1
|
Yeung KKD, Crook J, Arbour G, Araujo C, Batchelar D, Kim D, Petrik D, Rose T, Bachand F. HDR brachytherapy combined with external beam radiotherapy for unfavorable localized prostate cancer: A single center experience from inception to standard of care. Brachytherapy 2025; 24:318-327. [PMID: 39855985 DOI: 10.1016/j.brachy.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/08/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025]
Abstract
PURPOSE High dose rate (HDR) brachytherapy is increasingly adopted for dose escalation in prostate cancer treatment. We report the clinical efficacy and toxicity of HDR prostate brachytherapy combined with external beam radiotherapy (EBRT) and evaluate the predictability of the biochemical definition of cure of 4-year PSA ≤0.2 ng/mL for failure free survival (FFS). METHODS A single centre retrospective study was conducted, including all patients with high-tier intermediate risk and high-risk prostate cancer treated with HDR brachytherapy combined with EBRT from 2011 to 2019. Patient and prostate cancer characteristics, treatment, clinical endpoints, and follow up were collected. RESULTS Total 319 patients were analyzed. The median age was 68 with median follow up of 77.1 months. Total 142 had high-tier intermediate and 177 had high-risk disease. Brachytherapy doses were initially 20 Gy/2 fractions, and subsequently 15 Gy/1 fraction. All patients received 46 Gy/23 fractions of EBRT. Overall survival at 5 and 9 years was 92.2% and 77.0%, respectively. Failure-free survival (FFS) was 86.0% at 5 years and 76.1% at 9 years. PSA ≤ 0.2 ng/mL at 4 years was seen in 79.3% of patients and was associated with FFS of 94.1% at 9 years. Grade 3 urethral stricture, hematuria, or proctitis occurred in 2.8%, 0%, and 0%, respectively. CONCLUSION HDR brachytherapy in addition to EBRT is effective treatment for unfavourable localized prostate cancer with a very acceptable toxicity profile. The biochemical definition of cure of PSA < 0.2 ng/mL at 4 years was predictive for FFS at 9 years.
Collapse
Affiliation(s)
| | | | - Gregory Arbour
- University of British Columbia, Kelowna, British Columbia
| | | | | | - David Kim
- BC Cancer Kelowna, Kelowna, British Columbia
| | | | - Tracey Rose
- BC Cancer Kelowna, Kelowna, British Columbia
| | | |
Collapse
|
2
|
Slevin F, Zattoni F, Checcucci E, Cumberbatch MGK, Nacchia A, Cornford P, Briers E, De Meerleer G, De Santis M, Eberli D, Gandaglia G, Gillessen S, Grivas N, Liew M, Linares Espinós EE, Oldenburg J, Oprea-Lager DE, Ploussard G, Rouvière O, Schoots IG, Smith EJ, Stranne J, Tilki D, Smith CT, Van Den Bergh RCN, Van Oort IM, Wiegel T, Yuan CY, Van den Broeck T, Henry AM. A Systematic Review of the Efficacy and Toxicity of Brachytherapy Boost Combined with External Beam Radiotherapy for Nonmetastatic Prostate Cancer. Eur Urol Oncol 2024; 7:677-696. [PMID: 38151440 DOI: 10.1016/j.euo.2023.11.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/14/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023]
Abstract
CONTEXT The optimum use of brachytherapy (BT) combined with external beam radiotherapy (EBRT) for localised/locally advanced prostate cancer (PCa) remains uncertain. OBJECTIVE To perform a systematic review to determine the benefits and harms of EBRT-BT. EVIDENCE ACQUISITION Ovid MEDLINE, Embase, and EBM Reviews-Cochrane Central Register of Controlled Trials databases were systematically searched for studies published between January 1, 2000 and June 7, 2022, according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement. Eligible studies compared low- or high-dose-rate EBRT-BT against EBRT ± androgen deprivation therapy (ADT) and/or radical prostatectomy (RP) ± postoperative radiotherapy (RP ± EBRT). The main outcomes were biochemical progression-free survival (bPFS), severe late genitourinary (GU)/gastrointestinal toxicity, metastasis-free survival (MFS), cancer-specific survival (CSS), and overall survival (OS), at/beyond 5 yr. Risk of bias was assessed and confounding assessment was performed. A meta-analysis was performed for randomised controlled trials (RCTs). EVIDENCE SYNTHESIS Seventy-three studies were included (two RCTs, seven prospective studies, and 64 retrospective studies). Most studies included participants with intermediate-or high-risk PCa. Most studies, including both RCTs, used ADT with EBRT-BT. Generally, EBRT-BT was associated with improved bPFS compared with EBRT, but similar MFS, CSS, and OS. A meta-analysis of the two RCTs