1
|
Klebaner D, Pollom EL, Rahimy E, Gibbs IC, Adler JR, Chang SD, Li G, Choi CYH, Soltys SG. Phase 1/2 Dose Escalation Trial of 3-Fraction Stereotactic Radiosurgery for Resection Cavities from Large Brain Metastases. Int J Radiat Oncol Biol Phys 2025:S0360-3016(25)00242-1. [PMID: 40089071 DOI: 10.1016/j.ijrobp.2025.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/10/2025] [Accepted: 03/06/2025] [Indexed: 03/17/2025]
Abstract
PURPOSE We performed a dose escalation trial of hypofractionated stereotactic radiosurgery (SRS) to determine the maximum tolerated dose (MTD) of 3-fraction SRS for brain metastases resection cavities. METHODS AND MATERIALS Following surgical resection of a brain metastasis, patients were enrolled by SRS treatment volume onto 2 arms: arm 1 = 4.2-14.1 cm3, approximating a 2 to 3 cm diameter sphere, and arm 2 = 14.2-33.5 cm3 or a 3 to 4 cm sphere equivalent. Dose escalation levels were 24, 27, 30, and 33 Gy in 3 consecutive-day fractions, with 6 patients at each dose level in a 6 + 6 trial design. Dose-limiting toxicity was defined as either acute (within 30 days of SRS) grade 3 to 5 central nervous system toxicity and/or late grade 3 to 5 radiation necrosis occurring at any subsequent timepoint. The MTD was defined as the highest dose where 0 to 1 out of 6 or 0 to 3 out of 12 had a dose-limiting toxicity. RESULTS From 2009 to 2014, 48 evaluable patients were enrolled. One (2%) patient had acute G3 toxicity; dose escalation proceeded to 33 Gy. No MTD was reached. Overall, 14 (29%) of 48 patients had G1-4 late radiation necrosis; G1 in 4 (8%), G2 in 6 (13%), G3 in 2 (4%), and G4 in 2 (4%). At the 33 Gy dose level, any grade necrosis was 58% in all 12 patients, 83% in the 6 patients on the larger volume arm 2; no G3-4 necrosis occurred in smaller arm 1 targets. With a median overall survival of 24 months (95% CI, 18-35), the 1-year cumulative incidence rates were: 10% (95% CI, 3.8-21) for local progression, 48% (95% CI, 33-61) for distant intracranial progression, and 13% (95% CI, 5-24) for radiation necrosis. Nodular meningeal disease occurred in 15% (7 of 48) of patients. CONCLUSIONS Grade 3 to 4 toxicity was 8% and no MTD was reached with dose escalation to 33 Gy in 3 fractions. However, with a 58% incidence of G1-4 radiation necrosis at the 33 Gy level and 33% G3-4 necrosis at 30 Gy on arm 2, a 3-fraction dose of 27-30 Gy for targets 2 to 3 cm and 27 Gy for targets 3 to 4 cm may provide the optimal balance between toxicity and tumor control. A dose of 33 Gy is reserved for cavities <3 cm where tumor control may benefit from higher doses.
Collapse
Affiliation(s)
- Daniella Klebaner
- Department of Radiation Oncology, Stanford Cancer Institute, Stanford University, Stanford, California
| | - Erqi L Pollom
- Department of Radiation Oncology, Stanford Cancer Institute, Stanford University, Stanford, California
| | - Elham Rahimy
- Department of Radiation Oncology, Stanford Cancer Institute, Stanford University, Stanford, California
| | - Iris C Gibbs
- Department of Radiation Oncology, Stanford Cancer Institute, Stanford University, Stanford, California
| | - John R Adler
- Department of Neurosurgery, Stanford University, Stanford, California
| | - Steven D Chang
- Department of Neurosurgery, Stanford University, Stanford, California
| | - Gordon Li
- Department of Neurosurgery, Stanford University, Stanford, California
| | - Clara Y H Choi
- Department of Radiation Oncology, Santa Clara Valley Medical Center, Santa Clara, California
| | - Scott G Soltys
- Department of Radiation Oncology, Stanford Cancer Institute, Stanford University, Stanford, California.
| |
Collapse
|
2
|
Dinakaran D, Moore-Palhares D, Yang F, Hill JB. Precision radiotherapy with molecular-profiling of CNS tumours. J Neurooncol 2025; 172:51-75. [PMID: 39699761 DOI: 10.1007/s11060-024-04911-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024]
Abstract
Diagnoses of CNS malignancies in the primary and metastatic setting have significantly advanced in the last decade with the advent of molecular pathology. Using a combination of immunohistochemistry, next-generation sequencing, and methylation profiling integrated with traditional histopathology, patient prognosis and disease characteristics can be understood to a much greater extent. This has recently manifested in predicting response to targeted drug therapies that are redefining management practices of CNS tumours. Radiotherapy, along with surgery, still remains an integral part of treating the majority of CNS tumours. However, the rapid advances in CNS molecular diagnostics have not yet been effectively translated into improving CNS radiotherapy. We explore several promising strategies under development to integrate molecular oncology into radiotherapy, and explore future directions that can serve to use molecular diagnostics to personalize radiotherapy. Evolving the management of CNS tumours with molecular profiling will be integral to supporting the future of precision radiotherapy.
Collapse
Affiliation(s)
- Deepak Dinakaran
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada.
- Department of Medical Biophysics and Radiation Oncology, Temerty Faculty of Medicine, University of Toronto, 149 College Street, Suite 504, Toronto, ON, M5T 1P5, Canada.
| | - Daniel Moore-Palhares
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| | - Fan Yang
- Radiation Oncology, Mayo Clinic Arizona, 5881 E. Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Jordan B Hill
- Banner MD Anderson Cancer Center, 925 E. McDowell Rd, Phoenix, AZ, 85006, USA
| |
Collapse
|
3
|
Ikeuchi Y, Nishihara M, Hosoda K, Ashida N, Yamanishi S, Nagashima H, Tanaka K, Muragaki Y, Sasayama T. Postoperative Air in the Cisterns or Ventricles Predicts Early Leptomeningeal Disease of Brain Metastases: A Retrospective Study. World Neurosurg 2025; 193:903-910. [PMID: 39521402 DOI: 10.1016/j.wneu.2024.10.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE We investigated whether air in the cisterns or ventricles on postoperative computed tomography (CT) (reflecting the opening of the cerebrospinal fluid spaces during surgery) is a predictor of classical or nodular leptomeningeal disease (LMD) after resection of brain metastases. METHODS We retrospectively analyzed 73 patients who underwent gross total resection of brain metastases between 2012 and 2020. Patients with air in the cisterns or ventricles on postoperative day 1 CT were categorized into the air-positive group, whereas those without air in the cisterns or ventricles on postoperative day 1 CT were categorized into the air-negative group. The primary outcome was the occurrence of classical or nodular LMD (nLMD), which was assessed using survival analysis. RESULTS There were 15 (21%) patients in the air-positive group and 58 (79%) in the air-negative group. The air-positive group exhibited significantly more cerebellar and ventricular contact lesions than the air-negative group. The 4-year rate of classical or nLMD was significantly higher in the air-positive group than in the air-negative group (67% vs. 33%, P < 0.001). Multivariate analysis identified air in the cisterns or ventricles on postoperative CT as the only significant predictor of classical or nLMD (P < 0.001). CONCLUSIONS Postoperative air in the cisterns or ventricles can predict early classical or nodular leptomeningeal disease.
Collapse
Affiliation(s)
- Yusuke Ikeuchi
- Department of Neurosurgery, Kobe University Graduate School of Medicine, Kobe, Japan; Department of Neurosurgery, Kobe City Nishi-Kobe Medical Center, Kobe, Japan
| | - Masamitsu Nishihara
- Department of Neurosurgery, Kobe City Nishi-Kobe Medical Center, Kobe, Japan
| | - Kohkichi Hosoda
- Department of Neurosurgery, Kobe City Nishi-Kobe Medical Center, Kobe, Japan
| | - Noriaki Ashida
- Department of Neurosurgery, Kobe City Nishi-Kobe Medical Center, Kobe, Japan
| | - Shunsuke Yamanishi
- Department of Neurosurgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroaki Nagashima
- Department of Neurosurgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazuhiro Tanaka
- Department of Neurosurgery, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Yoshihiro Muragaki
- Department of Neurosurgery, Kobe University Graduate School of Medicine, Kobe, Japan; Center for Advanced Medical Engineering Research & Development, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takashi Sasayama
- Department of Neurosurgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
4
|
Frechette KM, Breen WG, Brown PD, Sener UT, Webb LM, Routman DM, Laack NN, Mahajan A, Lehrer EJ. Radiotherapy and Systemic Treatment for Leptomeningeal Disease. Biomedicines 2024; 12:1792. [PMID: 39200256 PMCID: PMC11351760 DOI: 10.3390/biomedicines12081792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
Leptomeningeal disease (LMD) is a devastating sequelae of metastatic spread that affects approximately 5% of cancer patients. The incidence of LMD is increasing due to advancements in systemic therapy and enhanced detection methods. The purpose of this review is to provide a detailed overview of the evidence in the detection, prognostication, and treatment of LMD. A comprehensive literature search of PUBMED was conducted to identify articles reporting on LMD including existing data and ongoing clinical trials. We found a wide array of treatment options available for LMD including chemotherapy, targeted agents, and immunotherapy as well as several choices for radiotherapy including whole brain radiotherapy (WBRT), stereotactic radiosurgery (SRS), and craniospinal irradiation (CSI). Despite treatment, the prognosis for patients with LMD is dismal, typically 2-4 months on average. Novel therapies and combination approaches are actively under investigation with the aim of improving outcomes and quality of life for patients with LMD. Recent prospective data on the use of proton CSI for patients with LMD have demonstrated its potential survival benefit with follow-up investigations underway. There is a need for validated metrics to predict prognosis and improve patient selection for patients with LMD in order to optimize treatment approaches.
