Radiological injuries under low energy x-rays in mice depending on dose and protocol: comparative characterization of lesion severity and impact of the in vivobone response on retrospective dose estimations. Phys Med Biol 2024; 69:045035. [PMID: 38211312 DOI: 10.1088/1361-6560/ad1d69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/11/2024] [Indexed: 01/13/2024]
Abstract
Objective. To improve our knowledge about the biological effects of over exposures involving low-energy x-rays, we developed and characterized a preclinical mouse model allowing to mimic different lesion severity degrees induced by 80 kV x-ray depending on the dose and protocol (single or repeated exposure).Approach. Mice were locally exposed (paw) to 80 kV x-rays in a single (15, 30 or 45 Gy inKair) or repeated exposition (2 × 15 or 3 × 15 Gy inKair) to assess different degrees of lesion severity. Six post-irradiation euthanasia time points (0, 7, 14, 21, 42, and 84 days) were determined to follow up the evolution of lesions based on the lesion score, weighing and cutaneous blood perfusion. The bone dose was estimated at the different time points by electron paramagnetic resonance (EPR) spectroscopy.Main results. The monitoring of the lesion severity allows to classify the exposure protocols according to their severity. EPR spectroscopy measurements allow to determine the bone dose on the day of irradiation which is 7 times higher than the initial dose for single protocols. However, the initial signal measured at the end of the repeated exposure was 27% lower than the signal measured for a single dose. The study of the kinetics of EPR signal showed a decrease of the EPR signal which is dependent on the exposure protocol but not on dose highlighting the impact of bone physiology on the bone dose estimation.Significance: the preclinical model developed allows to assess the impact of the dose and protocol on the lesion severity induced by low-energy x-ray. For the first time, the dynamics of free radicals have been quantified in anin vivomodel, highlighting that the doses actually administered can be underestimated if samples are taken weeks or even months after exposure.
Collapse
Affiliation(s)
- Manon Guillou
- Institute for Radiological Protection and Nuclear Safety (IRSN), Department of RAdiobiology and regenerative MEDicine (SERAMED), Laboratory of Radiobiology of Accidental exposures (LRAcc) Fontenay-aux-Roses, France
| | - Bruno L'Homme
- Institute for Radiological Protection and Nuclear Safety (IRSN), Department of RAdiobiology and regenerative MEDicine (SERAMED), Laboratory of Radiobiology of Accidental exposures (LRAcc) Fontenay-aux-Roses, France
| | - François Trompier
- Institute for Radiological Protection and Nuclear Safety (IRSN), Department of DOSimetry, (SDOS), Ionizing Radiation Dosimetry Laboratory (LDRI), Fontenay-aux-Roses, F-92260, France
| | - Anass Errabii
- Institute for Radiological Protection and Nuclear Safety (IRSN), Department of RAdiobiology and regenerative MEDicine (SERAMED), Laboratory of Radiobiology of Accidental exposures (LRAcc) Fontenay-aux-Roses, France
| | - Tifanie Marcoux
- Institute for Radiological Protection and Nuclear Safety (IRSN), Department of RAdiobiology and regenerative MEDicine (SERAMED), Laboratory of Radiobiology of Accidental exposures (LRAcc) Fontenay-aux-Roses, France
| | - Gaëtan Gruel
- Institute for Radiological Protection and Nuclear Safety (IRSN), Department of RAdiobiology and regenerative MEDicine (SERAMED), Laboratory of Radiobiology of Accidental exposures (LRAcc) Fontenay-aux-Roses, France
| | - Yolanda Prezado
- Institut Curie, University Paris Saclay, PSL Research University, Inserm U 1021-CNRS UMR F-3347, Orsay, France
| | - Morgane Dos Santos
- Institute for Radiological Protection and Nuclear Safety (IRSN), Department of RAdiobiology and regenerative MEDicine (SERAMED), Laboratory of Radiobiology of Accidental exposures (LRAcc) Fontenay-aux-Roses, France
| |
Collapse
|
26
|
Sioen S, D'Hondt L, Van Houte F, Demuynck R, Bacher K, De Wagter C, Vral A, Vanderstraeten B, Krysko DV, Baeyens A. Peripheral blood lymphocytes differ in DNA damage response after exposure to X-rays with different physical properties. Int J Radiat Biol 2024; 100:236-247. [PMID: 37819795 DOI: 10.1080/09553002.2023.2261525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 09/08/2023] [Indexed: 10/13/2023]
Abstract
Introduction: In radiology, low X-ray energies (<140 keV) are used to obtain an optimal image while in radiotherapy, higher X-ray energies (MeV) are used to eradicate tumor tissue. In radiation research, both these X-ray energies being used to extrapolate in vitro research to clinical practice. However, the energy deposition of X-rays depends on their energy spectrum, which might lead to changes in biological response. Therefore, this study compared the DNA damage response (DDR) in peripheral blood lymphocytes (PBLs) exposed to X-rays with varying beam quality, mean photon energy (MPE) and dose rate.Methods: The DDR was evaluated in peripheral blood lymphocytes (PBLs) by the ɣ-H2AX foci assay, the cytokinesis-block micronucleus assay and an SYTOX-based cell death assay, combined with specific cell death inhibitors. Cell cultures were irradiated with a 220 kV X-ray research cabinet (SARRP, X-Strahl) or a 6 MV X-ray linear accelerator (Elekta Synergy). Three main physical parameters were investigated: beam quality (V), MPE (eV) and dose rate (Gy/min). Additional copper (Cu) filtration caused variation in the MPE (78 keV, 94 keV, 118 keV) at SARRP; dose rates were varied by adjusting tube current for 220 kV X-rays (0.33-3 Gy/min) or water-phantom depth in the 6 MV set-up (3-6 Gy/min).Results: The induction of chromosomal damage and initial (30 min) DNA double-stranded breaks (DSBs) were significantly higher for 220 kV X-rays compared to 6 MV X-rays, while cell death induction was similar. Specific cell death inhibitors for apoptosis, necroptosis and ferroptosis were not capable of blocking cell death after irradiation using low or high-energy X-rays. Additional Cu filtration increased the MPE, which significantly decreased the amount of chromosomal damage and DSBs. Within the tested ranges no specific effects of dose rate variation were observed.Conclusion: The DDR in PBLs is influenced by the beam quality and MPE. This study reinforces the need for consideration and inclusion of all physical parameters in radiation-related studies.
Collapse
Affiliation(s)
- Simon Sioen
- Radiobiology group, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Louise D'Hondt
- Radiobiology group, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Fien Van Houte
- Radiobiology group, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Robin Demuynck
- Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Klaus Bacher
- Medical Physics Group, Department of Human Structure and Repair, Gent, Belgium
| | - Carlos De Wagter
- Medical Physics Group, Department of Human Structure and Repair, Gent, Belgium
- Department of Radiotherapy-Oncology, Ghent University Hospital, Gent, Belgium
| | - Anne Vral
- Radiobiology group, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Barbara Vanderstraeten
- Medical Physics Group, Department of Human Structure and Repair, Gent, Belgium
- Department of Radiotherapy-Oncology, Ghent University Hospital, Gent, Belgium
| | - Dmitri V Krysko
- Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Ans Baeyens
- Radiobiology group, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
27
|
Degenhardt Ä, Dumit S, Giussani A. Effects of ionising radiation exposure in offspring and next generations: dosimetric aspects and uncertainties. Int J Radiat Biol 2023; 100:1276-1282. [PMID: 37972296 DOI: 10.1080/09553002.2023.2280017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/21/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE The impact of the exposure to ionizing radiation in the offspring and next generation has been investigated in the last decades and currently is the subject of study of the ICRP Task Group 121. Studying the effects of radiation exposure in pre-conceptional and post-conceptional phases can be a challenge since potential effects to the fetus vary depending on the stage of fetal development. Epidemiology and radiobiology studies are the two sources of information one can use to correlate the radiation dose to the human body and tissues and the resulting effects. For a proper evaluation of the outcomes of such studies, and a correct appraisal of the exposure/dose-effect relationship, (i) reliable dosimetry, (ii) accurate reporting, and (iii) reproducibility of results are required. Although variables related to dose, including for instance source of radiation, geometry of irradiation, dose rate etc., are usually known, especially in radiobiology studies, often important details of the irradiation are not reported. CONCLUSIONS Based on standards developed by the National Cancer Institute (NCI), the National Institute of Allergy and Infectious Disease (NIAID) and the National Institute of Standards and Technology (NIST), a review of the scientific studies used by the UNSCEAR to estimate the risk of hereditary effects, and by the ICRP in its current recommendations, was conducted to evaluate the way dosimetry was reported. Dosimetry and the related uncertainties were not adequately described in the vast majority of those studies. This does not necessarily mean that they do not provide relevant information, however it prevents from a thorough verification and reproduction of their findings. In order to guarantee the reliability and robustness of the process of revision of the estimates of risk and detriment it is therefore considered mandatory to include a careful check of the new relevant literature with regard to the criteria on the completeness and reproducibility of the dosimetric information.