showed superior bPFS with EBRT-BT (estimated fixed-effect hazard ratio [HR] 0.54 [95% confidence interval {CI} 0.40-0.72], p < 0.001), with absolute improvements in bPFS at 5-6 yr of 4.9-16%. However, no difference was seen for MFS (HR 0.84 [95% CI 0.53-1.28], p = 0.4) or OS (HR 0.87 [95% CI 0.63-1.19], p = 0.4). Fewer studies examined RP ± EBRT. There is an increased risk of severe late GU toxicity, especially with low-dose-rate EBRT-BT, with some evidence of increased prevalence of severe GU toxicity at 5-6 yr of 6.4-7% across the two RCTs. CONCLUSIONS EBRT-BT can be considered for unfavourable intermediate/high-risk localised/locally advanced PCa in patients with good urinary function, although the strength of this recommendation based on the European Association of Urology guideline methodology is weak given that it is based on improvements in biochemical control. PATIENT SUMMARY We found good evidence that radiotherapy combined with brachytherapy keeps prostate cancer controlled for longer, but it could lead to worse urinary side effects than radiotherapy without brachytherapy, and its impact on cancer spread and patient survival is less clear.
Collapse
Affiliation(s)
- Finbar Slevin
- University of Leeds, Leeds, UK; Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK.
| | - Fabio Zattoni
- Department Surgery, Oncology and Gastroenterology, Urologic Unit, University of Padova, Padova, Italy
| | - Enrico Checcucci
- Division of Urology, Department of Oncology, School of Medicine, San Luigi Hospital, University of Turin, Turin, Italy
| | | | | | - Philip Cornford
- Department of Urology, Liverpool University Hospitals NHS Trust, Liverpool, UK
| | | | - Gert De Meerleer
- Department of Radiotherapy, University Hospitals Leuven, Leuven, Belgium
| | - Maria De Santis
- Department of Urology, Charité Universitätsmedizin, Berlin, Germany; Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Daniel Eberli
- Department of Urology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Silke Gillessen
- Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Nikolaos Grivas
- Department of Urology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Matthew Liew
- Department of Urology, Wrightington, Wigan and Leigh NHS Foundation Trust, Wigan, UK
| | | | - Jan Oldenburg
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Daniela E Oprea-Lager
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Olivier Rouvière
- Hospices Civils de Lyon, Department of Urinary and Vascular Imaging, Hôpital Edouard Herriot, Lyon, France
| | - Ivo G Schoots
- Department of Radiology & Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Emma Jane Smith
- European Association of Urology Guidelines Office, Arnhem, The Netherlands
| | - Johan Stranne
- Department of Urology, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Urology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Derya Tilki
- Martini-Klinik Prostate Cancer Center, University Hospital Hamburg Eppendorf, Hamburg, Germany; Department of Urology, University Hospital Hamburg-Eppendorf, Hamburg, Germany; Department of Urology, Koc University Hospital, Istanbul, Turkey
| | - Catrin Tudur Smith
- Department of Health Data Science, University of Liverpool, Liverpool, UK
| | | | - Inge M Van Oort
- Radboud University Medical Center, Department of Urology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | | | - Cathy Y Yuan
- Department of Medicine, Health Science Centre, McMaster University, Hamilton, Ontario, Canada
| | | | - Ann M Henry
- University of Leeds, Leeds, UK; Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| |
Collapse
|
3
|
Mendez LC, Crook J, Martell K, Schaly B, Hoover DA, Dhar A, Velker V, Ahmad B, Lock M, Halperin R, Warner A, Bauman GS, D'Souza DP. Is Ultrahypofractionated Whole Pelvis Radiation Therapy (WPRT) as Well Tolerated as Conventionally Fractionated WPRT in Patients With Prostate Cancer? Early Results From the HOPE Trial. Int J Radiat Oncol Biol Phys 2024; 119:803-812. [PMID: 38072323 DOI: 10.1016/j.ijrobp.2023.11.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/14/2023] [Accepted: 11/25/2023] [Indexed: 01/15/2024]
Abstract