Collapse
Affiliation(s)
- Kelsey M. Frechette
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA; (W.G.B.); (P.D.B.); (D.M.R.); (N.N.L.); (A.M.); (E.J.L.)
| | - William G. Breen
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA; (W.G.B.); (P.D.B.); (D.M.R.); (N.N.L.); (A.M.); (E.J.L.)
| | - Paul D. Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA; (W.G.B.); (P.D.B.); (D.M.R.); (N.N.L.); (A.M.); (E.J.L.)
| | - Ugur T. Sener
- Department of Neuro-Oncology, Mayo Clinic, Rochester, MN 55905, USA; (U.T.S.); (L.M.W.)
| | - Lauren M. Webb
- Department of Neuro-Oncology, Mayo Clinic, Rochester, MN 55905, USA; (U.T.S.); (L.M.W.)
| | - David M. Routman
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA; (W.G.B.); (P.D.B.); (D.M.R.); (N.N.L.); (A.M.); (E.J.L.)
| | - Nadia N. Laack
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA; (W.G.B.); (P.D.B.); (D.M.R.); (N.N.L.); (A.M.); (E.J.L.)
| | - Anita Mahajan
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA; (W.G.B.); (P.D.B.); (D.M.R.); (N.N.L.); (A.M.); (E.J.L.)
| | - Eric J. Lehrer
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA; (W.G.B.); (P.D.B.); (D.M.R.); (N.N.L.); (A.M.); (E.J.L.)
| |
Collapse
|
5
|
Saberian C, Milton DR, Simon J, Amaria RN, Diab A, McQuade J, Patel SP, Tawbi H, Yee C, Wong MK, McCutcheon IE, Davies MA, Ferguson SD, Glitza Oliva IC. Survival and treatment outcomes in patients with leptomeningeal disease from metastatic melanoma. Neurooncol Pract 2024; 11:452-463. [PMID: 39006528 PMCID: PMC11241361 DOI: 10.1093/nop/npae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024] Open
Abstract
Background Melanoma leptomeningeal disease (LMD) has a poor prognosis. However, the management of patients with advanced melanoma has evolved with time, including those with LMD. We reviewed a large cohort of melanoma LMD patients to assess factors associated with survival. Methods Retrospective clinical data was collected on patients diagnosed with LMD at MD Anderson Cancer Center from 2015 to 2020. Overall survival (OS) was determined from LMD diagnosis to date of death or last follow-up. The Kaplan-Meier method and log-rank test were used to estimate OS and to assess univariate group differences, respectively. Multivariable associations of survival with variables of interest were determined using Cox proportional hazards regression models. Results A total of 172 patients were identified. The median age at LMD diagnosis was 53 (range 20-79) years, and all patients had radiographic evidence of LMD on magnetic resonance imaging of either brain or spine. In total 143 patients previously received systemic therapy (83%), with a median of 2 prior treatments (range 0-5). 81 patients (47%) had concurrent uncontrolled systemic disease and 80 patients (53%) had elevated serum LDH at the time of diagnosis. With a median follow-up of 4.0 months (range 0.1-65.3 months), median OS for all patients from LMD diagnosis was 4.9 months. Patients (n = 45) who received intrathecal therapy or systemic immunotherapy for LMD had a median OS of 8.0 months and 10.2 months, respectively. On multivariable analysis, decreased performance status, positive CSF cytology, elevated LDH, and whole brain radiation were associated with worse OS. Conclusions Despite many advances in therapeutic options, the outcomes of melanoma patients with LMD remains poor. However, a subset of patients appears to derive benefit from LMD-directed treatment.
Collapse
Affiliation(s)
- Chantal Saberian
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Denái R Milton
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Julie Simon
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rodabe N Amaria
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Adi Diab
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jennifer McQuade
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sapna P Patel
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hussein Tawbi
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Cassian Yee
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael K Wong
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ian E McCutcheon
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sherise D Ferguson
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Isabella C Glitza Oliva
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
6
|
Palmer JD, Perlow HK, Lehrer EJ, Wardak Z, Soliman H. Novel radiotherapeutic strategies in the management of brain metastases: Challenging the dogma. Neuro Oncol 2024; 26:S46-S55. [PMID: 38437668 PMCID: PMC10911796 DOI: 10.1093/neuonc/noad260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
The role of radiation therapy in the management of brain metastasis is evolving. Advancements in machine learning techniques have improved our ability to both detect brain metastasis and our ability to contour substructures of the brain as critical organs at risk. Advanced imaging with PET tracers and magnetic resonance imaging-based artificial intelligence models can now predict tumor control and differentiate tumor progression from radiation necrosis. These advancements will help to optimize dose and fractionation for each patient's lesion based on tumor size, histology, systemic therapy, medical comorbidities/patient genetics, and tumor molecular features. This review will discuss the current state of brain directed radiation for brain metastasis. We will also discuss future directions to improve the precision of stereotactic radiosurgery and optimize whole brain radiation techniques to improve local tumor control and prevent cognitive decline without forming necrosis.
Collapse
Affiliation(s)
- Joshua D Palmer
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Haley K Perlow
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Eric J Lehrer
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Zabi Wardak
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Hany Soliman
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Prabhu RS, Akinyelu T, Vaslow ZK, Matsui JK, Haghighi N, Dan T, Mishra MV, Murphy ES, Boyles S, Perlow HK, Palmer JD, Udovicich C, Patel TR, Wardak Z, Woodworth GF, Ksendzovsky A, Yang K, Chao ST, Asher AL, Burri SH. Single-Fraction Versus Fractionated Preoperative Radiosurgery for Resected Brain Metastases: A PROPS-BM International Multicenter Cohort Study. Int J Radiat Oncol Biol Phys 2024; 118:650-661. [PMID: 37717787 DOI: 10.1016/j.ijrobp.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/02/2023] [Accepted: 09/09/2023] [Indexed: 09/19/2023]
Abstract
PURPOSE Preoperative stereotactic radiosurgery (SRS) is a feasible alternative to postoperative SRS for resected brain metastases (BM). Most reported studies of preoperative SRS used single-fraction SRS (SF-SRS). The goal of this study was to compare outcomes and toxicity of preoperative SF-SRS with multifraction (3-5 fractions) SRS (MF-SRS) in a large international multicenter cohort (Preoperative Radiosurgery for Brain Metastases-PROPS-BM). METHODS AND MATERIALS Patients with BM from solid cancers, of which at least 1 lesion was treated with preoperative SRS followed by planned resection, were included from 8 institutions. SRS to synchronous intact BM was allowed. Exclusion criteria included prior or planned whole brain radiation therapy. Intracranial outcomes were estimated using cumulative incidence with competing risk of death. Propensity score matched (PSM) analyses were performed. RESULTS The study cohort included 404 patients with 416 resected index lesions, of which SF-SRS and MF-SRS were used for 317 (78.5%) and 87 patients (21.5%), respectively. Median dose was 15 Gy in 1 fraction for SF-SRS and 24 Gy in 3 fractions for MF-SRS. Univariable analysis demonstrated that SF-SRS was associated with higher cavity local recurrence (LR) compared with MF-SRS (2-year: 16.3% vs 2.9%; P = .004), which was also demonstrated in multivariable analysis. PSM yielded 81 matched pairs (n = 162). PSM analysis also demonstrated significantly higher rate of cavity LR with SF-SRS (2-year: 19.8% vs 3.3%; P = .003). There was no difference in adverse radiation effect, meningeal disease, or overall survival between cohorts in either analysis. CONCLUSIONS Preoperative MF-SRS was associated with significantly reduced risk of cavity LR in both the unmatched and PSM analyses. There was no difference in adverse radiation effect, meningeal disease, or overall survival based on fractionation. MF-SRS may be a preferred option for neoadjuvant radiation therapy of resected BMs. Additional confirmatory studies are needed. A phase 3 randomized trial of single-fraction preoperative versus postoperative SRS (NRG-BN012) is ongoing (NCT05438212).
Collapse
Affiliation(s)
- Roshan S Prabhu
- Levine Cancer Institute, Atrium Health, Charlotte, North Carolina; Southeast Radiation Oncology Group, Charlotte, North Carolina.
| | - Tobi Akinyelu
- Levine Cancer Institute, Atrium Health, Charlotte, North Carolina
| | - Zachary K Vaslow
- Department of Radiation Oncology, Cone Health Cancer Center, Greensboro, North Carolina
| | - Jennifer K Matsui
- Department of Radiation Oncology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Neda Haghighi
- Department of Radiation Oncology, Peter McCallum Cancer Centre, Melbourne Victoria, Australia; Department of Radiation Oncology, Icon Cancer Centre, Epworth Centre, Richmond Victoria, Australia
| | - Tu Dan
- University of Texas Southwestern Medical Center, Dallas, Texas
| | - Mark V Mishra
- University of Maryland School of Medicine, Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| | - Erin S Murphy
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, Ohio
| | - Susan Boyles
- Department of Radiation Oncology, Cone Health Cancer Center, Greensboro, North Carolina
| | - Haley K Perlow
- Department of Radiation Oncology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Joshua D Palmer
- Department of Radiation Oncology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Cristian Udovicich
- Department of Radiation Oncology, Peter McCallum Cancer Centre, Melbourne Victoria, Australia
| | - Toral R Patel
- University of Texas Southwestern Medical Center, Dallas, Texas
| | - Zabi Wardak
- University of Texas Southwestern Medical Center, Dallas, Texas
| | - Graeme F Woodworth
- University of Maryland School of Medicine, Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| | - Alexander Ksendzovsky
- University of Maryland School of Medicine, Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| | - Kailin Yang
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, Ohio
| | - Samuel T Chao
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, Ohio
| | - Anthony L Asher
- Levine Cancer Institute, Atrium Health, Charlotte, North Carolina; Carolina Neurosurgery and Spine Associates, Charlotte, North Carolina
| | - Stuart H Burri
- Levine Cancer Institute, Atrium Health, Charlotte, North Carolina; Southeast Radiation Oncology Group, Charlotte, North Carolina
| |
Collapse
|
8
|
Gutierrez-Valencia E, Kalyvas A, Jamora K, Yang K, Lau R, Khan B, Millar BA, Laperriere N, Conrad T, Berlin A, Weiss J, Li X, Zadeh G, Bernstein M, Kongkham P, Shultz DB. Rate of pachymeningeal failure following adjuvant WBRT vs SRS in patients with brain metastases. Clin Transl Radiat Oncol 2024; 45:100723. [PMID: 38282910 PMCID: PMC10821534 DOI: 10.1016/j.ctro.2023.100723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/28/2023] [Accepted: 12/30/2023] [Indexed: 01/30/2024] Open
Abstract
Background Stereotactic radiosurgery (SRS) has supplanted whole brain radiotherapy (WBRT) as standard-of-care adjuvant treatment following surgery for brain metastasis (BrM). Concomitant with the adoption of adjuvant SRS, a new pattern of failure termed "Pachymeningeal failure" (PMF) has emerged. Methods We reviewed a prospective registry of 264 BrM patients; 145 and 119 were treated adjuvantly with WBRT and SRS, respectively. The Cox proportional hazards model was used to identify variables correlating to outcomes. Outcomes were calculated using the cumulative incidence (CI) method. Univariate (UVA) and multivariate analyses (MVA) were done to identify factors associated with PMF. Results CI of PMF was 2 % and 18 % at 12 months, and 2 % and 23 % at 24 months for WRBT and SRS, respectively (p < 0.001). The CI of classic leptomeningeal disease (LMD) was 3 % and 4 % at 12 months, and 6 % and 6 % at 24 months for WBRT and SRS, respectively (P = 0.67). On UVA, adjuvant SRS [HR 9.75 (3.43-27.68) (P < 0.001)]; preoperative dural contact (PDC) [HR 6.78 (1.64-28.10) (P = 0.008)]; GPA score [HR 1.64 (1.11-2.42) (P = 0.012)]; and lung EGFR/ALK status [HR 3.11 (1.02-9.45) (P = 0.045)]; were associated with PMF risk. On MVA, adjuvant SRS [HR 8.15 (2.69-24.7) (P < 0.001)]; and PDC [HR 6.28 (1.51-26.1) (P = 0.012)] remained associated with PMF. Conclusions Preoperative dural contact and adjuvant SRS instead of adjuvant WBRT were associated with an increased risk of PMF. Strategies to improve pachymeningeal radiation coverage to sterilize at risk pachymeninges should be investigated.