Collapse
Affiliation(s)
- Ämilie Degenhardt
- Division of Medical and Occupational Radiation Protection, Federal Office for Radiation Protection, Oberschleißheim, Germany
| | - Sara Dumit
- Radiation Protection Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Augusto Giussani
- Division of Medical and Occupational Radiation Protection, Federal Office for Radiation Protection, Oberschleißheim, Germany
| |
Collapse
|
28
|
Trompier F, DeWerd LA, Poirier Y, Dos Santos M, Sheng K, Kunugi KA, Winters TA, DiCarlo AL, Satyamitra M. Minimum reporting standards should be expected for preclinical radiobiology irradiators and dosimetry in the published literature. Int J Radiat Biol 2023; 100:1-6. [PMID: 37695653 PMCID: PMC10841746 DOI: 10.1080/09553002.2023.2250848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 09/12/2023]
Abstract
The cornerstones of science advancement are rigor in performing scientific research, reproducibility of research findings and unbiased reporting of design and results of the experiments. For radiation research, this requires rigor in describing experimental details as well as the irradiation protocols for accurate, precise and reproducible dosimetry. Most institutions conducting radiation biology research in in vitro or animal models do not have describe experimental irradiation protocols in sufficient details to allow for balanced review of their publication nor for other investigators to replicate published experiments. The need to increase and improve dosimetry standards, traceability to National Institute of Standards and Technology (NIST) standard beamlines, and to provide dosimetry harmonization within the radiation biology community has been noted for over a decade both within the United States and France. To address this requirement subject matter experts have outlined minimum reporting standards that should be included in published literature for preclinical irradiators and dosimetry.
Collapse
Affiliation(s)
- François Trompier
- Ionizing Radiation Dosimetry Laboratory (LDRI), Human Radiation Protection Unity, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | - Larry A DeWerd
- Medical Radiation Research Center, Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Yannick Poirier
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Morgane Dos Santos
- Department of Radiobiology and Regenerative Medicine (SERAMED), Radiobiology of Accidental, Exposure Laboratory (LRAcc), Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | - Ke Sheng
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Keith A Kunugi
- Medical Radiation Research Center, Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Thomas A Winters
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA
| | - Andrea L DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA
| | - Merriline Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA
| |
Collapse
|
29
|
Poirier Y, DeWerd LA, Trompier F, Santos MD, Sheng K, Kunugi K, Satyamitra MM, DiCarlo AL, Winters TA. Minimum Reporting Standards Should be Expected for Preclinical Radiobiology Irradiators and Dosimetry in the Published Literature. Radiat Res 2023; 200:217-222. [PMID: 37590483 PMCID: PMC10578361 DOI: 10.1667/rade-23-00119.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/25/2023] [Indexed: 08/19/2023]
Affiliation(s)
- Yannick Poirier
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Larry A. DeWerd
- Medical Radiation Research Center, Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - François Trompier
- Ionizing Radiation Dosimetry Laboratory (LDRI), Human Radiation Protection Unity, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Rose, France
| | - Morgane Dos Santos
- Department of Radiobiology and Regenerative Medicine (SERAMED), Radiobiology of Accidental Exposure Laboratory (LRAcc), Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | - Ke Sheng
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Keith Kunugi
- Medical Radiation Research Center, Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Merriline M. Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Andrea L. DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Thomas A. Winters
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| |
Collapse
|
30
|
Zou W, Zhang R, Schüler E, Taylor PA, Mascia AE, Diffenderfer ES, Zhao T, Ayan AS, Sharma M, Yu SJ, Lu W, Bosch WR, Tsien C, Surucu M, Pollard-Larkin JM, Schuemann J, Moros EG, Bazalova-Carter M, Gladstone DJ, Li H, Simone CB, Petersson K, Kry SF, Maity A, Loo BW, Dong L, Maxim PG, Xiao Y, Buchsbaum JC. Framework for Quality Assurance of Ultrahigh Dose Rate Clinical Trials Investigating FLASH Effects and Current Technology Gaps. Int J Radiat Oncol Biol Phys 2023; 116:1202-1217. [PMID: 37121362 PMCID: PMC10526970 DOI: 10.1016/j.ijrobp.2023.04.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/28/2023] [Accepted: 04/17/2023] [Indexed: 05/02/2023]
Abstract
FLASH radiation therapy (FLASH-RT), delivered with ultrahigh dose rate (UHDR), may allow patients to be treated with less normal tissue toxicity for a given tumor dose compared with currently used conventional dose rate. Clinical trials are being carried out and are needed to test whether this improved therapeutic ratio can be achieved clinically. During the clinical trials, quality assurance and credentialing of equipment and participating sites, particularly pertaining to UHDR-specific aspects, will be crucial for the validity of the outcomes of such trials. This report represents an initial framework proposed by the NRG Oncology Center for Innovation in Radiation Oncology FLASH working group on quality assurance of potential UHDR clinical trials and reviews current technology gaps to overcome. An important but separate consideration is the appropriate design of trials to most effectively answer clinical and scientific questions about FLASH. This paper begins with an overview of UHDR RT delivery methods. UHDR beam delivery parameters are then covered, with a focus on electron and proton modalities. The definition and control of safe UHDR beam delivery and current and needed dosimetry technologies are reviewed and discussed. System and site credentialing for large, multi-institution trials are reviewed. Quality assurance is then discussed, and new requirements are presented for treatment system standard analysis, patient positioning, and treatment planning. The tables and figures in this paper are meant to serve as reference points as we move toward FLASH-RT clinical trial performance. Some major questions regarding FLASH-RT are discussed, and next steps in this field are proposed. FLASH-RT has potential but is associated with significant risks and complexities. We need to redefine optimization to focus not only on the dose but also on the dose rate in a manner that is robust and understandable and that can be prescribed, validated, and confirmed in real time. Robust patient safety systems and access to treatment data will be critical as FLASH-RT moves into the clinical trials.
Collapse
Affiliation(s)
- Wei Zou
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA.
| | - Rongxiao Zhang
- Department of Radiation Oncology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Emil Schüler
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paige A Taylor
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Eric S Diffenderfer
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Tianyu Zhao
- Department of Radiation Oncology, Washington University, St. Louis, MO, USA
| | - Ahmet S Ayan
- Department of Radiation Oncology, Ohio State University, Columbus, OH, USA
| | - Manju Sharma
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Shu-Jung Yu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Weiguo Lu
- Department of Radiation Oncology, University of Texas Southwestern, Dallas, TX, USA
| | - Walter R Bosch
- Department of Radiation Oncology, Washington University, St. Louis, MO, USA
| | - Christina Tsien
- Department of Radiation Oncology, McGill University Health Center, Montreal, QC, Canada
| | - Murat Surucu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Julianne M Pollard-Larkin
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jan Schuemann
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Eduardo G Moros
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | | | - David J Gladstone
- Department of Radiation Oncology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Heng Li
- Department of Radiation Oncology, Johns Hopkins University, Baltimore, MD, USA
| | - Charles B Simone
- Department of Radiation Oncology, New York Proton Center, New York, NY, USA
| | - Kristoffer Petersson
- Department of Radiation Oncology, MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Stephen F Kry
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amit Maity
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Billy W Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lei Dong
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter G Maxim
- Department of Radiation Oncology, University of California Irvine, Irvine, CA, USA
| | - Ying Xiao
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey C Buchsbaum
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| |
Collapse
|
31
|
Korns J, McCauley S, Lehn M, Takiar V, Sertorio M, Lamba M. Varied Photon Radiation Sources Produce Differences in Cellular Response. Radiat Res 2023; 199:422-428. [PMID: 37039678 DOI: 10.1667/rade-22-00210.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Indexed: 03/05/2023]
Abstract
In vitro studies allow evaluation of normal or cancer cell responses to radiation, either alone or in combination with agents used to modify these biological responses. Ionizing radiation can be produced by a variety of particles and sources, with varying energy spectra, interaction probabilities, linear energy transfer, dose uniformity, dose rates, and delivery methods. Multiple radiation sources have been used to irradiate cells in the published literature. However, the equivalence of response in cell culture models across radiation sources has not been rigorously established. Moreover, current reporting of radiation source parameters lacks consistency and rigor which may impact the reproducibility of pre-clinical data between laboratories. Relevant choices of radiation source are also of high importance due to growing interest in comparing photon versus particle radiation effect on biological responses. Therefore, this study robustly evaluates the cellular response (cell survival, apoptosis, and DNA damage) of three distinct cell lines using four unique photon generating radiation sources. We hypothesize there may be subtle differences across the radiation sources, without an appreciable difference in cellular response. The four photon irradiation energies investigated, 662 keV, 100 kVp, 220 kVp, 6 MV, did produce subtle differences in DNA damage and cell survival when treating three distinct tumor cell lines. These variations in cellular response emphasize the need to carefully consider irradiation source, energy, and dose rate depending on study goal and endpoint.