OBJECTIVE The aim of this work was to evaluate the acute toxicity and quality-of-life (QOL) impact of ultrahypofractionated whole pelvis radiation therapy (WPRT) compared with conventional WPRT fractionation after high-dose-rate prostate brachytherapy (HDR-BT). METHODS AND MATERIALS The HOPE trial is a phase 2, multi-institutional randomized controlled trial of men with prostate-confined disease and National Comprehensive Cancer Network unfavorable intermediate-, high-, or very-high-risk prostate cancer. Patients were randomly assigned to receive conventionally fractionated WPRT (standard arm) or ultrahypofractionated WPRT (experimental arm) in a 1:1 ratio. All patients underwent radiation therapy with 15 Gy HDR-BT boost in a single fraction followed by WPRT delivered with conventional fractionation (45 Gy in 25 daily fractions or 46 Gy in 23 fractions) or ultrahypofractionation (25 Gy in 5 fractions delivered on alternate days). Acute toxicities measured during radiation therapy and at 6 weeks posttreatment were assessed using the clinician-reported Common Terminology Criteria for Adverse Events version 5.0, and QOL was measured using the Expanded Prostate Cancer Index Composite (EPIC-50) and International Prostate Symptom Score (IPSS). RESULTS A total of 80 patients were enrolled and treated across 3 Canadian institutions, of whom 39 and 41 patients received external radiation therapy with conventionally fractionated and ultrahypofractionated WPRT, respectively. All patients received androgen deprivation therapy except for 2 patients treated in the ultrahypofractionated arm. The baseline clinical characteristics of the 2 arms were similar, with 51 (63.8%) patients having high or very-high-risk prostate cancer disease. Treatment was well tolerated with no significant differences in the rate of acute adverse events between arms. No grade 4 adverse events or treatment-related deaths were reported. Ultrahypofractionated WPRT had a less detrimental impact on the EPIC-50 bowel total, function, and bother domain scores compared with conventional WPRT in the acute setting. By contrast, more patients treated with ultrahypofractionated WPRT reached the minimum clinical important difference on the EPIC-50 urinary domains. No significant QOL differences between arms were noted in the sexual and hormonal domains. CONCLUSIONS Ultrahypofractionated WPRT after HDR-BT is a well-tolerated treatment strategy in the acute setting that has less detrimental impact on bowel QOL domains compared with conventional WPRT.
Collapse
Affiliation(s)
- Lucas C Mendez
- Department of Radiation Oncology, London Health Sciences Centre, London, Ontario, Canada.
| | - Juanita Crook
- Department of Radiation Oncology, BC Cancer Agency, Kelowna, British Columbia, Canada
| | - Kevin Martell
- Department of Radiation Oncology, Tom Baker Cancer Centre, Calgary, Alberta, Canada
| | - Bryan Schaly
- Department of Radiation Oncology, London Health Sciences Centre, London, Ontario, Canada
| | - Douglas A Hoover
- Department of Radiation Oncology, London Health Sciences Centre, London, Ontario, Canada
| | - Aneesh Dhar
- Department of Radiation Oncology, London Health Sciences Centre, London, Ontario, Canada
| | - Vikram Velker
- Department of Radiation Oncology, London Health Sciences Centre, London, Ontario, Canada
| | - Belal Ahmad
- Department of Radiation Oncology, London Health Sciences Centre, London, Ontario, Canada
| | - Michael Lock
- Department of Radiation Oncology, London Health Sciences Centre, London, Ontario, Canada
| | - Ross Halperin
- Department of Radiation Oncology, BC Cancer Agency, Kelowna, British Columbia, Canada
| | - Andrew Warner
- Department of Radiation Oncology, London Health Sciences Centre, London, Ontario, Canada
| | - Glenn S Bauman
- Department of Radiation Oncology, London Health Sciences Centre, London, Ontario, Canada
| | - David P D'Souza
- Department of Radiation Oncology, London Health Sciences Centre, London, Ontario, Canada
| |
Collapse
|
4
|
Nikitas J, Kishan A, Chang A, Duriseti S, Nichols NG, Reiter R, Rettig M, Brisbane W, Steinberg ML, Valle L. Treatment intensification strategies for men undergoing definitive radiotherapy for high-risk prostate cancer. World J Urol 2024; 42:165. [PMID: 38492111 DOI: 10.1007/s00345-024-04862-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/08/2024] [Indexed: 03/18/2024] Open
Abstract