Collapse
Affiliation(s)
- Enrique Gutierrez-Valencia
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Aristotelis Kalyvas
- Division of Neurosurgery, Toronto Western Hospital - University of Toronto, Toronto, ON, Canada
| | - Kurl Jamora
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Kaiyun Yang
- Division of Neurosurgery, Toronto Western Hospital - University of Toronto, Toronto, ON, Canada
| | - Ruth Lau
- Division of Neurosurgery, Toronto Western Hospital - University of Toronto, Toronto, ON, Canada
| | - Benazir Khan
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Barbara-Ann Millar
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Normand Laperriere
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Tatiana Conrad
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Alejandro Berlin
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Jessica Weiss
- Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Xuan Li
- Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Gelareh Zadeh
- Division of Neurosurgery, Toronto Western Hospital - University of Toronto, Toronto, ON, Canada
| | - Mark Bernstein
- Division of Neurosurgery, Toronto Western Hospital - University of Toronto, Toronto, ON, Canada
| | - Paul Kongkham
- Division of Neurosurgery, Toronto Western Hospital - University of Toronto, Toronto, ON, Canada
| | - David B. Shultz
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
9
|
Goldberg M, Mondragon-Soto MG, Altawalbeh G, Meyer B, Aftahy AK. New Breakthroughs in the Diagnosis of Leptomeningeal Carcinomatosis: A Review of Liquid Biopsies of Cerebrospinal Fluid. Cureus 2024; 16:e55187. [PMID: 38558729 PMCID: PMC10980855 DOI: 10.7759/cureus.55187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Leptomeningeal carcinomatosis represents a terminal stage and is a devastating complication of cancer. Despite its high incidence, current diagnostic methods fail to accurately detect this condition in a timely manner. This failure to diagnose leads to the refusal of treatment and the absence of clinical trials, hampering the development of new therapy strategies. The use of liquid biopsy is revolutionizing the field of diagnostic oncology. The dynamic and non-invasive detection of tumor markers has enormous potential in cancer diagnostics and treatment. Leptomeningeal carcinomatosis is a condition where invasive tissue biopsy is not part of the routine diagnostic analysis, making liquid biopsy an essential diagnostic tool. Several elements in cerebrospinal fluid (CSF) have been investigated as potential targets of liquid biopsy, including free circulating tumor cells, free circulating nucleic acids, proteins, exosomes, and even non-tumor cells as part of the dynamic tumor microenvironment. This review aims to summarize current breakthroughs in the research on liquid biopsy, including the latest breakthroughs in the identification of tumor cells and nucleic acids, and give an overview of future directions in the diagnosis of leptomeningeal carcinomatosis.
Collapse
Affiliation(s)
- Maria Goldberg
- Department of Neurosurgery, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, DEU
| | | | - Ghaith Altawalbeh
- Department of Neurosurgery, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, DEU
| | - Bernhard Meyer
- Department of Neurosurgery, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, DEU
| | - Amir Kaywan Aftahy
- Department of Neurosurgery, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, DEU
| |
Collapse
|
10
|
Morshed RA, Cummins DD, Nguyen MP, Saggi S, Vasudevan HN, Braunstein SE, Goldschmidt E, Chang EF, McDermott MW, Berger MS, Theodosopoulos PV, Daras M, Hervey-Jumper SL, Aghi MK. Genomic alterations associated with postoperative nodular leptomeningeal disease after resection of brain metastases. J Neurosurg 2024; 140:328-337. [PMID: 37548547 PMCID: PMC11175692 DOI: 10.3171/2023.5.jns23460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/30/2023] [Indexed: 08/08/2023]
Abstract
OBJECTIVE The relationship between brain metastasis resection and risk of nodular leptomeningeal disease (nLMD) is unclear. This study examined genomic alterations found in brain metastases with the aim of identifying alterations associated with postoperative nLMD in the context of clinical and treatment factors. METHODS A retrospective, single-center study was conducted on patients who underwent resection of brain metastases between 2014 and 2022 and had clinical and genomic data available. Postoperative nLMD was the primary endpoint of interest. Targeted next-generation sequencing of > 500 oncogenes was performed in brain metastases. Cox proportional hazards analyses were performed to identify clinical features and genomic alterations associated with nLMD. RESULTS The cohort comprised 101 patients with tumors originating from multiple cancer types. There were 15 patients with nLMD (14.9% of the cohort) with a median time from surgery to nLMD diagnosis of 8.2 months. Two supervised machine learning algorithms consistently identified CDKN2A/B codeletion and ERBB2 amplification as the top predictors associated with postoperative nLMD across all cancer types. In a multivariate Cox proportional hazards analysis including clinical factors and genomic alterations observed in the cohort, tumor volume (× 10 cm3; HR 1.2, 95% CI 1.01-1.5; p = 0.04), CDKN2A/B codeletion (HR 5.3, 95% CI 1.7-16.9; p = 0.004), and ERBB2 amplification (HR 3.9, 95% CI 1.1-14.4; p = 0.04) were associated with a decreased time to postoperative nLMD. CONCLUSIONS In addition to increased resected tumor volume, ERBB2 amplification and CDKN2A/B deletion were independently associated with an increased risk of postoperative nLMD across multiple cancer types. Additional work is needed to determine if targeted therapy decreases this risk in the postoperative setting.
Collapse
Affiliation(s)
- Ramin A. Morshed
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Daniel D. Cummins
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Minh P. Nguyen
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Satvir Saggi
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Harish N. Vasudevan
- Department of Neurological Surgery, University of California, San Francisco, California
- Department of Radiation Oncology, University of California, San Francisco, California
| | - Steve E. Braunstein
- Department of Radiation Oncology, University of California, San Francisco, California
| | - Ezequiel Goldschmidt
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Edward F. Chang
- Department of Neurological Surgery, University of California, San Francisco, California
| | | | - Mitchel S. Berger
- Department of Neurological Surgery, University of California, San Francisco, California
| | | | - Mariza Daras
- Department of Neurological Surgery, University of California, San Francisco, California
| | | | - Manish K. Aghi
- Department of Neurological Surgery, University of California, San Francisco, California
| |
Collapse
|
11
|
de Bernardi A, Bachelot T, Larrouquère L. Long-term response to sequential anti-HER2 therapies including trastuzumab-deruxtecan in a patient with HER2-positive metastatic breast cancer with leptomeningeal metastases: a case report and review of the literature. Front Oncol 2024; 13:1210873. [PMID: 38269026 PMCID: PMC10806069 DOI: 10.3389/fonc.2023.1210873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024] Open
Abstract
The incidence of leptomeningeal metastases (LM) is increasing among breast cancer patients, but their prognosis remains dismal. Many therapeutic options are now available to treat HER2-positive (HER2+) metastatic breast cancer (MBC) involving the central nervous system (CNS). This case report illustrates a long-lasting response of more than 2 years in a patient with HER2+ MBC with LM after sequential administration of systemic and intrathecal (IT) anti-HER2 therapies and highlights that an appropriate treatment of HER2+ LM can result in durable survival.
Collapse
Affiliation(s)
- Axel de Bernardi
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| | - Thomas Bachelot
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
- Cancer Reseach Center of Lyon, Lyon, France
| | - Louis Larrouquère
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
- Cancer Reseach Center of Lyon, Lyon, France
| |
Collapse
|
12
|
Sherman WJ, Romiti E, Michaelides L, Moniz-Garcia D, Chaichana KL, Quiñones-Hinojosa A, Porter AB. Systemic Therapy for Melanoma Brain and Leptomeningeal Metastases. Curr Treat Options Oncol 2023; 24:1962-1977. [PMID: 38158477 DOI: 10.1007/s11864-023-01155-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2023] [Indexed: 01/03/2024]
Abstract
OPINION STATEMENT Melanoma has a high propensity to metastasize to the brain which portends a poorer prognosis. With advanced radiation techniques and targeted therapies, outcomes however are improving. Melanoma brain metastases are best managed in a multi-disciplinary approach, including medical oncologists, neuro-oncologists, radiation oncologists, and neurosurgeons. The sequence of therapies is dependent on the number and size of brain metastases, status of systemic disease control, prior therapies, performance status, and neurological symptoms. The goal of treatment is to minimize neurologic morbidity and prolong both progression free and overall survival while maximizing quality of life. Surgery should be considered for solitary metastases, or large and/or symptomatic metastases with edema. Stereotactic radiosurgery offers a benefit over whole-brain radiation attributed to the relative radioresistance of melanoma and reduction in neurotoxicity. Thus far, data supports a more durable response with systemic therapy using combination immunotherapy of ipilimumab and nivolumab, though targeting the presence of BRAF mutations can also be utilized. BRAF inhibitor therapy is often used after immunotherapy failure, unless a more rapid initial response is needed and then can be done prior to initiating immunotherapy. Further trials are needed, particularly for leptomeningeal metastases which currently require the multi-disciplinary approach to determine best treatment plan.