Collapse
Affiliation(s)
- Julianna Korns
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Shelby McCauley
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Maria Lehn
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Vinita Takiar
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Cincinnati VA Medical Center, Cincinnati, Ohio
| | - Mathieu Sertorio
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Michael Lamba
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
32
|
Verhaegen F, Butterworth KT, Chalmers AJ, Coppes RP, de Ruysscher D, Dobiasch S, Fenwick JD, Granton PV, Heijmans SHJ, Hill MA, Koumenis C, Lauber K, Marples B, Parodi K, Persoon LCGG, Staut N, Subiel A, Vaes RDW, van Hoof S, Verginadis IL, Wilkens JJ, Williams KJ, Wilson GD, Dubois LJ. Roadmap for precision preclinical x-ray radiation studies. Phys Med Biol 2023; 68:06RM01. [PMID: 36584393 DOI: 10.1088/1361-6560/acaf45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 12/30/2022] [Indexed: 12/31/2022]
Abstract
This Roadmap paper covers the field of precision preclinical x-ray radiation studies in animal models. It is mostly focused on models for cancer and normal tissue response to radiation, but also discusses other disease models. The recent technological evolution in imaging, irradiation, dosimetry and monitoring that have empowered these kinds of studies is discussed, and many developments in the near future are outlined. Finally, clinical translation and reverse translation are discussed.
Collapse
Affiliation(s)
- Frank Verhaegen
- MAASTRO Clinic, Radiotherapy Division, GROW-School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
- SmART Scientific Solutions BV, Maastricht, The Netherlands
| | - Karl T Butterworth
- Patrick G. Johnston, Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Anthony J Chalmers
- School of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Rob P Coppes
- Departments of Biomedical Sciences of Cells & Systems, Section Molecular Cell Biology and Radiation Oncology, University Medical Center Groningen, University of Groningen, 9700 AD Groningen, The Netherlands
| | - Dirk de Ruysscher
- MAASTRO Clinic, Radiotherapy Division, GROW-School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Sophie Dobiasch
- Department of Radiation Oncology, Technical University of Munich (TUM), School of Medicine and Klinikum rechts der Isar, Germany
- Department of Medical Physics, Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, Germany
| | - John D Fenwick
- Department of Medical Physics & Biomedical Engineering University College LondonMalet Place Engineering Building, London WC1E 6BT, United Kingdom
| | | | | | - Mark A Hill
- MRC Oxford Institute for Radiation Oncology, University of Oxford, ORCRB Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Constantinos Koumenis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kirsten Lauber
- Department of Radiation Oncology, University Hospital, LMU München, Munich, Germany
- German Cancer Consortium (DKTK), Partner site Munich, Germany
| | - Brian Marples
- Department of Radiation Oncology, University of Rochester, NY, United States of America
| | - Katia Parodi
- German Cancer Consortium (DKTK), Partner site Munich, Germany
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Garching b. Munich, Germany
| | | | - Nick Staut
- SmART Scientific Solutions BV, Maastricht, The Netherlands
| | - Anna Subiel
- National Physical Laboratory, Medical Radiation Science Hampton Road, Teddington, Middlesex, TW11 0LW, United Kingdom
| | - Rianne D W Vaes
- MAASTRO Clinic, Radiotherapy Division, GROW-School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | | | - Ioannis L Verginadis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jan J Wilkens
- Department of Radiation Oncology, Technical University of Munich (TUM), School of Medicine and Klinikum rechts der Isar, Germany
- Physics Department, Technical University of Munich (TUM), Germany
| | - Kaye J Williams
- Division of Pharmacy and Optometry, University of Manchester, Manchester, United Kingdom
| | - George D Wilson
- Department of Radiation Oncology, Beaumont Health, MI, United States of America
- Henry Ford Health, Detroit, MI, United States of America
| | - Ludwig J Dubois
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
33
|
Silvestre Patallo I, Subiel A, Carter R, Flynn S, Schettino G, Nisbet A. Characterization of Inorganic Scintillator Detectors for Dosimetry in Image-Guided Small Animal Radiotherapy Platforms. Cancers (Basel) 2023; 15:987. [PMID: 36765943 PMCID: PMC9913621 DOI: 10.3390/cancers15030987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
The purpose of the study was to characterize a detection system based on inorganic scintillators and determine its suitability for dosimetry in preclinical radiation research. Dose rate, linearity, and repeatability of the response (among others) were assessed for medium-energy X-ray beam qualities. The response's variation with temperature and beam angle incidence was also evaluated. Absorbed dose quality-dependent calibration coefficients, based on a cross-calibration against air kerma secondary standard ionization chambers, were determined. Relative output factors (ROF) for small, collimated fields (≤10 mm × 10 mm) were measured and compared with Gafchromic film and to a CMOS imaging sensor. Independently of the beam quality, the scintillator signal repeatability was adequate and linear with dose. Compared with EBT3 films and CMOS, ROF was within 5% (except for smaller circular fields). We demonstrated that when the detector is cross-calibrated in the user's beam, it is a useful tool for dosimetry in medium-energy X-rays with small fields delivered by Image-Guided Small Animal Radiotherapy Platforms. It supports the development of procedures for independent "live" dose verification of complex preclinical radiotherapy plans with the possibility to insert the detectors in phantoms.
Collapse
Affiliation(s)
- Ileana Silvestre Patallo
- Medical Radiation Physics and Science Groups, National Physical Laboratory (NPL), Guilford TW11 0LW, UK
| | - Anna Subiel
- Medical Radiation Physics and Science Groups, National Physical Laboratory (NPL), Guilford TW11 0LW, UK
| | - Rebecca Carter
- Cancer Institute, University College London, London WC1E 6DD, UK
| | - Samuel Flynn
- Medical Radiation Physics and Science Groups, National Physical Laboratory (NPL), Guilford TW11 0LW, UK
- School of Physics and Astronomy, University of Birmingham, Edgbaston Campus, Birmingham B15 2TT, UK
| | - Giuseppe Schettino
- Medical Radiation Physics and Science Groups, National Physical Laboratory (NPL), Guilford TW11 0LW, UK
- Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Andrew Nisbet
- Department of Medical Physics & Biomedical Engineering, University College London, Mallet Place Engineering Building, London WC1E 6BT, UK
| |
Collapse
|
34
|
Salas-Ramirez M, Lassmann M, Eberlein U. GATE/Geant4-based dosimetry for ex vivo in solution irradiation of blood with radionuclides. Z Med Phys 2023; 33:46-53. [PMID: 35623943 PMCID: PMC10082371 DOI: 10.1016/j.zemedi.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
Abstract
To establish a dose-response relationship between radiation-induced DNA damage and the corresponding absorbed doses in blood irradiated with radionuclides in solution under ex vivo conditions, the absorbed dose coefficient for 1 ml for 1 h internal ex vivo irradiation of peripheral blood (dBlood) must be determined. dBlood is specific for each radionuclide, and it depends on the irradiation geometry. Therefore, the aim of this study is to use the Monte Carlo radiation transport code GATE/Geant4 to calculate the mean absorbed dose rates for ex vivo irradiation of blood with several radionuclides used in Nuclear Medicine. METHODS The Monte Carlo simulation reproduces the irradiation geometry of a blood sample of 7 ml mixed with 1 ml of a water equivalent radioactive solution in an 8 ml vial. The simulation was performed for ten different radionuclides: 18F, 68Ga, 90Y, 99mTc, 123I, 124I, 131I, 177Lu, 223Ra, and 225Ac. Two sets of simulations for each radionuclide were performed with 1x109 histories. The first set was simulated with a mass density of 1.0525 g/cm3 of the blood plus water mixture. The second set of simulations was performed with a mass density of 1 g/cm3 for comparison with previous studies. RESULTS The values of dBlood for ten radionuclides were calculated. The values range from 10.23 mGy∙ml∙MBq-1 for 99mTc to 15632.02 mGy∙ml∙MBq-1 for 225Ac. The maximum relative change compared to previous studies was 13.0% for 124I. CONCLUSION This study provides a comprehensive set of absorbed dose coefficients for 1 ml for 1 h internal ex vivo irradiation of peripheral blood in a special vial geometry and radionuclides typically used in Nuclear Medicine. Furthermore, the method proposed by this work can be easily adapted to a variety of internal irradiation conditions and serve as a reference for future studies.