PURPOSE Treatment intensification of external beam radiotherapy (EBRT) plays a crucial role in the treatment of high-risk prostate cancer. METHODS We performed a critical narrative review of the relevant literature and present new developments in evidence-based treatment intensification strategies. RESULTS For men with high-risk prostate cancer, there is strong evidence to support prolonging androgen deprivation therapy (ADT) to 18-36 months and escalating the dose to the prostate using a brachytherapy boost. A potentially less toxic alternative to a brachytherapy boost is delivering a focal boost to dominant intraprostatic lesions using EBRT. In patients who meet STAMPEDE high-risk criteria, there is evidence to support adding a second-generation anti-androgen agent, such as abiraterone acetate, to long-term ADT. Elective pelvic lymph node irradiation may be beneficial in select patients, though more prospective data is needed to elucidate the group of patients who may benefit the most. Tumor genomic classifier (GC) testing and advanced molecular imaging will likely play a role in improving patient selection for treatment intensification as well as contribute to the evolution of treatment intensification strategies for future patients. CONCLUSION Treatment intensification using a combination of EBRT, advanced hormonal therapies, and brachytherapy may improve patient outcomes and survival in men with high-risk prostate cancer. Shared decision-making between patients and multidisciplinary teams of radiation oncologists, urologists, and medical oncologists is essential for personalizing care in this setting and deciding which strategies make sense for individual patients.
Collapse
Affiliation(s)
- John Nikitas
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, USA
| | - Amar Kishan
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, USA
| | - Albert Chang
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, USA
| | - Sai Duriseti
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, USA
- Radiation Oncology Service, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, USA
| | - Nicholas G Nichols
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, USA
- Radiation Oncology Service, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, USA
| | - Robert Reiter
- Department of Urology, University of California, Los Angeles, Los Angeles, USA
| | - Matthew Rettig
- Department of Urology, University of California, Los Angeles, Los Angeles, USA
- Hematology-Oncology Section, Medicine Service, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, USA
| | - Wayne Brisbane
- Department of Urology, University of California, Los Angeles, Los Angeles, USA
| | - Michael L Steinberg
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, USA
| | - Luca Valle
- Radiation Oncology Service, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, USA.
- Department of Radiation Oncology, University of California, Los Angeles, 200 Medical Plaza, Ste B265, Los Angeles, CA, 90095, USA.
| |
Collapse
|
5
|
Koerber SA, Höcht S, Aebersold D, Albrecht C, Boehmer D, Ganswindt U, Schmidt-Hegemann NS, Hölscher T, Mueller AC, Niehoff P, Peeken JC, Pinkawa M, Polat B, Spohn SKB, Wolf F, Zamboglou C, Zips D, Wiegel T. Prostate cancer and elective nodal radiation therapy for cN0 and pN0-a never ending story? : Recommendations from the prostate cancer expert panel of the German Society of Radiation Oncology (DEGRO). Strahlenther Onkol 2024; 200:181-187. [PMID: 38273135 PMCID: PMC10876748 DOI: 10.1007/s00066-023-02193-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/17/2023] [Indexed: 01/27/2024]
Abstract
For prostate cancer, the role of elective nodal irradiation (ENI) for cN0 or pN0 patients has been under discussion for years. Considering the recent publications of randomized controlled trials, the prostate cancer expert panel of the German Society of Radiation Oncology (DEGRO) aimed to discuss and summarize the current literature. Modern trials have been recently published for both treatment-naïve patients (POP-RT trial) and patients after surgery (SPPORT trial). Although there are more reliable data to date, we identified several limitations currently complicating the definitions of general recommendations. For patients with cN0 (conventional or PSMA-PET staging) undergoing definitive radiotherapy, only men with high-risk factors for nodal involvement (e.g., cT3a, GS ≥ 8, PSA ≥ 20 ng/ml) seem to benefit from ENI. For biochemical relapse in the postoperative situation (pN0) and no PSMA imaging, ENI may be added to patients with risk factors according to the SPPORT trial (e.g., GS ≥ 8; PSA > 0.7 ng/ml). If PSMA-PET/CT is negative, ENI may be offered for selected men with high-risk factors as an individual treatment approach.
Collapse
Affiliation(s)
- S A Koerber
- Department of Radiation Oncology, Barmherzige Brüder Hospital Regensburg, Prüfeninger Straße 86, 93049, Regensburg, Germany.