Collapse
Affiliation(s)
- Wendy J Sherman
- Department of Neurology, Division of Neuro-Oncology, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA.
| | - Edoardo Romiti
- Vita e Salute San Raffaele University in Milan, Via Olgettina, 58, 20132, Milan, MI, Italy
| | - Loizos Michaelides
- Department of Neurosurgery, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA
| | - Diogo Moniz-Garcia
- Department of Neurosurgery, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA
| | - Kaisorn L Chaichana
- Department of Neurosurgery, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA
| | | | - Alyx B Porter
- Department of Neurology, Division of Neuro-Oncology, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, AZ, 85054, USA
| |
Collapse
|
13
|
Crompton D, Koffler D, Fekrmandi F, Lehrer EJ, Sheehan JP, Trifiletti DM. Preoperative stereotactic radiosurgery as neoadjuvant therapy for resectable brain tumors. J Neurooncol 2023; 165:21-28. [PMID: 37889441 DOI: 10.1007/s11060-023-04466-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023]
Abstract
PURPOSE Stereotactic radiosurgery (SRS) is a method of delivering conformal radiation, which allows minimal radiation damage to surrounding healthy tissues. Adjuvant radiation therapy has been shown to improve local control in a variety of intracranial neoplasms, such as brain metastases, gliomas, and benign tumors (i.e., meningioma, vestibular schwannoma, etc.). For brain metastases, adjuvant SRS specifically has demonstrated positive oncologic outcomes as well as preserving cognitive function when compared to conventional whole brain radiation therapy. However, as compared with neoadjuvant SRS, larger post-operative volumes and greater target volume uncertainty may come with an increased risk of local failure and treatment-related complications, such as radiation necrosis. In addition to its role in brain metastases, neoadjuvant SRS for high grade gliomas may enable dose escalation and increase immunogenic effects and serve a purpose in benign tumors for which one cannot achieve a gross total resection (GTR). Finally, although neoadjuvant SRS has historically been delivered with photon therapy, there are high LET radiation modalities such as carbon-ion therapy which may allow radiation damage to tissue and should be further studied if done in the neoadjuvant setting. In this review we discuss the evolving role of neoadjuvant radiosurgery in the treatment for brain metastases, gliomas, and benign etiologies. We also offer perspective on the evolving role of high LET radiation such as carbon-ion therapy. METHODS PubMed was systemically reviewed using the search terms "neoadjuvant radiosurgery", "brain metastasis", and "glioma". ' Clinicaltrials.gov ' was also reviewed to include ongoing phase III trials. RESULTS This comprehensive review describes the evolving role for neoadjuvant SRS in the treatment for brain metastases, gliomas, and benign etiologies. We also discuss the potential role for high LET radiation in this setting such as carbon-ion radiotherapy. CONCLUSION Early clinical data is very promising for neoadjuvant SRS in the setting of brain metastases. There are three ongoing phase III trials that will be more definitive in evaluating the potential benefits. While there is less data available for neoadjuvant SRS for gliomas, there remains a potential role, particularly to enable dose escalation and increase immunogenic effects.
Collapse
Affiliation(s)
- David Crompton
- Department of Radiation Oncology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Daniel Koffler
- Department of Radiation Oncology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Fatemeh Fekrmandi
- Department of Radiation Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, USA
| | - Eric J Lehrer
- Department of Radiation Oncology, Mayo Clinic, Rochester, USA
| | - Jason P Sheehan
- Department of Neurological Surgery, University of Virginia, Charlottesville, USA
| | - Daniel M Trifiletti
- Department of Radiation Oncology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA.
| |
Collapse
|
14
|
Prabhu RS, Akinyelu T, Vaslow ZK, Matsui JK, Haghighi N, Dan T, Mishra MV, Murphy ES, Boyles S, Perlow HK, Palmer JD, Udovicich C, Patel TR, Wardak Z, Woodworth GF, Ksendzovsky A, Yang K, Chao ST, Asher AL, Burri SH. Risk Factors for Progression and Toxic Effects After Preoperative Stereotactic Radiosurgery for Patients With Resected Brain Metastases. JAMA Oncol 2023; 9:1066-1073. [PMID: 37289451 PMCID: PMC10251241 DOI: 10.1001/jamaoncol.2023.1629] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/14/2023] [Indexed: 06/09/2023]
Abstract
Importance Preoperative stereotactic radiosurgery (SRS) has been demonstrated as a feasible alternative to postoperative SRS for resectable brain metastases (BMs) with potential benefits in adverse radiation effects (AREs) and meningeal disease (MD). However, mature large-cohort multicenter data are lacking. Objective To evaluate preoperative SRS outcomes and prognostic factors from a large international multicenter cohort (Preoperative Radiosurgery for Brain Metastases-PROPS-BM). Design, Setting, and Participants This multicenter cohort study included patients with BMs from solid cancers, of which at least 1 lesion received preoperative SRS and a planned resection, from 8 institutions. Radiosurgery to synchronous intact BMs was allowed. Exclusion criteria included prior or planned whole-brain radiotherapy and no cranial imaging follow-up. Patients were treated between 2005 and 2021, with most treated between 2017 and 2021. Exposures Preoperative SRS to a median dose to 15 Gy in 1 fraction or 24 Gy in 3 fractions delivered at a median (IQR) of 2 (1-4) days before resection. Main Outcomes and Measures The primary end points were cavity local recurrence (LR), MD, ARE, overall survival (OS), and multivariable analysis of prognostic factors associated with these outcomes. Results The study cohort included 404 patients (214 women [53%]; median [IQR] age, 60.6 [54.0-69.6] years) with 416 resected index lesions. The 2-year cavity LR rate was 13.7%. Systemic disease status, extent of resection, SRS fractionation, type of surgery (piecemeal vs en bloc), and primary tumor type were associated with cavity LR risk. The 2-year MD rate was 5.8%, with extent of resection, primary tumor type, and posterior fossa location being associated with MD risk. The 2-year any-grade ARE rate was 7.4%, with target margin expansion greater than 1 mm and melanoma primary being associated with ARE risk. Median OS was 17.2 months (95% CI, 14.1-21.3 months), with systemic disease status, extent of resection, and primary tumor type being the strongest prognostic factors associated with OS. Conclusions and Relevance In this cohort study, the rates of cavity LR, ARE, and MD after preoperative SRS were found to be notably low. Several tumor and treatment factors were identified that are associated with risk of cavity LR, ARE, MD, and OS after treatment with preoperative SRS. A phase 3 randomized clinical trial of preoperative vs postoperative SRS (NRG BN012) has began enrolling (NCT05438212).
Collapse
Affiliation(s)
- Roshan S. Prabhu
- Levine Cancer Institute, Atrium Health, Charlotte, North Carolina
- Southeast Radiation Oncology Group, Charlotte, North Carolina
| | - Tobi Akinyelu
- Levine Cancer Institute, Atrium Health, Charlotte, North Carolina
| | | | | | - Neda Haghighi
- Peter McCallum Cancer Centre, Melbourne, Victoria, Australia
- Icon Cancer Centre, Epworth Centre, Richmond, Victoria, Australia
| | - Tu Dan
- University of Texas Southwestern Medical Center, Dallas
| | | | - Erin S. Murphy
- Taussig Cancer Center, Cleveland Clinic, Cleveland, Ohio
| | - Susan Boyles
- Cone Health Cancer Center, Greensboro, North Carolina
| | | | | | | | | | - Zabi Wardak
- University of Texas Southwestern Medical Center, Dallas
| | | | | | - Kailin Yang
- Taussig Cancer Center, Cleveland Clinic, Cleveland, Ohio
| | - Samuel T. Chao
- Taussig Cancer Center, Cleveland Clinic, Cleveland, Ohio
| | - Anthony L. Asher
- Levine Cancer Institute, Atrium Health, Charlotte, North Carolina
- Carolina Neurosurgery and Spine Associates, Charlotte, North Carolina
| | - Stuart H. Burri
- Levine Cancer Institute, Atrium Health, Charlotte, North Carolina
- Southeast Radiation Oncology Group, Charlotte, North Carolina
| |
Collapse
|
15
|
Morshed RA, Saggi S, Cummins DD, Molinaro AM, Young JS, Viner JA, Villanueva-Meyer JE, Goldschmidt E, Boreta L, Braunstein SE, Chang EF, McDermott MW, Berger MS, Theodosopoulos PV, Hervey-Jumper SL, Aghi MK, Daras M. Identification of risk factors associated with leptomeningeal disease after resection of brain metastases. J Neurosurg 2023; 139:402-413. [PMID: 36640095 PMCID: PMC11208084 DOI: 10.3171/2022.12.jns221490] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 12/07/2022] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Resection of brain metastases (BMs) may be associated with increased risk of leptomeningeal disease (LMD). This study examined rates and predictors of LMD, including imaging subtypes, in patients who underwent resection of a BM followed by postoperative radiation. METHODS A retrospective, single-center study was conducted examining overall LMD, classic LMD (cLMD), and nodular LMD (nLMD) risk. Logistic regression, Cox proportional hazards, and random forest analyses were performed to identify risk factors associated with LMD. RESULTS Of the 217 patients in the cohort, 47 (21.7%) developed postoperative LMD, with 19 cases (8.8%) of cLMD and 28 cases (12.9%) of nLMD. Six-, 12-, and 24-month LMD-free survival rates were 92.3%, 85.6%, and 71.4%, respectively. Patients with cLMD had worse survival outcomes from the date of LMD diagnosis compared with nLMD (median 2.4 vs 6.9 months, p = 0.02, log-rank test). Cox proportional hazards analysis identified cerebellar/insular/occipital location (hazard ratio [HR] 3.25, 95% confidence interval [CI] 1.73-6.11, p = 0.0003), absence of extracranial disease (HR 2.49, 95% CI 1.27-4.88, p = 0.008), and ventricle contact (HR 2.82, 95% CI 1.5-5.3, p = 0.001) to be associated with postoperative LMD. A predictive model using random forest analysis with an area under the receiver operating characteristic curve of 0.87 in a test cohort identified tumor location, systemic disease status, and tumor volume as the most important factors associated with LMD. CONCLUSIONS Tumor location, absence of extracranial disease at the time of surgery, ventricle contact, and increased tumor volume were associated with LMD. Further work is needed to determine whether escalating therapies in patients at risk of LMD prevents disease dissemination.