Collapse
Affiliation(s)
| | - Michael Lassmann
- Department of Nuclear Medicine, University of Würzburg, Würzburg, Germany
| | - Uta Eberlein
- Department of Nuclear Medicine, University of Würzburg, Würzburg, Germany
| |
Collapse
|
35
|
Guillou M, L’Homme B, Trompier F, Gruel G, Prezado Y, Dos Santos M. Preclinical modeling of low energy X-rays radiological burn: Dosimetry study by monte carlo simulations and EPR spectroscopy. Front Physiol 2022; 13:1075665. [PMID: 36569747 PMCID: PMC9772824 DOI: 10.3389/fphys.2022.1075665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
Interventional radiology has grown considerably over the last decades and become an essential tool for treatment or diagnosis. This technique is mostly beneficial and mastered but accidental overexposure can occur and lead to the appearance of deterministic effects. The lack of knowledge about the radiobiological consequences for the low-energy X-rays used for these practices makes the prognosis very uncertain for the different tissues. In order to improve the radiation protection of patients and better predict the risk of complications, we implemented a new preclinical mouse model to mimic radiological burn in interventional radiology and performed a complete characterization of the dose deposition. A new setup and collimator were designed to irradiate the hind legs of 15 mice at 30 Gy in air kerma at 80 kV. After irradiation, mice tibias were collected to evaluate bone dose by Electron Paramagnetic Resonance (EPR) spectroscopy measurements. Monte Carlo simulations with Geant4 were performed in simplified and voxelized phantoms to characterize the dose deposition in different tissues and evaluate the characteristics of secondary electrons (energy, path, momentum). 30 mice tibias were collected for EPR analysis. An average absorbed dose of 194.0 ± 27.0 Gy was measured in bone initially irradiated at 30 Gy in air kerma. A bone to air conversion factor of 6.5 ± 0.9 was determined. Inter sample and inter mice variability has been estimated to 13.9%. Monte Carlo simulations shown the heterogeneity of the dose deposition for these low X-rays energies and the dose enhancement in dense tissue. The specificities of the secondary electrons were studied and showed the influence of the tissue density on energies and paths. A good agreement between the experimental and calculated bone to air conversion factor was obtained. A new preclinical model allowing to perform radiological burn in interventional radiology-like conditions was implemented. For the development of new preclinical radiobiological model where the exact knowledge of the dose deposited in the different tissues is essential, the complementarity of Monte Carlo simulations and experimental measurements for the dosimetric characterization has proven to be a considerable asset.
Collapse
Affiliation(s)
- Manon Guillou
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRAcc, Fontenay-aux-Roses, France
| | - Bruno L’Homme
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRAcc, Fontenay-aux-Roses, France
| | - François Trompier
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE/SDOS/LDRI, Fontenay-aux-Roses, France
| | - Gaëtan Gruel
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRAcc, Fontenay-aux-Roses, France
| | - Yolanda Prezado
- Institut Curie, University Paris Saclay, PSL Research University, Inserm U 1021-CNRS UMR 3347, Orsay, France
| | - Morgane Dos Santos
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRAcc, Fontenay-aux-Roses, France,*Correspondence: Morgane Dos Santos,
| |
Collapse
|
36
|
Parisi A, Beltran CJ, Furutani KM. The Mayo Clinic Florida Microdosimetric Kinetic Model of Clonogenic Survival: Application to Various Repair-Competent Rodent and Human Cell Lines. Int J Mol Sci 2022; 23:12491. [PMID: 36293348 PMCID: PMC9604502 DOI: 10.3390/ijms232012491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 11/30/2022] Open
Abstract
The relative biological effectiveness (RBE) calculations used during the planning of ion therapy treatments are generally based on the microdosimetric kinetic model (MKM) and the local effect model (LEM). The Mayo Clinic Florida MKM (MCF MKM) was recently developed to overcome the limitations of previous MKMs in reproducing the biological data and to eliminate the need for ion-exposed in vitro data as input for the model calculations. Since we are considering to implement the MCF MKM in clinic, this article presents (a) an extensive benchmark of the MCF MKM predictions against corresponding in vitro clonogenic survival data for 4 rodent and 10 cell lines exposed to ions from 1H to 238U, and (b) a systematic comparison with published results of the latest version of the LEM (LEM IV). Additionally, we introduce a novel approach to derive an approximate value of the MCF MKM model parameters by knowing only the animal species and the mean number of chromosomes. The overall good agreement between MCF MKM predictions and in vitro data suggests the MCF MKM can be reliably used for the RBE calculations. In most cases, a reasonable agreement was found between the MCF MKM and the LEM IV.