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
| | - S Höcht
- Department of Radiation Oncology, Ernst von Bergmann Hospital Potsdam, Charlottenstraße 72, 14467, Potsdam, Germany
| | - D Aebersold
- Department of Radiation Oncology, Inselspital-Bern University Hospital, University of Bern, Freiburgstraße 4, 3010, Bern, Switzerland
| | - C Albrecht
- Nordstrahl Radiation Oncology Unit, Nürnberg North Hospital, Prof.-Ernst-Nathan-Str. 1, 90149, Nürnberg, Germany
| | - D Boehmer
- Department of Radiation Oncology, University Hospital Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - U Ganswindt
- Department of Radiation Oncology, University Hospital Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - N-S Schmidt-Hegemann
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - T Hölscher
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Fiedlerstraße 19, 01307, Dresden, Germany
| | - A-C Mueller
- Department of Radiation Oncology, RKH Hospital Ludwigsburg, Posilipostraße 4, 71640, Ludwigsburg, Germany
| | - P Niehoff
- Department of Radiation Oncology, Sana Hospital Offenbach, Starkenburgring 66, 63069, Offenbach, Germany
| | - J C Peeken
- Department of Radiation Oncology, Technische Universität München, Ismaninger Straße 22, 81675, Munich, Germany
| | - M Pinkawa
- Department of Radiation Oncology, Robert Janker Klinik, Villenstraße 8, 53129, Bonn, Germany
| | - B Polat
- Department of Radiation Oncology, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - S K B Spohn
- Department of Radiation Oncology, University Hospital Freiburg, Robert-Koch-Straße 3, 79106, Freiburg, Germany
| | - F Wolf
- Department of Radiation Oncology, Paracelsus Medical University of Salzburg, Müllner Hauptstraße 48, 5020, Salzburg, Austria
| | - C Zamboglou
- Department of Radiation Oncology, University Hospital Freiburg, Robert-Koch-Straße 3, 79106, Freiburg, Germany
- German Oncology Center, 1, Nikis Avenue, Agios Athanasios, 4108, Limassol, Cyprus
| | - D Zips
- Department of Radiation Oncology, University Hospital Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - T Wiegel
- Department of Radiation Oncology, University Hospital Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| |
Collapse
|
6
|
Ma TM, Ladbury C, Tran M, Keiper TD, Andraos T, Gogineni E, Mohideen N, Siva S, Loblaw A, Tree AC, Cheung P, Kresl J, Collins S, Cao M, Kishan AU. Stereotactic Body Radiation Therapy: A Radiosurgery Society Guide to the Treatment of Localized Prostate Cancer Illustrated by Challenging Cases. Pract Radiat Oncol 2024; 14:e117-e131. [PMID: 37661040 DOI: 10.1016/j.prro.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/02/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023]
Abstract
Traditionally, external beam radiotherapy (EBRT) for localized prostate cancer (PCa) involved lengthy courses with low daily doses. However, advancements in radiation delivery and a better understanding of prostate radiobiology have enabled the development of shorter courses of EBRT. Ultrahypofractionated radiotherapy, administering doses greater than 5 Gy per fraction, is now considered a standard of care regimen for localized PCa, particularly for intermediate-risk disease. Stereotactic body radiotherapy (SBRT), a specific type of ultrahypofractionated radiotherapy employing advanced planning, imaging, and treatment technology to deliver in five or fewer fractions, is gaining prominence as a cost-effective, convenient, and safe alternative to longer radiotherapy courses. It is crucial to address practical considerations related to patient selection, fractionation scheme, target delineation, and planning objectives. This is especially important in challenging clinical situations where clear evidence for guidance may be lacking. The Radiosurgery Society endorses this case-based guide with the aim of providing a practical framework for delivering SBRT to the intact prostate, exemplified by two case studies. The article will explore common SBRT dose/fractionation schemes and dose constraints for organs-at-risk. Additionally, it will review existing evidence and expert opinions on topics such as SBRT dose escalation, the use of rectal spacers, the role of androgen deprivation therapy in the context of SBRT, SBRT in special patient populations (e.g., high-risk disease, large prostate, high baseline urinary symptom burdens, and inflammatory bowel disease), as well as new imaging-guidance techniques like Magnetic Resonance Imaging for SBRT delivery.