Collapse
Affiliation(s)
- Ramin A. Morshed
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Satvir Saggi
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Daniel D. Cummins
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Annette M. Molinaro
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Jacob S. Young
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Jennifer A. Viner
- Department of Neurological Surgery, University of California, San Francisco, California
| | | | - Ezequiel Goldschmidt
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Lauren Boreta
- Department of Radiation Oncology, University of California, San Francisco, California
| | - Steve E. Braunstein
- Department of Radiation Oncology, University of California, San Francisco, California
| | - Edward F. Chang
- Department of Neurological Surgery, University of California, San Francisco, California
| | | | - Mitchel S. Berger
- Department of Neurological Surgery, University of California, San Francisco, California
| | | | | | - Manish K. Aghi
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Mariza Daras
- Department of Neurological Surgery, University of California, San Francisco, California
| |
Collapse
|
16
|
Tewarie IA, Senko AW, Jessurun CAC, Zhang AT, Hulsbergen AFC, Rendon L, McNulty J, Broekman MLD, Peng LC, Smith TR, Phillips JG. Predicting leptomeningeal disease spread after resection of brain metastases using machine learning. J Neurosurg 2023; 138:1561-1569. [PMID: 36272119 DOI: 10.3171/2022.8.jns22744] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/25/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The incidence of leptomeningeal disease (LMD) has increased as treatments for brain metastases (BMs) have improved and patients with metastatic disease are living longer. Sample sizes of individual studies investigating LMD after surgery for BMs and its risk factors have been limited, ranging from 200 to 400 patients at risk for LMD, which only allows the use of conventional biostatistics. Here, the authors used machine learning techniques to enhance LMD prediction in a cohort of surgically treated BMs. METHODS A conditional survival forest, a Cox proportional hazards model, an extreme gradient boosting (XGBoost) classifier, an extra trees classifier, and logistic regression were trained. A synthetic minority oversampling technique (SMOTE) was used to train the models and handle the inherent class imbalance. Patients were divided into an 80:20 training and test set. Fivefold cross-validation was used on the training set for hyperparameter optimization. Patients eligible for study inclusion were adults who had consecutively undergone neurosurgical BM treatment, had been admitted to Brigham and Women's Hospital from January 2007 through December 2019, and had a minimum of 1 month of follow-up after neurosurgical treatment. RESULTS A total of 1054 surgically treated BM patients were included in this analysis. LMD occurred in 168 patients (15.9%) at a median of 7.05 months after BM diagnosis. The discrimination of LMD occurrence was optimal using an XGboost algorithm (area under the curve = 0.83), and the time to LMD was prognosticated evenly by the random forest algorithm and the Cox proportional hazards model (C-index = 0.76). The most important feature for both LMD classification and regression was the BM proximity to the CSF space, followed by a cerebellar BM location. Lymph node metastasis of the primary tumor at BM diagnosis and a cerebellar BM location were the strongest risk factors for both LMD occurrence and time to LMD. CONCLUSIONS The outcomes of LMD patients in the BM population are predictable using SMOTE and machine learning. Lymph node metastasis of the primary tumor at BM diagnosis and a cerebellar BM location were the strongest LMD risk factors.
Collapse
Affiliation(s)
- Ishaan Ashwini Tewarie
- 1Department of Neurosurgery, Computational Neuroscience Outcomes Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- 4Department of Neurosurgery, Leiden Medical Center, Leiden, The Netherlands; and
| | - Alexander W Senko
- 1Department of Neurosurgery, Computational Neuroscience Outcomes Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Charissa A C Jessurun
- 1Department of Neurosurgery, Computational Neuroscience Outcomes Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- 3Department of Neurosurgery, Haaglanden Medical Center, The Hague
- 4Department of Neurosurgery, Leiden Medical Center, Leiden, The Netherlands; and
| | - Abigail Tianai Zhang
- 1Department of Neurosurgery, Computational Neuroscience Outcomes Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alexander F C Hulsbergen
- 1Department of Neurosurgery, Computational Neuroscience Outcomes Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- 3Department of Neurosurgery, Haaglanden Medical Center, The Hague
- 4Department of Neurosurgery, Leiden Medical Center, Leiden, The Netherlands; and
| | - Luis Rendon
- 1Department of Neurosurgery, Computational Neuroscience Outcomes Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jack McNulty
- 1Department of Neurosurgery, Computational Neuroscience Outcomes Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Marike L D Broekman
- 1Department of Neurosurgery, Computational Neuroscience Outcomes Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- 3Department of Neurosurgery, Haaglanden Medical Center, The Hague
- 4Department of Neurosurgery, Leiden Medical Center, Leiden, The Netherlands; and
| | - Luke C Peng
- 1Department of Neurosurgery, Computational Neuroscience Outcomes Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Timothy R Smith
- 1Department of Neurosurgery, Computational Neuroscience Outcomes Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - John G Phillips
- 1Department of Neurosurgery, Computational Neuroscience Outcomes Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- 5Department of Radiation Oncology, Tennessee Oncology, Nashville, Tennessee
| |
Collapse
|
17
|
Lamba N, Cagney DN, Catalano PJ, Elhalawani H, Haas-Kogan DA, Wen PY, Wagle N, Lin NU, Aizer AA, Tanguturi S. Incidence proportion and prognosis of leptomeningeal disease among patients with breast vs. non-breast primaries. Neuro Oncol 2023; 25:973-983. [PMID: 36367837 PMCID: PMC10158280 DOI: 10.1093/neuonc/noac249] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Leptomeningeal disease (LMD) is a relatively uncommon manifestation of advanced cancer. Patients with LMD carry a poor prognosis and often decline rapidly, complicating inclusion in clinical trials. Identification of LMD subsets of greater incidence and more favorable prognosis might facilitate dedicated clinical trials in the future. We hypothesized that patients with breast cancer may represent such a population and sought to assess the relative incidence and prognosis of LMD secondary to breast vs. non-breast primaries. METHODS We identified 2411 patients with intracranial metastases secondary to breast (N = 501) and non-breast (N = 1910) primaries at Brigham and Women's Hospital/Dana-Farber Cancer Institute between 1996 and 2020, of whom 112 presented with and an additional 161 subsequently developed LMD. A log-rank test and Cox modeling were used to compare outcomes in patients with breast vs. non-breast primaries. RESULTS Among patients with newly diagnosed intracranial disease, the incidence proportion of concurrent LMD was 11.4% vs. 2.9% among patients with breast vs. non-breast primaries (P < .001). Development of LMD among initially LMD-naïve patients was also more common among patients with breast vs. non-breast primaries (HR = 1.49 [1.05-2.11], P = .03). Patients with LMD secondary to breast vs. non-breast primaries displayed lower all-cause mortality (HR 0.70 [0.52-0.93], P = .01; median survival: 5.2 vs. 2.4 months, respectively), with a greater numerical difference observed in patients with LMD at intracranial involvement (7.4 vs. 2.6 months, respectively). CONCLUSIONS Patients with breast cancer and LMD may represent an ideal population for clinical trials given the higher incidence and potentially more favorable prognosis seen in this population.
Collapse
Affiliation(s)
- Nayan Lamba
- Harvard Radiation Oncology Program, Harvard University, Boston, Massachusetts, USA
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | | | - Paul J Catalano
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, and Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Hesham Elhalawani
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Daphne A Haas-Kogan
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women’s Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Nikhil Wagle
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Nancy U Lin
- Breast Oncology Program, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Ayal A Aizer
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Shyam Tanguturi
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Kalyvas A, Gutierrez-Valencia E, Lau R, Ye XY, O'Halloran PJ, Mohan N, Wong C, Millar BA, Laperriere N, Conrad T, Berlin A, Bernstein M, Zadeh G, Shultz DB, Kongkham P. Anatomical and surgical characteristics correlate with pachymeningeal failure in patients with brain metastases after neurosurgical resection and adjuvant stereotactic radiosurgery. J Neurooncol 2023; 163:269-279. [PMID: 37165117 DOI: 10.1007/s11060-023-04325-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/24/2023] [Indexed: 05/12/2023]
Abstract
PURPOSE Neurosurgery (NS) is an essential modality for large brain metastases (BM). Postoperative stereotactic radiosurgery (SRS) is the standard of care adjuvant treatment. Pachymeningeal failure (PMF) is a newly described entity, distinct from classical leptomeningeal failure (LMF), that is uniquely observed in postoperative patients treated with adjuvant SRS. We sought to identify risk factors for PMF in patients treated with NS + SRS. METHODS From a prospective registry (2009 to 2021), we identified all patients treated with NS + SRS. Clinical, imaging, pathological, and treatment factors were analyzed. PMF incidence was evaluated using a competing risks model. RESULTS 144 Patients were identified. The median age was 62 (23-90). PMF occurred in 21.5% (31/144). Female gender [Hazard Ratio (HR) 2.65, p = 0.013], higher Graded Prognostic Assessment (GPA) index (HR 2.4, p < 0.001), absence of prior radiation therapy (HR N/A, p = 0.018), controlled extracranial disease (CED) (HR 3.46, p = 0.0038), and pia/dura contact (PDC) (HR 3.30, p = 0.0053) were associated with increased risk for PMF on univariate analysis. In patients with PDC, wider target volumes correlated with reduced risk of PMF. Multivariate analysis indicated PDC (HR 3.51, p = 0.0053), piecemeal resection (HR 2.38, p = 0.027), and CED (HR 3.97, p = 0.0016) independently correlated with PMF risk. PMF correlated with reduced OS (HR 2.90, p < 0.001) at a lower rate compared to LMF (HR 10.15, p < 0.001). CONCLUSION PMF correlates with tumor PDC and piecemeal resection in patients treated with NS + SRS. For unclear reasons, it is also associated with CED. In tumors with PDC, wider dural radiotherapy coverage was associated with a lower risk of PMF.