Collapse
Affiliation(s)
- Alessio Parisi
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | | |
Collapse
|
37
|
Marcu LG, Bezak E, Sykes PJ. Radiation Research Journals Need to Stipulate Minimal Dosimetry Requirements for Publishing Research Using X-Radiation Exposures. Radiat Res 2022; 198:204-206. [PMID: 35640161 DOI: 10.1667/rade-22-00063.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/16/2022] [Indexed: 11/03/2022]
Affiliation(s)
- Loredana G Marcu
- Faculty of Informatics and Science, University of Oradea, 1 Universitatii str, 410087 Oradea, Romania.,Medical Radiation, University of South Australia, Adelaide, South Australia, Australia
| | - Eva Bezak
- Medical Radiation, University of South Australia, Adelaide, South Australia, Australia.,School of Physical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Pamela J Sykes
- Flinders Health and Medical Research Institute - Cancer Program, Flinders University, Bedford Park, South Australia, Australia
| |
Collapse
|
38
|
Hao LH, Hieu DTT, Luan LQ, Phuong HT, Dinh V, Tuyen LA, Hong PTT, Van Man T, Tap TD. Electron and gamma irradiation‐induced effects in poly(ethylene‐co‐tetrafluoroethylene) films. J Appl Polym Sci 2022. [DOI: 10.1002/app.52620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lam Hoang Hao
- Faculty of Materials Science and Technology University of Science Ho Chi Minh City Vietnam
- Viet Nam National University Ho Chi Minh City Vietnam
| | - Dinh Tran Trong Hieu
- Faculty of Materials Science and Technology University of Science Ho Chi Minh City Vietnam
- Viet Nam National University Ho Chi Minh City Vietnam
- Physics Laboratory, Le Thanh Ton High School Ho Chi Minh City Vietnam
| | - Le Quang Luan
- Biotechnology Center of Ho Chi Minh City Ho Chi Minh City Vietnam
| | - Huynh Truc Phuong
- Viet Nam National University Ho Chi Minh City Vietnam
- Faculty of Physics and Engineering Physics University of Science Ho Chi Minh City Vietnam
| | - Van‐Phuc Dinh
- Institute of Fundamental and Applied Sciences Duy Tan University Ho Chi Minh City Vietnam
| | - Luu Anh Tuyen
- Center for Nuclear Techniques Viet Nam Atomic Energy Institute Ho Chi Minh City Vietnam
| | - Pham Thi Thu Hong
- Research and Development Center for Radiation Technology (VINAGAMMA) Ho Chi Minh City Vietnam
| | - Tran Van Man
- Viet Nam National University Ho Chi Minh City Vietnam
- Applied Physical Chemistry Laboratory, Department of Physical Chemistry University of Science Ho Chi Minh City Vietnam
| | - Tran Duy Tap
- Faculty of Materials Science and Technology University of Science Ho Chi Minh City Vietnam
- Viet Nam National University Ho Chi Minh City Vietnam
| |
Collapse
|
39
|
Bucher M, Weiss T, Endesfelder D, Trompier F, Ristic Y, Kunert P, Schlattl H, Giussani A, Oestreicher U. Dose Variations Using an X-Ray Cabinet to Establish in vitro Dose-Response Curves for Biological Dosimetry Assays. Front Public Health 2022; 10:903509. [PMID: 35655448 PMCID: PMC9152255 DOI: 10.3389/fpubh.2022.903509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
In biological dosimetry, dose-response curves are essential for reliable retrospective dose estimation of individual exposure in case of a radiation accident. Therefore, blood samples are irradiated in vitro and evaluated based on the applied assay. Accurate physical dosimetry of the irradiation performance is a critical part of the experimental procedure and is influenced by the experimental setup, especially when X-ray cabinets are used. The aim of this study was to investigate variations and pitfalls associated with the experimental setups used to establish calibration curves in biological dosimetry with X-ray cabinets. In this study, irradiation was performed with an X-ray source (195 kV, 10 mA, 0.5 mm Cu filter, dose rate 0.52 Gy/min, 1st and 2nd half-value layer = 1.01 and 1.76 mm Cu, respectively, average energy 86.9 keV). Blood collection tubes were irradiated with a dose of 1 Gy in vertical or horizontal orientation in the center of the beam area with or without usage of an additional fan heater. To evaluate the influence of the setups, physical dose measurements using thermoluminescence dosimeters, electron paramagnetic resonance dosimetry and ionization chamber as well as biological effects, quantified by dicentric chromosomes and micronuclei, were compared. This study revealed that the orientation of the sample tubes (vertical vs. horizontal) had a significant effect on the radiation dose with a variation of -41% up to +49% and contributed to a dose gradient of up to 870 mGy inside the vertical tubes due to the size of the sample tubes and the associated differences in the distance to the focal point of the tube. The number of dicentric chromosomes and micronuclei differed by ~30% between both orientations. An additional fan heater had no consistent impact. Therefore, dosimetric monitoring of experimental irradiation setups is mandatory prior to the establishment of calibration curves in biological dosimetry. Careful consideration of the experimental setup in collaboration with physicists is required to ensure traceability and reproducibility of irradiation conditions, to correlate the radiation dose and the number of aberrations correctly and to avoid systematical bias influencing the dose estimation in the frame of biological dosimetry.
Collapse
Affiliation(s)
- Martin Bucher
- Department of Effects and Risks of Ionizing and Non-Ionizing Radiation, Federal Office for Radiation Protection (BfS), Oberschleißheim, Germany
| | - Tina Weiss
- Department of Medical and Occupational Radiation Protection, Federal Office for Radiation Protection (BfS), Oberschleißheim, Germany
| | - David Endesfelder
- Department of Effects and Risks of Ionizing and Non-Ionizing Radiation, Federal Office for Radiation Protection (BfS), Oberschleißheim, Germany
| | - Francois Trompier
- Department of External Dosimetry, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | - Yoann Ristic
- Department of External Dosimetry, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | - Patrizia Kunert
- Department of Medical and Occupational Radiation Protection, Federal Office for Radiation Protection (BfS), Oberschleißheim, Germany
| | - Helmut Schlattl
- Department of Medical and Occupational Radiation Protection, Federal Office for Radiation Protection (BfS), Oberschleißheim, Germany
| | - Augusto Giussani
- Department of Medical and Occupational Radiation Protection, Federal Office for Radiation Protection (BfS), Oberschleißheim, Germany
| | - Ursula Oestreicher
- Department of Effects and Risks of Ionizing and Non-Ionizing Radiation, Federal Office for Radiation Protection (BfS), Oberschleißheim, Germany
| |
Collapse
|
40
|
Brown KH, Ghita M, Dubois LJ, de Ruysscher D, Prise KM, Verhaegen F, Butterworth KT. A scoping review of small animal image-guided radiotherapy research: Advances, impact and future opportunities in translational radiobiology. Clin Transl Radiat Oncol 2022; 34:112-119. [PMID: 35496817 PMCID: PMC9046563 DOI: 10.1016/j.ctro.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/04/2022] [Indexed: 11/18/2022] Open
Abstract
Background and purpose To provide a scoping review of published studies using small animal irradiators and highlight the progress in preclinical radiotherapy (RT) studies enabled by these platforms since their development and commercialization in 2007. Materials and methods PubMed searches and manufacturer records were used to identify 907 studies that were screened with 359 small animal RT studies included in the analyses. These articles were classified as biology or physics contributions and into subgroups based on research aims, experimental models and other parameters to identify trends in the preclinical RT research landscape. Results From 2007 to 2021, most published articles were biology contributions (62%) whilst physics contributions accounted for 38% of the publications. The main research areas of physics articles were in dosimetry and calibration (24%), treatment planning and simulation (22%), and imaging (22%) and the studies predominantly used phantoms (41%) or in vivo models (34%). The majority of biology contributions were tumor studies (69%) with brain being the most commonly investigated site. The most frequently investigated areas of tumor biology were evaluating radiosensitizers (33%), model development (30%) and imaging (21%) with cell-line derived xenografts the most common model (82%). 31% of studies focused on normal tissue radiobiology and the lung was the most investigated site. Conclusions This study captures the trends in preclinical RT research using small animal irradiators from 2007 to 2021. Our data show the increased uptake and outputs from preclinical RT studies in important areas of biology and physics research that could inform translation to clinical trials.
Collapse
Affiliation(s)
- Kathryn H. Brown
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, United Kingdom
| | - Mihaela Ghita
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, United Kingdom
| | - Ludwig J. Dubois
- The M-Lab, Department of Precision Medicine, GROW – School for Oncology, Maastricht University, Maastricht, The Netherlands
| | - Dirk de Ruysscher
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Kevin M. Prise
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, United Kingdom
| | - Frank Verhaegen
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Karl T. Butterworth
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
41
|
Biglin ER, Aitkenhead AH, Price GJ, Chadwick AL, Santina E, Williams KJ, Kirkby KJ. A preclinical radiotherapy dosimetry audit using a realistic 3D printed murine phantom. Sci Rep 2022; 12:6826. [PMID: 35474242 PMCID: PMC9042835 DOI: 10.1038/s41598-022-10895-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 04/05/2022] [Indexed: 11/08/2022] Open
Abstract
Preclinical radiation research lacks standardized dosimetry procedures that provide traceability to a primary standard. Consequently, ensuring accuracy and reproducibility between studies is challenging. Using 3D printed murine phantoms we undertook a dosimetry audit of Xstrahl Small Animal Radiation Research Platforms (SARRPs) installed at 7 UK centres. The geometrically realistic phantom accommodated alanine pellets and Gafchromic EBT3 film for simultaneous measurement of the dose delivered and the dose distribution within a 2D plane, respectively. Two irradiation scenarios were developed: (1) a 10 × 10 mm2 static field targeting the pelvis, and (2) a 5 × 5 mm2 90° arc targeting the brain. For static fields, the absolute difference between the planned dose and alanine measurement across all centres was 4.1 ± 4.3% (mean ± standard deviation), with an overall range of - 2.3 to 10.5%. For arc fields, the difference was - 1.2% ± 6.1%, with a range of - 13.1 to 7.7%. EBT3 dose measurements were greater than alanine by 2.0 ± 2.5% and 3.5 ± 6.0% (mean ± standard deviation) for the static and arc fields, respectively. 2D dose distributions showed discrepancies to the planned dose at the field edges. The audit demonstrates that further work on preclinical radiotherapy quality assurance processes is merited.