Collapse
Affiliation(s)
- Ting Martin Ma
- Department of Radiation Oncology, University of Washington, Seattle, Washington
| | - Colton Ladbury
- Department of Radiation Oncology, City of Hope National Cancer Center, Duarte, California
| | - Maxwell Tran
- Department of Radiation Oncology, Medical University of South Carolina, Charleston, South Carolina
| | - Timothy D Keiper
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, San Diego, California
| | - Therese Andraos
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Emile Gogineni
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Najeeb Mohideen
- Department of Radiation Oncology, Northwest Community Hospital, Arlington Heights, Illinois
| | - Shankar Siva
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew Loblaw
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Science Centre, University of Toronto, Toronto, Ontario, Canada
| | - Alison C Tree
- The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, London, United Kingdom
| | - Patrick Cheung
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Science Centre, University of Toronto, Toronto, Ontario, Canada
| | - John Kresl
- Phoenix CyberKnife and Radiation Oncology Center, Phoenix, Arizona
| | - Sean Collins
- Department of Radiation Medicine, MedStar Georgetown University Hospital, Washington, D.C
| | - Minsong Cao
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California
| | - Amar U Kishan
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California; Department of Urology, University of California Los Angeles, Los Angeles, California.
| |
Collapse
|
7
|
Yorozu A, Namiki M, Saito S, Egawa S, Yaegashi H, Konaka H, Momma T, Fukagai T, Tanaka N, Ohashi T, Takahashi H, Nakagawa Y, Kikuchi T, Mizokami A, Stone NN. Trimodality Therapy With Iodine-125 Brachytherapy, External Beam Radiation Therapy, and Short- or Long-Term Androgen Deprivation Therapy for High-Risk Localized Prostate Cancer: Results of a Multicenter, Randomized Phase 3 Trial (TRIP/TRIGU0907). Int J Radiat Oncol Biol Phys 2024; 118:390-401. [PMID: 37802225 DOI: 10.1016/j.ijrobp.2023.08.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 08/05/2023] [Accepted: 08/11/2023] [Indexed: 10/08/2023]
Abstract
PURPOSE This phase 3 randomized investigation was designed to determine whether 30 months of androgen deprivation therapy (ADT) was superior to 6 months of ADT when combined with brachytherapy and external beam radiation therapy (EBRT) for localized high-risk prostate cancer. METHODS AND MATERIALS This study was conducted at 37 hospitals on men aged 40 to 79 years, with stage T2c-3a, prostate-specific antigen >20 ng/mL, or Gleason score >7, who received 6 months of ADT combined with iodine-125 brachytherapy followed by EBRT. After stratification, patients were randomly assigned to either no further treatment (short arm) or 24 months of adjuvant ADT (long arm). According to the Phoenix definition of failure, the primary endpoint was the cumulative incidence of biochemical progression. Secondary endpoints included clinical progression, metastasis, salvage treatment, disease-specific mortality, overall survival, and grade 3+ adverse events. An intention-to-treat analysis was conducted using survival estimates determined using competing risk analyses. RESULTS Of 332 patients, 165 and 167 were randomly assigned to the short and long arms, respectively. The median follow-up period was 9.2 years. The cumulative incidence of biochemical progression at 7 years was 9.0% (95% CI, 5.5-14.5) and 8.0% (4.7-13.5) in the short and long arms, respectively (P = .65). The outcomes of secondary endpoints did not differ significantly between the arms. Incidence rates of endocrine- and radiation-related grade 3+ adverse events for the short versus long arms were 0.6 versus 1.8% (P = .62) and 1.2 versus 0.6% (P = .62), respectively. CONCLUSIONS Both treatment arms showed similar efficacy among selected populations with high-risk features. The toxicity of the trimodal therapy was acceptable. The present investigation, designed as a superiority trial, failed to demonstrate that 30-month ADT yielded better biochemical control than 6-month ADT when combined with brachytherapy and EBRT. Therefore, a noninferiority study is warranted to obtain further evidence supporting these preliminary results.