Collapse
Affiliation(s)
- Aristotelis Kalyvas
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, 399 Bathurst Street, Toronto, ON, M5T 2S8, Canada.
| | - Enrique Gutierrez-Valencia
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Ruth Lau
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, 399 Bathurst Street, Toronto, ON, M5T 2S8, Canada
| | - Xiang Y Ye
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Philip J O'Halloran
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, 399 Bathurst Street, Toronto, ON, M5T 2S8, Canada
| | - Nilesh Mohan
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, 399 Bathurst Street, Toronto, ON, M5T 2S8, Canada
| | - Christine Wong
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, 399 Bathurst Street, Toronto, ON, M5T 2S8, Canada
| | - Barbara-Ann Millar
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Normand Laperriere
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Tatiana Conrad
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Alejandro Berlin
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Mark Bernstein
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, 399 Bathurst Street, Toronto, ON, M5T 2S8, Canada
| | - Gelareh Zadeh
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, 399 Bathurst Street, Toronto, ON, M5T 2S8, Canada
| | - David B Shultz
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Paul Kongkham
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, 399 Bathurst Street, Toronto, ON, M5T 2S8, Canada
| |
Collapse
|
19
|
Lehrer EJ, Kowalchuk RO, Ruiz-Garcia H, Merrell KW, Brown PD, Palmer JD, Burri SH, Sheehan JP, Quninoes-Hinojosa A, Trifiletti DM. Preoperative stereotactic radiosurgery in the management of brain metastases and gliomas. Front Surg 2022; 9:972727. [PMID: 36353610 PMCID: PMC9637863 DOI: 10.3389/fsurg.2022.972727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 10/04/2022] [Indexed: 01/24/2023] Open
Abstract
Stereotactic radiosurgery (SRS) is the delivery of a high dose ionizing radiation in a highly conformal manner, which allows for significant sparing of nearby healthy tissues. It is typically delivered in 1-5 sessions and has demonstrated safety and efficacy across multiple intracranial neoplasms and functional disorders. In the setting of brain metastases, postoperative and definitive SRS has demonstrated favorable rates of tumor control and improved cognitive preservation compared to conventional whole brain radiation therapy. However, the risk of local failure and treatment-related complications (e.g. radiation necrosis) markedly increases with larger postoperative treatment volumes. Additionally, the risk of leptomeningeal disease is significantly higher in patients treated with postoperative SRS. In the setting of high grade glioma, preclinical reports have suggested that preoperative SRS may enhance anti-tumor immunity as compared to postoperative radiotherapy. In addition to potentially permitting smaller target volumes, tissue analysis may permit characterization of DNA repair pathways and tumor microenvironment changes in response to SRS, which may be used to further tailor therapy and identify novel therapeutic targets. Building on the work from preoperative SRS for brain metastases and preclinical work for high grade gliomas, further exploration of this treatment paradigm in the latter is warranted. Presently, there are prospective early phase clinical trials underway investigating the role of preoperative SRS in the management of high grade gliomas. In the forthcoming sections, we review the biologic rationale for preoperative SRS, as well as pertinent preclinical and clinical data, including ongoing and planned prospective clinical trials.
Collapse
Affiliation(s)
- Eric J. Lehrer
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Roman O. Kowalchuk
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
| | - Henry Ruiz-Garcia
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Kenneth W. Merrell
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
| | - Paul D. Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
| | - Joshua D. Palmer
- Department of Radiation Oncology, Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Stuart H. Burri
- Department of Radiation Oncology, Atrium Health, Charlotte, NC, United States
| | - Jason P. Sheehan
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA, United States
| | | | - Daniel M. Trifiletti
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States,Correspondence: Daniel M. Trifiletti
| |
Collapse
|
20
|
Lowe SR, Wang CP, Brisco A, Whiting J, Arrington J, Ahmed K, Yu M, Robinson T, Oliver D, Etame A, Tran N, Beer Furlan A, Sahebjam S, Mokhtari S, Piña Y, Macaulay R, Forsyth P, Vogelbaum MA, Liu JKC. Surgical and anatomic factors predict development of leptomeningeal disease in patients with melanoma brain metastases. Neuro Oncol 2022; 24:1307-1317. [PMID: 35092434 PMCID: PMC9340645 DOI: 10.1093/neuonc/noac023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Leptomeningeal disease (LMD) is a devastating complication of systemic malignancy, of which there is an unclear etiology. The aim of this study is to determine if surgical or anatomic factors can predict LMD in patients with metastatic melanoma. METHODS A retrospective chart review was performed of 1162 patients treated at single institution for melanoma brain metastases (MBM). Patients with fewer than 3 months follow-up or lacking appropriate imaging were excluded. Demographic information, surgical, and anatomic data were collected. RESULTS Eight hundred and twenty-seven patients were included in the final review. On multivariate analysis for the entire cohort, female gender, dural-based and intraventricular metastasis, and tumor bordering CSF spaces were associated with increased risk of LMD. Surgical resection was not significant for risk of LMD. On multivariate analysis of patients who have undergone surgical resection of a metastatic tumor, dural-based and intraventricular metastasis, ventricular entry during surgery, and metastasis in the infratentorial space were associated with increased risk of LMD. On multivariate analysis of patients who did not undergo surgery, chemotherapy after initial diagnosis and metastasis bordering CSF spaces were associated with increased risk of LMD. CONCLUSION In a single-institution cohort of MBM, we found that surgical resection alone did not result in an increased risk of LMD. Anatomical factors such as dural-based and intraventricular metastasis were significant for developing LMD, as well as entry into a CSF space during surgical resection. These data suggest a strong correlation between anatomic location and tumor cell seeding in relation to the development of LMD.
Collapse
Affiliation(s)
- Stephen R Lowe
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Christopher P Wang
- University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Amanda Brisco
- University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Junmin Whiting
- Department of Biostatistics & Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - John Arrington
- Department of Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Kamran Ahmed
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Michael Yu
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Timothy Robinson
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Daniel Oliver
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Arnold Etame
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Nam Tran
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Andre Beer Furlan
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Solmaz Sahebjam
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Sepideh Mokhtari
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Yolanda Piña
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Robert Macaulay
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Peter Forsyth
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Michael A Vogelbaum
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - James K C Liu
- Corresponding Author: James K. C. Liu, MD, Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA ()
| |
Collapse
|
21
|
Gutiérrez-Valencia E, Kalyvas A, Villafuerte CJ, Millar BA, Laperriere N, Conrad T, Berlin A, Weiss J, Zadeh G, Bernstein M, Kongkham P, Shultz DB. OUP accepted manuscript. Neuro Oncol 2022; 24:1925-1934. [PMID: 35474015 PMCID: PMC9629433 DOI: 10.1093/neuonc/noac106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND We sought to identify variates correlating with overall survival (OS) in patients treated with surgery (S) plus adjuvant stereotactic radiosurgery (SRS) versus definitive SRS for large (>4 cc) brain metastases (BrM). METHODS We used univariate (UVA) and multivariate analyses (MVA) to identify survival correlates among eligible patients identified from a prospective registry and compared definitive SRS to S+ adjuvant SRS cohorts using propensity score-matched analysis (PSMA). Secondary outcomes were measured using the cumulative incidence (CI) method. RESULTS We identified 364 patients; 127 and 237 were treated with S+SRS and definitive SRS, respectively. On UVA, SRS alone [HR1.73 (1.35,2.22) P < .001), BrM quantity [HR 1.13 (1.06-1.22) (P < .001)]; performance status (PS) [HR 2.78 (1.73-4.46) (P < .001)]; extracranial disease (ECD) [HR 1.82 (1.37,2.40) (P < .001)]; and receipt of systemic treatment after BrM therapy, [HR 0.58 (0.46-073) (P < .001)] correlated with OS. On MVA, SRS alone [HR 1.81 (1.19,2.74) (P < .0054)], SRS target volume [HR 1.03 (1.01,1.06) (P < .0042)], and receipt of systemic treatment [HR 0.68 (0.50,0.93) (P < .015)] correlated with OS. When PSMA was used to balance ECD, BrM quantity, PS, and SRS target volume, SRS alone remained correlated with worsened OS [HR 1.62 (1.20-2.19) (P = 0.0015)]. CI of local failure requiring resection at 12 months was 3% versus 7% for S+SRS and SRS cohorts, respectively [(HR 2.04 (0.89-4.69) (P = .091)]. CI of pachymeningeal failure at 12 months was 16% versus 0% for S+SRS and SRS. CONCLUSION SRS target volume, receipt of systemic therapies, and treatment with S+SRS instead of definitive SRS correlated with improved survival in patients with large BrM.
Collapse
Affiliation(s)
| | | | - Conrad J Villafuerte
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Barbara-Ann Millar
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Normand Laperriere
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Tatiana Conrad
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Alejandro Berlin
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jessica Weiss
- Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Gelareh Zadeh
- Division of Neurosurgery, Toronto Western Hospital - University of Toronto, Toronto, ON, Canada
| | - Mark Bernstein
- Division of Neurosurgery, Toronto Western Hospital - University of Toronto, Toronto, ON, Canada
| | | | - David B Shultz
- Corresponding Author: David B. Shultz, MD, PhD, FRCPC, Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, 7th Floor of Ontario Power Generation (OPG) Building, Room 7–401, 700 University Avenue, Toronto, ON M5G 2M9, Canada ()
| |
Collapse
|
22
|
Minniti G, Lanzetta G, Capone L, Giraffa M, Russo I, Cicone F, Bozzao A, Alongi F, Nicosia L, Fineschi G, Marchetti L, Tufo T, Bianciardi F, Esposito V, Gentile P, Paolini S. Leptomeningeal disease and brain control after postoperative stereotactic radiosurgery with or without immunotherapy for resected brain metastases. J Immunother Cancer 2021; 9:jitc-2021-003730. [PMID: 34949695 PMCID: PMC8705219 DOI: 10.1136/jitc-2021-003730] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2021] [Indexed: 12/21/2022] Open
Abstract
Purpose Immunotherapy has shown activity in patients with brain metastases (BM) and leptomeningeal disease (LMD). We have evaluated LMD and intraparenchymal control rates for patients with resected BM receiving postoperative stereotactic radiosurgery (SRS) and immunotherapy or postoperative SRS alone. We hypothesize that postoperative SRS and immunotherapy will result in a lower rate of LMD with acceptable toxicity compared with postoperative SRS. Patients and methods One hundred and twenty-nine patients with non-small-cell lung cancer (NSCLC) and melanoma BM who received postoperative fractionated SRS (fSRS; 3×9 Gy) in combination with immunotherapy or postoperative fSRS alone for completely resected BM were retrospectively evaluated. The primary endpoint of the study was the rate of LMD after treatments. The secondary endpoints were local failure, distant brain parenchymal failure (DBF), overall survival (OS), and treatment-related toxicity. Results Sixty-three patients received postoperative SRS and immunotherapy, either nivolumab or pembrolizumab, and 66 patients received postoperative SRS alone to the resection cavity. With a median follow-up of 15 months, LMD occurred in 19 patients: fSRS group, 14; fSRS and immunotherapy, 5. The 12-month LMD cumulative rates were 22% (95% CI 14% to 37%) in the fSRS group and 6% (95% CI 2% to 17%) in the combined treatment group (p=0.007). Resection cavity control was similar between the groups, whereas DBF and OS were significantly different; the 1-year DBF rates were 31% (95% CI 20% to 46%) in the fSRS and immunotherapy group and 52% (95% CI 39% to 68%) in the fSRS group; respective OS rates were 78% (95% CI 67% to 88%) and 58.7% (95% CI 47% to 70%). Twenty-two patients undergoing postoperative fSRS and immunotherapy and nine subjected to postoperative fSRS experienced treatment-related imaging changes suggestive of radiation-induced brain necrosis (p=0.02). Conclusions Postoperative fSRS in combination with immunotherapy decreases the incidence of LMD and DBF in patients with resected BM from NSCLC and melanoma as compared with fSRS alone, reducing the rate of neurological death and prolonging survival.