Collapse
Affiliation(s)
- Emma R Biglin
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, 3rd floor Proton Beam Therapy Centre, Oak Road, Manchester, M20 4BX, UK.
| | - Adam H Aitkenhead
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, 3rd floor Proton Beam Therapy Centre, Oak Road, Manchester, M20 4BX, UK
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - Gareth J Price
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, 3rd floor Proton Beam Therapy Centre, Oak Road, Manchester, M20 4BX, UK
- The Christie NHS Foundation Trust, Manchester, UK
| | - Amy L Chadwick
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, 3rd floor Proton Beam Therapy Centre, Oak Road, Manchester, M20 4BX, UK
- The Christie NHS Foundation Trust, Manchester, UK
| | - Elham Santina
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, 3rd floor Proton Beam Therapy Centre, Oak Road, Manchester, M20 4BX, UK
- The Christie NHS Foundation Trust, Manchester, UK
| | - Kaye J Williams
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Karen J Kirkby
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, 3rd floor Proton Beam Therapy Centre, Oak Road, Manchester, M20 4BX, UK
- The Christie NHS Foundation Trust, Manchester, UK
| |
Collapse
|
42
|
Kampfer S, Duda MA, Dobiasch S, Combs SE, Wilkens JJ. A comprehensive and efficient quality assurance program for an image-guided small animal irradiation system. Z Med Phys 2022; 32:261-272. [PMID: 35370028 PMCID: PMC9948878 DOI: 10.1016/j.zemedi.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 01/19/2022] [Accepted: 02/09/2022] [Indexed: 11/26/2022]
Abstract
In the field of preclinical radiotherapy, many new developments were driven by technical innovations. To make research of different groups comparable in that context and reliable, high quality has to be maintained. Therefore, standardized protocols and programs should be used. Here we present a guideline for a comprehensive and efficient quality assurance program for an image-guided small animal irradiation system, which is meant to test all the involved subsystems (imaging, treatment planning, and the irradiation system in terms of geometric accuracy and dosimetric aspects) as well as the complete procedure (end-to-end test) in a time efficient way. The suggestions are developed on a Small Animal Radiation Research Platform (SARRP) from Xstrahl (Xstrahl Ltd., Camberley, UK) and are presented together with proposed frequencies (from monthly to yearly) and experiences on the duration of each test. All output and energy related measurements showed stable results within small variation. Also, the motorized parts (couch, gantry) and other geometrical alignments were very stable. For the checks of the imaging system, the results are highly dependent on the chosen protocol and differ according to the settings. We received nevertheless stable and comparably good results for our mainly used protocol. All investigated aspects of treatment planning were exactly fulfilled and also the end-to-end test showed satisfying values. The mean overall time we needed for our checks to have a well monitored machine is less than two hours per month.
Collapse
Affiliation(s)
- Severin Kampfer
- Department of Radiation Oncology, School of Medicine and Klinikum rechts der Isar, Technical University of Munich (TUM), Ismaninger Str. 22, Munich, Germany; Physics Department, Technical University of Munich (TUM), James-Franck-Str. 1, 85748, Garching, Germany.
| | - Manuela A. Duda
- Department of Radiation Oncology, School of Medicine and Klinikum rechts der Isar, Technical University of Munich (TUM), Ismaninger Str. 22, Munich, Germany,Physics Department, Technical University of Munich (TUM), James-Franck-Str. 1, 85748, Garching, Germany
| | - Sophie Dobiasch
- Department of Radiation Oncology, School of Medicine and Klinikum rechts der Isar, Technical University of Munich (TUM), Ismaninger Str. 22, Munich, Germany; Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.
| | - Stephanie E. Combs
- Department of Radiation Oncology, School of Medicine and Klinikum rechts der Isar, Technical University of Munich (TUM), Ismaninger Str. 22, Munich, Germany,Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany,German Cancer Consortium (DKTK), Munich, Germany
| | - Jan J. Wilkens
- Department of Radiation Oncology, School of Medicine and Klinikum rechts der Isar, Technical University of Munich (TUM), Ismaninger Str. 22, Munich, Germany,Physics Department, Technical University of Munich (TUM), James-Franck-Str. 1, 85748, Garching, Germany
| |
Collapse
|
43
|
Radstake WE, Baselet B, Baatout S, Verslegers M. Spaceflight Stressors and Skin Health. Biomedicines 2022; 10:364. [PMID: 35203572 PMCID: PMC8962330 DOI: 10.3390/biomedicines10020364] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 02/06/2023] Open
Abstract
Traveling to space puts astronauts at risk of developing serious health problems. Of particular interest is the skin, which is vitally important in protecting the body from harmful environmental factors. Although data obtained from long-duration spaceflight studies are inconsistent, there have been indications of increased skin sensitivity and signs of dermal atrophy in astronauts. To better understand the effects of spaceflight stressors including microgravity, ionizing radiation and psychological stress on the skin, researchers have turned to in vitro and in vivo simulation models mimicking certain aspects of the spaceflight environment. In this review, we provide an overview of these simulation models and highlight studies that have improved our understanding on the effect of simulation spaceflight stressors on skin function. Data show that all aforementioned spaceflight stressors can affect skin health. Nevertheless, there remains a knowledge gap regarding how different spaceflight stressors in combination may interact and affect skin health. In future, efforts should be made to better simulate the spaceflight environment and reduce uncertainties related to long-duration spaceflight health effects.
Collapse
Affiliation(s)
- Wilhelmina E. Radstake
- Radiobiology Unit, SCK CEN, Belgian Nuclear Research Centre, 2400 Mol, Belgium; (W.E.R.); (S.B.); (M.V.)
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Bjorn Baselet
- Radiobiology Unit, SCK CEN, Belgian Nuclear Research Centre, 2400 Mol, Belgium; (W.E.R.); (S.B.); (M.V.)
| | - Sarah Baatout
- Radiobiology Unit, SCK CEN, Belgian Nuclear Research Centre, 2400 Mol, Belgium; (W.E.R.); (S.B.); (M.V.)
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Mieke Verslegers
- Radiobiology Unit, SCK CEN, Belgian Nuclear Research Centre, 2400 Mol, Belgium; (W.E.R.); (S.B.); (M.V.)
| |
Collapse
|
44
|
A comprehensive analysis of the relationship between dose-rate and biological effects in pre-clinical and clinical studies, from brachytherapy to flattening filter-free radiation therapy and FLASH irradiation. Int J Radiat Oncol Biol Phys 2022; 113:985-995. [DOI: 10.1016/j.ijrobp.2022.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/01/2022] [Accepted: 02/05/2022] [Indexed: 01/16/2023]
|
45
|
Garty G, Harken A, Brenner D. Traceable dosimetry for MeV ion beams. JOURNAL OF INSTRUMENTATION : AN IOP AND SISSA JOURNAL 2022; 17:T02002. [PMID: 35497570 PMCID: PMC9052763 DOI: 10.1088/1748-0221/17/02/t02002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Standard dosimetry protocols exist for highly penetrating photon and particle beams used in the clinic and in research. However, these protocols cannot be directly applied to shallow penetration MeV-range ion beams. The Radiological Research Accelerator Facility has been using such beams for almost 50 years to irradiate cell monolayers, using self-developed dosimetry, based on tissue equivalent ionization chambers. To better align with the internationally accepted standards, we describe implementation of a commercial, NIST-traceable, air-filled ionization chamber for measurement of absorbed dose to water from low energy ions, using radiation quality correction factors calculated using TRS-398 recommendations. The reported dose does not depend on the ionization density in the range of 10-150 keV/μm.