Collapse
Affiliation(s)
- Atsunori Yorozu
- Department of Radiation Oncology, National Hospital Organization Tokyo Medical Center, Tokyo, Japan.
| | - Mikio Namiki
- Department of Urology, Hasegawa Hospital, Toyama, Japan
| | - Shiro Saito
- Department of Urology, Ofuna Chuo Hospital, Kanagawa, Japan
| | - Shin Egawa
- Department of Urology, the Jikei University Hospital, Tokyo, Japan
| | - Hiroshi Yaegashi
- Department of Urology, Kanazawa University, Graduate School of Medical Science, Kanazawa, Japan
| | - Hiroyuki Konaka
- Department of Urology, Japanese Red Cross Society Kanazawa Hospital, Kanazawa, Japan
| | - Tetsuo Momma
- Department of Urology, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Takashi Fukagai
- Department of Urology, Showa University School of Medicine, Tokyo, Japan
| | - Nobumichi Tanaka
- Departments of Urology and Prostate Brachytherapy, Nara Medical University, Nara, Japan
| | - Toshio Ohashi
- Department of Radiation Oncology, Keio University, Tokyo, Japan
| | - Hiroyuki Takahashi
- Department of Pathology, the Jikei University School of Medicine, Tokyo, Japan
| | - Yoko Nakagawa
- Foundation for Biomedical Research and Innovation, Translational Research Informatics Center, Kobe, Japan
| | - Takashi Kikuchi
- Foundation for Biomedical Research and Innovation, Translational Research Informatics Center, Kobe, Japan
| | - Atsushi Mizokami
- Department of Urology, Kanazawa University, Graduate School of Medical Science, Kanazawa, Japan
| | - Nelson N Stone
- Department of Urology and Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York
| |
Collapse
|
8
|
King MT, Orio PF, D'Amico AV. Can Extreme Dose Escalation With External Beam Radiation Therapy and Low-Dose-Rate Brachytherapy Boost Obviate the Need for Long-Term Androgen Deprivation Therapy in Patients With High-Risk Localized Prostate Cancer? Int J Radiat Oncol Biol Phys 2024; 118:402-403. [PMID: 38220257 DOI: 10.1016/j.ijrobp.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/05/2023] [Indexed: 01/16/2024]
Affiliation(s)
- Martin T King
- Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Peter F Orio
- Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Anthony V D'Amico
- Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
9
|
Takayesu JSK, Heckman P, Short E, Hurley P, Narayana V, McLaughlin PW. Quality rectal hydrogel placement allows for gel-enabled dose-escalated EBRT (GEDE-EBRT) without rectal interference in prostate cancer. Med Dosim 2023; 48:286-292. [PMID: 37666707 DOI: 10.1016/j.meddos.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/29/2023] [Accepted: 07/31/2023] [Indexed: 09/06/2023]
Abstract
Multiple trials have shown that dose-escalation of radiation for prostate cancer provides a biochemical progression-free survival benefit (bPFS); however, rectal constraints are often limiting. In this dosimetric study, we hypothesized that a well-placed rectal hydrogel (RH) would permit improved dose-escalation and target coverage. We selected patients with good-quality RH and created plans with and without RH, prescribing 70 Gy in 28 fractions to the prostate and proximal seminal vesicles (PSV), and a peripheral zone (PZ) boost to 84 Gy, 98 Gy, or 112 Gy. We then compared plans with and without RH, prescribing a 112 Gy boost to 1 to 2 cm simulated dominant intraprostatic lesions (DIL). In the 18 plans created with a PZ boost, the PTV_boost D95% was higher in RH plans compared to non-RH plans (median 98.5 Gy vs 75.53 Gy, p < 0.01). The PSV planning target volume (PTV_PSV) D95% was also marginally higher with RH (71.87 Gy vs 71.04 Gy, p < 0.01). All rectal metrics were improved with RH. For the 32 plans created for simulated DILs treated to 112 Gy, the PTV_boost coverage (median D95% 112.48 Gy vs 102.63 Gy, p < 0.01) and rectal metrics were improved with RH. Four non-RH plans with at least a 4 mm rectal-PTV_boost gap achieved D95% > 98% of the prescription dose for the PTV_boost. Our study showed that placement of a high-quality RH allowed for GEDE-EBRT up to 112 Gy in 28 fractions (EQD2 160 Gy with α/β = 2.5). This concept should be tested prospectively, particularly to assess for increases in nonrectal toxicities.