Collapse
Affiliation(s)
- Giuseppe Minniti
- Department of Medicine, Surgery, and Neurosciences, University of Siena, Siena, Italy .,IRCCS Istituto Neurologico Mediterraneo NEUROMED, Pozzilli, Italy
| | - Gaetano Lanzetta
- IRCCS Istituto Neurologico Mediterraneo NEUROMED, Pozzilli, Italy
| | - Luca Capone
- Radiation Oncology, UPMC Hillman Cancer Center San Pietro Hospital FBF, Rome, Italy
| | - Martina Giraffa
- Radiation Oncology, UPMC Hillman Cancer Center San Pietro Hospital FBF, Rome, Italy
| | - Ivana Russo
- Radiation Oncology, UPMC Hillman Cancer Center Villa Maria, Mirabella Eclano, Italy
| | - Francesco Cicone
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaroand Nuclear Medicine Unit, University Hospital "Mater Domini", Catanzaro, Italy
| | - Alessandro Bozzao
- Neuroradiology Unit, NESMOS Department, Sant'Andrea Hospital, La Sapienza University, Rome, Italy
| | - Filippo Alongi
- Advanced Radiation Oncology Department, Cancer Care Center, IRCCS Ospedale Sacro Cuore Don Calabria Hospital, Negrar, Italy.,University of Brescia, Brescia, Italy
| | - Luca Nicosia
- Advanced Radiation Oncology Department, Cancer Care Center, IRCCS Ospedale Sacro Cuore Don Calabria Hospital, Negrar, Italy
| | - Gioia Fineschi
- Department of Medicine, Surgery, and Neurosciences, University of Siena, Siena, Italy
| | - Luca Marchetti
- Radiation Oncology, UPMC Hillman Cancer Center San Pietro Hospital FBF, Rome, Italy
| | - Tommaso Tufo
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Federico Bianciardi
- Radiation Oncology, UPMC Hillman Cancer Center San Pietro Hospital FBF, Rome, Italy
| | | | - PierCarlo Gentile
- Department of Medicine, Surgery, and Neurosciences, University of Siena, Siena, Italy
| | - Sergio Paolini
- IRCCS Istituto Neurologico Mediterraneo NEUROMED, Pozzilli, Italy
| |
Collapse
|
23
|
Dankner M, Maritan SM. The relevance of surgical status in nodular leptomeningeal metastasis patient outcomes. Neuro Oncol 2021; 23:1207. [PMID: 33830265 DOI: 10.1093/neuonc/noab035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Matthew Dankner
- Goodman Cancer Research Centre, Montreal, Quebec, Canada.,Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Sarah M Maritan
- Goodman Cancer Research Centre, Montreal, Quebec, Canada.,Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
24
|
Pellerino A, Brastianos PK, Rudà R, Soffietti R. Leptomeningeal Metastases from Solid Tumors: Recent Advances in Diagnosis and Molecular Approaches. Cancers (Basel) 2021; 13:2888. [PMID: 34207653 PMCID: PMC8227730 DOI: 10.3390/cancers13122888] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 06/05/2021] [Indexed: 12/13/2022] Open
Abstract
Leptomeningeal metastases (LM) from solid tumors represent an unmet need of increasing importance due to an early use of MRI for diagnosis and improvement of outcome of some molecular subgroups following targeted agents and immunotherapy. In this review, we first discussed factors limiting the efficacy of targeted agents in LM, such as the molecular divergence between primary tumors and CNS lesions and CNS barriers at the level of the normal brain, brain tumors and CSF. Further, we reviewed pathogenesis and experimental models and modalities, such as MRI (with RANO and ESO/ESMO criteria), CSF cytology and liquid biopsy, to improve diagnosis and monitoring following therapy. Efficacy and limitations of targeted therapies for LM from EGFR-mutant and ALK-rearranged NSCLC, HER2-positive breast cancer and BRAF-mutated melanomas are reported, including the use of intrathecal administration or modification of traditional cytotoxic compounds. The efficacy of checkpoint inhibitors in LM from non-druggable tumors, in particular triple-negative breast cancer, is discussed. Last, we focused on some recent techniques to improve drug delivery.
Collapse
Affiliation(s)
- Alessia Pellerino
- Department of Neuro-Oncology, University and City of Health and Science Hospital, 10126 Turin, Italy; (R.R.); (R.S.)
| | - Priscilla K. Brastianos
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02115, USA;
| | - Roberta Rudà
- Department of Neuro-Oncology, University and City of Health and Science Hospital, 10126 Turin, Italy; (R.R.); (R.S.)
- Department of Neurology, Castelfranco Veneto and Brain Tumor Board Treviso Hospital, 31100 Treviso, Italy
| | - Riccardo Soffietti
- Department of Neuro-Oncology, University and City of Health and Science Hospital, 10126 Turin, Italy; (R.R.); (R.S.)
| |
Collapse
|
25
|
Prabhu RS, Dhakal R, Vaslow ZK, Dan T, Mishra MV, Murphy ES, Patel TR, Asher AL, Yang K, Manning MA, Stern JD, Patel AR, Wardak Z, Woodworth GF, Chao ST, Mohammadi A, Burri SH. Preoperative Radiosurgery for Resected Brain Metastases: The PROPS-BM Multicenter Cohort Study. Int J Radiat Oncol Biol Phys 2021; 111:764-772. [PMID: 34058254 DOI: 10.1016/j.ijrobp.2021.05.124] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/13/2021] [Accepted: 05/20/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE Preoperative radiosurgery (SRS) is a feasible alternative to postoperative SRS, with potential benefits in adverse radiation effect (ARE) and leptomeningeal disease (LMD) relapse. However, previous studies are limited by small patient numbers and single-institution designs. Our aim was to evaluate preoperative SRS outcomes and prognostic factors from a large multicenter cohort (Preoperative Radiosurgery for Brain Metastases [PROPS-BM]). METHODS AND MATERIALS Patients with brain metastases (BM) from solid cancers who had at least 1 lesion treated with preoperative SRS and underwent a planned resection were included from 5 institutions. SRS to synchronous intact BM was allowed. Radiographic meningeal disease (MD) was categorized as either nodular or classical "sugarcoating" (cLMD). RESULTS The cohort included 242 patients with 253 index lesions. Most patients (62.4%) had a single BM, 93.7% underwent gross total resection, and 98.8% were treated with a single fraction to a median dose of 15 Gray to a median gross tumor volume of 9.9 cc. Cavity local recurrence (LR) rates at 1 and 2 years were 15% and 17.9%, respectively. Subtotal resection (STR) was a strong independent predictor of LR (hazard ratio, 9.1; P < .001). One and 2-year rates of MD were 6.1% and 7.6% and of any grade ARE were 4.7% and 6.8% , respectively. The median overall survival (OS) duration was 16.9 months and the 2-year OS rate was 38.4%. The majority of MD was cLMD (13 of 19 patients with MD; 68.4%). Of 242 patients, 10 (4.1%) experienced grade ≥3 postoperative surgical complications. CONCLUSIONS To our knowledge, this multicenter study represents the largest cohort treated with preoperative SRS. The favorable outcomes previously demonstrated in single-institution studies, particularly the low rates of MD and ARE, are confirmed in this expanded multicenter analysis, without evidence of an excessive postoperative surgical complication risk. STR, though infrequent, is associated with significantly worse cavity LR. A randomized trial between preoperative and postoperative SRS is warranted and is currently being designed.
Collapse
Affiliation(s)
- Roshan S Prabhu
- Levine Cancer Institute, Atrium Health, Charlotte, North Carolina; Southeast Radiation Oncology Group, Charlotte, North Carolina.