Collapse
Affiliation(s)
- G. Garty
- Radiological Research Accelerator Facility, Columbia University, 136 S. Broadway, Irvington, NY 10533, U.S.A
| | - A.D. Harken
- Radiological Research Accelerator Facility, Columbia University, 136 S. Broadway, Irvington, NY 10533, U.S.A
| | - D.J. Brenner
- Radiological Research Accelerator Facility, Columbia University, 136 S. Broadway, Irvington, NY 10533, U.S.A
| |
Collapse
|
46
|
Mahuvava C, Esplen NM, Poirier Y, Kry SF, Bazalova-Carter M. Dose calculations for pre-clinical radiobiology experiments conducted with single-field cabinet irradiators. Med Phys 2022; 49:1911-1923. [PMID: 35066889 DOI: 10.1002/mp.15487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/10/2021] [Accepted: 12/21/2021] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To provide percentage depth-dose (PDD) data along the central axis for dosimetry calculations in small-animal radiation biology experiments performed in cabinet irradiators. The PDDs are provided as a function of source-to-surface distance (SSD), field size and animal size. METHODS The X-ray tube designs for four biological cabinet irradiators, the RS2000, RT250, MultiRad350 and XRAD320, were simulated using the BEAMnrc Monte Carlo code to generate 160, 200, 250 and 320 kVp photon beams, respectively. The 320 kVp beam was simulated with two filtrations: a soft F1 aluminium filter and a hard F2 thoraeus filter made of aluminium, tin and copper. Beams were collimated into circular fields with diameters of 0.5 - 10 cm at SSDs of 10 - 60 cm. Monte Carlo dose calculations in 1 - 5-cm diameter homogeneous (soft tissue) small-animal phantoms as well as in heterogeneous phantoms with 3-mm diameter cylindrical lung and bone inserts (rib and cortical bone) were performed using DOSXYZnrc. The calculated depth doses in three test-cases were estimated by applying SSD, field size and animal size correction factors to a reference case (40 cm SSD, 1 cm field and 5 cm animal size) and these results were compared with the specifically simulated (i.e., expected) doses to assess the accuracy of this method. Dosimetry for two test-case scenarios of 160 and 250 kVp beams (representative of end-user beam qualities) was also performed, whereby the simulated PDDs at two different depths were compared with the results based on the interpolation from reference data. RESULTS The depth doses for three test-cases calculated at 200, 320 kVp F1 and 320 kVp F2, with half value layers (HVL) ranging from ∼0.6 mm to 3.6 mm Cu, agreed well with the expected doses, yielding dose differences of 1.2, 0.1 and 1.0%, respectively. The two end-user test-cases for 160 and 250 kVp beams with respective HVLs of ∼0.8 and 1.8 mm Cu yielded dose differences of 1.4 and 3.2% between the simulated and the interpolated PDDs. The dose increase at the bone-tissue proximal interface ranged from 1.2 to 2.5 times the dose in soft tissue for rib and 1.3 to 3.7 times for cortical bone. The dose drop-off at 1-cm depth beyond the bone ranged from 1.3 - 6.0% for rib and 3.2 - 11.7% for cortical bone. No drastic dose perturbations occurred in the presence of lung, with lung-tissue interface dose of >99% of soft tissue dose and <3% dose increase at 1-cm depth beyond lung. CONCLUSIONS The developed dose estimation method can be used to translate the measured dose at a point to dose at any depth in small-animal phantoms, making it feasible for pre-clinical calculation of dose distributions in animals irradiated with cabinet-style irradiators. The dosimetric impact of bone must be accurately quantified as dramatic dose perturbations at and beyond the bone interfaces can occur due to the relative importance of the photoelectric effect at kilovoltage energies. These results will help improve dosimetric accuracy in pre-clinical experiments. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Courage Mahuvava
- Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, V8P 5C2, Canada
| | - Nolan Matthew Esplen
- Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, V8P 5C2, Canada
| | - Yannick Poirier
- Department of Medical Physics, McGill University, Montreal, Quebec, H4A 3J1, Canada
| | - Stephen F Kry
- Department of Radiation Physics, University of Texas MD Anderson, Cancer Centre, Houston, TX, 77030, USA
| | - Magdalena Bazalova-Carter
- Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, V8P 5C2, Canada
| |
Collapse
|
47
|
Corrigan KL, Kry S, Howell RM, Kouzy R, Jaoude JA, Patel RR, Jhingran A, Taniguchi C, Koong AC, McAleer MF, Nitsch P, Rödel C, Fokas E, Minsky BD, Das P, Fuller CD, Ludmir EB. The radiotherapy quality assurance gap among phase III cancer clinical trials. Radiother Oncol 2022; 166:51-57. [PMID: 34838891 PMCID: PMC8900671 DOI: 10.1016/j.radonc.2021.11.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 01/03/2023]
Abstract
PURPOSE Quality assurance (QA) practices improve the quality level of oncology trials by ensuring that the protocol is followed and the results are valid and reproducible. This study investigated the utilization of QA among randomized controlled trials that involve radiotherapy (RT). METHODS AND MATERIALS We searched ClinicalTrials.gov in February 2020 for all phase III oncology randomized clinical trials (RCTs). These trials were screened for RT-specific RCTs that had published primary trial results. Information regarding QA in each trial was collected from the study publications and trial protocol if available. Two individuals independently performed trial screening and data collection. Pearson's Chi-square tests analyses were used to assess factors that were associated with QA inclusion in RT trials. RESULTS Forty-two RCTs with RT as the primary intervention or as a mandatory component of the protocol were analyzed; the earliest was started in 1994 and one trial was still active though not recruiting. Twenty-nine (69%) trials mandated RT quality assurance (RTQA) practices as part of the trial protocol, with 19 (45%) trials requiring institutional credentialing. Twenty-one (50%) trials published protocol deviation outcomes. Clinical trials involving advanced radiation techniques (IMRT, VMAT, SRS, SBRT) did not include more RTQA than trials without these advanced techniques (73% vs. 65%, p = 0.55). Trials that reported protocol deviation outcomes were associated with mandating RTQA in their protocols as compared to trials that did not report these outcomes (100% vs. 38%, p < 0.001). CONCLUSIONS There is a lack of RTQA utilization and transparency in RT clinical trials. It is imperative for RT trials to include increased QA for safe, consistent, and high-quality RT planning and delivery.
Collapse
Affiliation(s)
- Kelsey L. Corrigan
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, USA, 77030,
| | - Stephen Kry
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, USA, 77030
| | - Rebecca M. Howell
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, USA, 77030
| | - Ramez Kouzy
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, USA, 77030
| | - Joseph Abi Jaoude
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, USA, 77030
| | - Roshal R. Patel
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, USA, 77030
| | - Anuja Jhingran
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, USA, 77030
| | - Cullen Taniguchi
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, USA, 77030
| | - Albert C. Koong
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, USA, 77030
| | - Mary Fran McAleer
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, USA, 77030
| | - Paige Nitsch
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, USA, 77030
| | - Claus Rödel
- University of Frankfurt, 60323 Frankfurt am Main, Frankfurt, Germany,German Cancer Research Center, 69120 Im Neuenheimer Feld 280, Heidelberg, Germany,German Cancer Consortium, 60590 Frankfurt am Main, Frankfurt, Germany,Frankfurt Cancer Institute, 60596 Frankfurt am Main, Frankfurt, Germany
| | - Emmanouil Fokas
- University of Frankfurt, 60323 Frankfurt am Main, Frankfurt, Germany,German Cancer Research Center, 69120 Im Neuenheimer Feld 280, Heidelberg, Germany,German Cancer Consortium, 60590 Frankfurt am Main, Frankfurt, Germany,Frankfurt Cancer Institute, 60596 Frankfurt am Main, Frankfurt, Germany
| | - Bruce D. Minsky
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, USA, 77030
| | - Prajnan Das
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, USA, 77030
| | - C. David Fuller
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, USA, 77030
| | - Ethan B. Ludmir
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, USA, 77030,Corresponding Author: Ethan B. Ludmir, M.D., 1400 Pressler St., Unit 1422, Houston TX, USA 77030, Phone: 832-729-0998,
| |
Collapse
|
48
|
Silvestre Patallo I, Carter R, Maughan D, Nisbet A, Schettino G, Subiel A. Evaluation of a micro ionization chamber for dosimetric measurements in image-guided preclinical irradiation platforms. Phys Med Biol 2021; 66. [PMID: 34794132 DOI: 10.1088/1361-6560/ac3b35] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 11/18/2021] [Indexed: 11/12/2022]
Abstract
Image-guided small animal irradiation platforms deliver small radiation fields in the medium energy x-ray range. Commissioning of such platforms, followed by dosimetric verification of treatment planning, are mostly performed with radiochromic film. There is a need for independent measurement methods, traceable to primary standards, with the added advantage of immediacy in obtaining results. This investigation characterizes a small volume ionization chamber in medium energy x-rays for reference dosimetry in preclinical irradiation research platforms. The detector was exposed to a set of reference x-ray beams (0.5 to 4 mm Cu HVL). Leakage, reproducibility, linearity, response to detector's orientation, dose rate, and energy dependence were determined for a 3D PinPoint ionization chamber (PTW 31022). Polarity and ion recombination were also studied. Absorbed doses at 2 cm depth were compared, derived either by applying the experimentally determined cross-calibration coefficient at a typical small animal radiation platform "user's" quality (0.84 mm Cu HVL) or by interpolation from air kerma calibration coefficients in a set of reference beam qualities. In the range of reference x-ray beams, correction for ion recombination was less than 0.1%. The largest polarity correction was 1.4% (for 4 mm Cu HVL). Calibration and correction factors were experimentally determined. Measurements of absorbed dose with the PTW 31022, in conditions different from reference were successfully compared to measurements with a secondary standard ionization chamber. The implementation of an End-to-End test for delivery of image-targeted small field plans resulted in differences smaller than 3% between measured and treatment planning calculated doses. The investigation of the properties and response of a PTW 31022 small volume ionization chamber in medium energy x-rays and small fields can contribute to improve measurement uncertainties evaluation for reference and relative dosimetry of small fields delivered by preclinical irradiators while maintaining the traceability chain to primary standards.