| | - Reshika Dhakal
- Levine Cancer Institute, Atrium Health, Charlotte, North Carolina
| | | | - Tu Dan
- Department of Radiation Oncology, University of Texas Southwestern, Dallas, Texas
| | - Mark V Mishra
- Department of Radiation Oncology, University of Maryland, Baltimore, Maryland
| | - Erin S Murphy
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio
| | - Toral R Patel
- Department of Neurosurgery, University of Texas Southwestern, Dallas, Texas
| | - Anthony L Asher
- Levine Cancer Institute, Atrium Health, Charlotte, North Carolina; Carolina Neurosurgery and Spine Associates, Charlotte, North Carolina
| | - Kailin Yang
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio
| | | | - Joseph D Stern
- Cone Health, Greensboro, North Carolina; Carolina Neurosurgery and Spine Associates, Charlotte, North Carolina
| | - Ankur R Patel
- Department of Neurosurgery, Baylor University, Dallas, Texas
| | - Zabi Wardak
- Department of Radiation Oncology, University of Texas Southwestern, Dallas, Texas
| | | | - Samuel T Chao
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio
| | | | - Stuart H Burri
- Levine Cancer Institute, Atrium Health, Charlotte, North Carolina; Southeast Radiation Oncology Group, Charlotte, North Carolina
| |
Collapse
|
26
|
Teyateeti A, Brown PD, Mahajan A, Laack NN, Pollock BE. Outcome comparison of patients who develop leptomeningeal disease or distant brain recurrence after brain metastases resection cavity radiosurgery. Neurooncol Adv 2021; 3:vdab036. [PMID: 33860228 PMCID: PMC8034660 DOI: 10.1093/noajnl/vdab036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background To compare the outcomes between patients with leptomeningeal disease (LMD) and distant brain recurrence (DBR) after stereotactic radiosurgery (SRS) brain metastases (BM) resection cavity. Methods Twenty-nine patients having single-fraction SRS after BM resection who developed either LMD (n = 11) or DBR (n = 18) as their initial and only site of intracranial progression were retrospectively reviewed. Results Patients developing LMD more commonly had a metachronous presentation (91% vs 50%, P = .04) and recursive partitioning class 1 status (45% vs 6%, P = .02). There was no difference in the median time from SRS to the development of LMD or DBR (5.0 vs 3.8 months, P = .68). The majority of patients with LMD (10/11, 91%) developed the nodular variant (nLMD). Treatment for LMD was repeat SRS (n = 4), whole-brain radiation therapy (WBRT; n = 5), resection + WBRT (n = 1), and no treatment (n = 1). Treatment for DBR was repeat SRS (n = 9), WBRT (n = 3), resection + resection cavity SRS (n = 1), and no treatment (n = 5). Median overall survival (OS) from time of resection cavity SRS was 15.7 months in the LMD group and 12.7 months in the DBR group (P = .60), respectively. Median OS in salvage SRS and salvage WBRT were 25.4 and 5.0 months in the nLMD group (P = .004) while 18.7 and 16.2 months in the DBR group (P = .30), respectively. Conclusions Following BM resection cavity SRS, nLMD recurrence is much more frequent than classical LMD. Salvage SRS may be considered for selected patients with nLMD, reserving salvage WBRT for patients with extensive intracranial disease without compromising survival. Further study with larger numbers of patients is needed.
Collapse
Affiliation(s)
- Achiraya Teyateeti
- Department of Radiation Oncology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA.,Division of Radiation Oncology, Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Paul D Brown
- Department of Radiation Oncology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Anita Mahajan
- Department of Radiation Oncology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Nadia N Laack
- Department of Radiation Oncology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Bruce E Pollock
- Department of Neurologic Surgery, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| |
Collapse
|
27
|
Dankner M, Lam S, Degenhard T, Garzia L, Guiot MC, Petrecca K, Siegel PM. The Underlying Biology and Therapeutic Vulnerabilities of Leptomeningeal Metastases in Adult Solid Cancers. Cancers (Basel) 2021; 13:cancers13040732. [PMID: 33578853 PMCID: PMC7916586 DOI: 10.3390/cancers13040732] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 01/18/2023] Open
Abstract
Metastasis to the central nervous system occurs in approximately 20% of patients with advanced solid cancers such as lung cancer, breast cancer, and melanoma. While central nervous system metastases most commonly form in the brain parenchyma, metastatic cancer cells may also reside in the subarachnoid space surrounding the brain and spinal cord to form tumors called leptomeningeal metastases. Leptomeningeal metastasis involves cancer cells that reach the subarachnoid space and proliferate in the cerebrospinal fluid compartment within the leptomeninges, a sequela associated with a myriad of symptoms and poor prognosis. Cancer cells exposed to cerebrospinal fluid in the leptomeninges must contend with a unique microenvironment from those that establish within the brain or other organs. Leptomeningeal lesions provide a formidable clinical challenge due to their often-diffuse infiltration within the subarachnoid space. The molecular mechanisms that promote the establishment of leptomeningeal metastases have begun to be elucidated, demonstrating that it is a biological entity distinct from parenchymal brain metastases and is associated with specific molecular drivers. In this review, we outline the current state of knowledge pertaining to the diagnosis, treatment, and molecular underpinnings of leptomeningeal metastasis.
Collapse
Affiliation(s)
- Matthew Dankner
- Goodman Cancer Research Centre, Faculty of Medicine, McGill University, Montreal, QC H3A 1A3, Canada; (M.D.); (M.-C.G.)
| | - Stephanie Lam
- Department of Diagnostic Radiology, Faculty of Medicine, Research Institute of the McGill University Health Centre, Montreal, QC H3T 1E2, Canada;
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada;
| | - Theresa Degenhard
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 2B4, Canada; (T.D.); (K.P.)
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Livia Garzia
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada;
| | - Marie-Christine Guiot
- Goodman Cancer Research Centre, Faculty of Medicine, McGill University, Montreal, QC H3A 1A3, Canada; (M.D.); (M.-C.G.)
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 2B4, Canada; (T.D.); (K.P.)
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Pathology, McGill University, Montreal, QC H3A 1A3, Canada
| | - Kevin Petrecca
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 2B4, Canada; (T.D.); (K.P.)
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Peter M. Siegel
- Goodman Cancer Research Centre, Faculty of Medicine, McGill University, Montreal, QC H3A 1A3, Canada; (M.D.); (M.-C.G.)
- Department of Diagnostic Radiology, Faculty of Medicine, Research Institute of the McGill University Health Centre, Montreal, QC H3T 1E2, Canada;
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 2B4, Canada; (T.D.); (K.P.)
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
- Department of Anatomy & Cell Biology, McGill University, Montreal, QC H3A 1A3, Canada
- Department of Oncology, McGill University, Montreal, QC H3A 1A3, Canada
- Correspondence: ; Tel.: +1-514-398-4259; Fax: +1-514-398-6769
| |
Collapse
|
28
|
Nguyen TK, Sahgal A, Detsky J, Atenafu EG, Myrehaug S, Tseng CL, Husain Z, Heyn C, Maralani P, Ruschin M, Perry J, Soliman H. Predictors of leptomeningeal disease following hypofractionated stereotactic radiotherapy for intact and resected brain metastases. Neuro Oncol 2021; 22:84-93. [PMID: 31412120 DOI: 10.1093/neuonc/noz144] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The objective was to evaluate the risk and predictors of developing leptomeningeal disease (LMD) in patients with brain metastases treated with 5-fraction hypofractionated stereotactic radiotherapy (HSRT). METHODS Patients treated with HSRT for intact brain metastases and/or surgical cavities were reviewed from a prospectively maintained database. Radiographic patterns of LMD were classified as focal classical, diffuse classical, focal nodular, and diffuse nodular. RESULTS HSRT was delivered, most commonly 30 Gy in 5 fractions, to 320 intracranial lesions (57% intact and 43% surgical cavities) in 235 patients. The median follow-up was 13.4 months (range, 0.8 to 60 mo). LMD developed in 19% of patients with a 1-year LMD rate of 12%. From the diagnosis of LMD, the median overall survival (OS) was 3.8 months (range, 2-20.8 mo). The most common LMD pattern was diffuse nodular (44%). No difference in OS was observed between LMD patterns (P = 0.203). Multivariable analysis identified surgical cavities at significantly higher risk of LMD compared with intact lesions (odds ratio [OR] = 2.30, 95% CI: 1.24, 4.29, P = 0.008). For cavities, radiosensitive tumors (OR = 2.35, 95% CI: 1.04, 5.35, P = 0.041) predicted for LMD, while, for intact metastases, patients receiving treatment with targeted agents or immunotherapy (TA/I) were at lower risk (OR = 0.178, 95% CI: 0.04, 0.79, P = 0.023). CONCLUSIONS Patients who had a brain metastasis resected were at an increased risk of LMD. OS was poor despite treatment of LMD, and no differences in OS based on the pattern of LMD was observed. Treatment with TA/I was observed to be protective against LMD and requires further study.
Collapse
Affiliation(s)
- Timothy K Nguyen
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Jay Detsky
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Eshetu G Atenafu
- Department of Biostatistics, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Sten Myrehaug
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Chia-Lin Tseng
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Zain Husain
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Chris Heyn
- Department of Neuroradiology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Pejman Maralani
- Department of Neuroradiology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Mark Ruschin
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - James Perry
- Department of Medicine, Division of Neurology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Hany Soliman
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
29
|
Leptomeningeal disease and neurologic death after surgical resection and radiosurgery for brain metastases: A multi-institutional analysis. Adv Radiat Oncol 2021; 6:100644. [PMID: 33732962 PMCID: PMC7940785 DOI: 10.1016/j.adro.2021.100644] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/18/2020] [Accepted: 12/17/2020] [Indexed: 11/23/2022] Open
Abstract
Purpose Postoperative stereotactic radiosurgery (SRS) is associated with up to 30% risk of subsequent leptomeningeal disease (LMD). Radiographic patterns of LMD (classical sugarcoating [cLMD] vs. nodular [nLMD]) in this setting has been shown to be prognostic. However, the association of these findings with neurologic death (ND) is not well described. Methods and Materials The records for patients with brain metastases who underwent surgical resection and adjunctive SRS to 1 lesion (SRS to other intact lesions was allowed) and subsequently developed LMD were combined from 7 tertiary care centers. Salvage radiation therapy (RT) for LMD was categorized according to use of whole-brain versus focal cranial RT. Results The study cohort included 125 patients with known cause of death. The ND rate in these patients was 79%, and the rate in patients who underwent LMD salvage treatment (n = 107) was 76%. Univariate logistic regression demonstrated radiographic pattern of LMD (cLMD vs. nLMD, odds ratio: 2.9; P = .04) and second LMD failure after salvage treatment (odds ratio: 3.9; P = .02) as significantly associated with ND. The ND rate was 86% for cLMD versus 68% for nLMD. Whole-brain RT was used in 95% of patients with cLMD and 52% with nLMD. In the nLMD cohort (n = 58), there was no difference in ND rate based on type of salvage RT (whole-brain RT: 67% vs. focal cranial RT: 68%, P = .92). Conclusions LMD after surgery and SRS for brain metastases is a clinically significant event with high rates of ND. Classical LMD pattern (vs. nodular) and second LMD failure after salvage treatment were significantly associated with a higher risk of ND. Patients with nLMD treated with salvage focal cranial RT did not have higher ND rates compared with WBRT. Methods to decrease LMD and the subsequent high risk of ND in this setting warrant further investigation.
Collapse
|
30
|
Burri SH, Ward MC, Prabhu RS. Hobgoblins, Iron Lungs, and Surgical Perturbation Failure? Int J Radiat Oncol Biol Phys 2020; 108:996-998. [DOI: 10.1016/j.ijrobp.2020.06.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/12/2020] [Accepted: 06/17/2020] [Indexed: 01/17/2023]
|