Collapse
Affiliation(s)
- Ileana Silvestre Patallo
- Medical, Marine & Nuclear: Medical Radiation Physics&Sciences, National Physical Laboratory, Teddington, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Rebecca Carter
- Cancer Institute, University College London, London, London, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - David Maughan
- Medical, Marine & Nuclear: Medical Radiation Physics&Sciences, National Physical Laboratory, Teddington, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Andrew Nisbet
- Department of Medical Physics & Biomedical Engineering, University College London, London, London, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Giuseppe Schettino
- Medical, Marine & Nuclear: Medical Radiation Physics&Sciences, National Physical Laboratory, Teddington, Middlesex, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Anna Subiel
- Medical, Marine & Nuclear: Medical Radiation Physics&Sciences, National Physical Laboratory, Teddington, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
49
|
Parisi A, Struelens L, Vanhavere F. Comparison between the results of a recently-developed biological weighting function (V79-RBE 10BWF) and the in vitroclonogenic survival RBE 10of other repair-competent asynchronized normoxic mammalian cell lines and ions not used for the development of the model. Phys Med Biol 2021; 66. [PMID: 34710862 DOI: 10.1088/1361-6560/ac344e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/28/2021] [Indexed: 11/11/2022]
Abstract
728 simulated microdosimetric lineal energy spectra (26 different ions between 1H and 238U, 28 energy points from 1 to 1000 MeV/n) were used in combination with a recently-developed biological weighting function (Parisi et al., 2020) and 571 published in vitro clonogenic survival curves in order to: 1) assess prediction intervals for the in silico results by deriving an empirical indication of the experimental uncertainty from the dispersion in the in vitro hamster lung fibroblast (V79) data used for the development of the biophysical model; 2) explore the possibility of modeling the relative biological effectiveness (RBE) of the 10% clonogenic survival of asynchronized normoxic repair-competent mammalian cell lines other than the one used for the development of the model (V79); 3) investigate the predictive power of the model through a comparison between in silico results and in vitro data for 10 ions not used for the development of the model. At first, different strategies for the assessment of the in silico prediction intervals were compared. The possible sources of uncertainty responsible for the dispersion in the in vitro data were also shortly reviewed. Secondly, also because of the relevant scatter in the in vitro data, no statistically-relevant differences were found between the RBE10 of the investigated different asynchronized normoxic repair-competent mammalian cell lines. The only exception (Chinese Hamster peritoneal fibroblasts, B14FAF28), is likely due to the limited dataset (all in vitro ion data were extracted from a single publication), systematic differences in the linear energy transfer (LET) calculations for the employed very-heavy ions, and the use of reference photon survival curves extracted from a different publication. Finally, the in silico predictions for the 10 ions not used for the model development were in good agreement with the corresponding in vitro data.
Collapse
Affiliation(s)
- Alessio Parisi
- Radiation Protection Dosimetry and Calibration, Studiecentrum voor Kernenergie, Boeretang 200, Mol, Belgiun, Mol, 2400, BELGIUM
| | - Lara Struelens
- Radiation Protection, Dosimetry and Calibration, Belgian Nuclear Research Centre SCK.CEN, Boeretang 200, Mol, 2400, BELGIUM
| | - Filip Vanhavere
- Institute of Advanced Nuclear Systems, Belgian Nuclear Research Centre SCK.CEN, Boeretang 200, B-2400 Mol, Mol, BELGIUM
| |
Collapse
|
50
|
Bucher M, Trinkl S, Endesfelder D, Weiss T, Gomolka M, Pätzold J, Lechel U, Roessler U, de Las Heras Gala H, Moertl S, Giussani A. Radiation field and dose inhomogeneities using an X-ray cabinet in radiation biology research. Med Phys 2021; 48:8140-8151. [PMID: 34655237 DOI: 10.1002/mp.15297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/03/2021] [Accepted: 10/10/2021] [Indexed: 01/01/2023] Open
Abstract
PURPOSE X-ray cabinets are replacing 137 Cs/60 Co sources in radiation biology research due to advantages in size, handling, and radiation protection. However, because of their different physical properties, X-ray cabinets are more susceptible to experimental influences than conventional sources. The aim of this study was to examine the variations related to the experimental setups typically used to investigate biological radiation effects with X-ray cabinets. MATERIALS AND METHODS A combined approach of physical dose measurements by thermoluminescence dosimetry and detection of biological effects by quantification of γH2AX and 53BP1 foci was used to analyze field inhomogeneity and evaluate the influence of the components of the experimental setup. RESULTS Irradiation was performed using an X-ray tube (195 kV, 10 mA, 0.5-mm-thick copper filter, dose rate of 0.59 Gy/min). Thermoluminescence dosimetry revealed inhomogeneity and a dose decrease of up to 42.3% within the beam area (diameter 31.1 cm) compared to the dose at the center. This dose decrease was consistent with the observed decline in the number of radiation-induced foci by up to 55.9 %. Uniform dose distribution was measured after reducing the size of the radiation field (diameter 12.5 cm). However, when using 15-ml test tubes placed at different positions within this field, the dose decreased by up to 17% in comparison to the central position. Analysis of foci number revealed significant differences between the tubes for γH2AX (1 h) and 53BP1 (4 h) at different time points after irradiation. Neither removal of some tubes nor of the caps improved the dose decrease significantly. By contrast, when using 1.5-ml tubes, dose differences were less than 4%, and no significant differences in foci number were detected. CONCLUSION X-ray cabinets are user-friendly irradiation units for investigating biological radiation effects. However, field inhomogeneities and experimental setup components considerably affect the delivered irradiation doses. For this reason, strict dosimetric monitoring of experimental irradiation setups is mandatory for reliable studies.
Collapse
Affiliation(s)
- Martin Bucher
- Department of Effects and Risks of Ionising and Non-Ionising Radiation, Federal Office for Radiation Protection, Oberschleissheim, Germany
| | - Sebastian Trinkl
- Department of Medical and Occupational Radiation Protection, Federal Office for Radiation Protection, Oberschleissheim, Germany
| | - David Endesfelder
- Department of Effects and Risks of Ionising and Non-Ionising Radiation, Federal Office for Radiation Protection, Oberschleissheim, Germany
| | - Tina Weiss
- Department of Medical and Occupational Radiation Protection, Federal Office for Radiation Protection, Oberschleissheim, Germany
| | - Maria Gomolka
- Department of Effects and Risks of Ionising and Non-Ionising Radiation, Federal Office for Radiation Protection, Oberschleissheim, Germany
| | - Juliane Pätzold
- Department of Effects and Risks of Ionising and Non-Ionising Radiation, Federal Office for Radiation Protection, Oberschleissheim, Germany
| | - Ursula Lechel
- Department of Medical and Occupational Radiation Protection, Federal Office for Radiation Protection, Oberschleissheim, Germany
| | - Ute Roessler
- Department of Effects and Risks of Ionising and Non-Ionising Radiation, Federal Office for Radiation Protection, Oberschleissheim, Germany
| | - Hugo de Las Heras Gala
- Department of Medical and Occupational Radiation Protection, Federal Office for Radiation Protection, Oberschleissheim, Germany
| | - Simone Moertl
- Department of Effects and Risks of Ionising and Non-Ionising Radiation, Federal Office for Radiation Protection, Oberschleissheim, Germany
| | - Augusto Giussani
- Department of Medical and Occupational Radiation Protection, Federal Office for Radiation Protection, Oberschleissheim, Germany
| |
Collapse
|