Collapse
Affiliation(s)
- Jamie S K Takayesu
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA.
| | - Paul Heckman
- Department of Radiation Oncology, Assarian Cancer Center, Ascension Providence Hospital, Novi, MI, USA
| | - Eric Short
- Department of Radiation Oncology, Assarian Cancer Center, Ascension Providence Hospital, Novi, MI, USA
| | - Patrick Hurley
- Department of Urology, Ascension Providence Hospital, Novi, MI, USA
| | - Vrinda Narayana
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
10
|
Cartes R, Karim MU, Tisseverasinghe S, Tolba M, Bahoric B, Anidjar M, McPherson V, Probst S, Rompré-Brodeur A, Niazi T. Neoadjuvant versus Concurrent Androgen Deprivation Therapy in Localized Prostate Cancer Treated with Radiotherapy: A Systematic Review of the Literature. Cancers (Basel) 2023; 15:3363. [PMID: 37444473 DOI: 10.3390/cancers15133363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND There is an ongoing debate on the optimal sequencing of androgen deprivation therapy (ADT) and radiotherapy (RT) in patients with localized prostate cancer (PCa). Recent data favors concurrent ADT and RT over the neoadjuvant approach. METHODS We conducted a systematic review in PubMed, EMBASE, and Cochrane Databases assessing the combination and optimal sequencing of ADT and RT for Intermediate-Risk (IR) and High-Risk (HR) PCa. FINDINGS Twenty randomized control trials, one abstract, one individual patient data meta-analysis, and two retrospective studies were selected. HR PCa patients had improved survival outcomes with RT and ADT, particularly when a long-course Neoadjuvant-Concurrent-Adjuvant ADT was used. This benefit was seen in IR PCa when adding short-course ADT, although less consistently. The best available evidence indicates that concurrent over neoadjuvant sequencing is associated with better metastases-free survival at 15 years. Although most patients had IR PCa, HR participants may have been undertreated with short-course ADT and the absence of pelvic RT. Conversely, retrospective data suggests a survival benefit when using the neoadjuvant approach in HR PCa patients. INTERPRETATION The available literature supports concurrent ADT and RT initiation for IR PCa. Neoadjuvant-concurrent-adjuvant sequencing should remain the standard approach for HR PCa and is an option for IR PCa.
Collapse
Affiliation(s)
- Rodrigo Cartes
- Department of Radiation Oncology, McGill University, Montreal, QC H3A 0G4, Canada
| | - Muneeb Uddin Karim
- Department of Radiation Oncology, McGill University, Montreal, QC H3A 0G4, Canada
| | | | - Marwan Tolba
- Department of Radiation Oncology, Dalhousie University, and Nova Scotia Health Authority, Sydney, NS B1P 1P3, Canada
| | - Boris Bahoric
- Department of Radiation Oncology, McGill University, Montreal, QC H3A 0G4, Canada
| | - Maurice Anidjar
- Department of Urology, McGill University, Montreal, QC H3A 0G4, Canada
| | - Victor McPherson
- Department of Urology, McGill University, Montreal, QC H3A 0G4, Canada
| | - Stephan Probst
- Department of Nuclear Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | | | - Tamim Niazi
- Department of Radiation Oncology, McGill University, Montreal, QC H3A 0G4, Canada
| |
Collapse
|
11
|
Oh J, Tyldesley S, Pai H, McKenzie M, Halperin R, Duncan G, Morton G, Keyes M, Hamm J, Morris WJ. An Updated Analysis of the Survival Endpoints of ASCENDE-RT. Int J Radiat Oncol Biol Phys 2023; 115:1061-1070. [PMID: 36528488 DOI: 10.1016/j.ijrobp.2022.11.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 10/20/2022] [Accepted: 11/01/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE Using the primary endpoint of time to biochemical progression (TTP), Androgen Suppression Combined with Elective Nodal and Dose Escalated Radiation Therapy (ASCENDE-RT) randomized National Comprehensive Cancer Network patients with intermediate and high-risk prostate cancer to low-dose-rate brachytherapy boost (LDR-PB) or dose-escalated external beam boost (DE-EBRT). Randomization to the LDR-PB arm resulted in a 2-fold reduction in biochemical progression compared with the DE-EBRT group at a median follow-up of 6.5 years (P < .001). Herein, the primary endpoint and secondary survival endpoints of the ASCENDE-RT trial are updated at a 10-year median follow-up. METHODS Patients were randomly assigned to either the LDR-PB or the DE-EBRT arm (1:1). All patients received 1 year of androgen deprivation therapy and 46 Gy in 23 fractions of pelvic RT. Patients in the DE-EBRT arm received an additional 32 Gy in 16 fractions, and those in the LDR-PB arm received an 125I implant prescribed to a minimum peripheral dose of 115 Gy. Two hundred patients were randomized to the DE-EBRT arm and 198 to the LDR-PB arm. RESULTS The 10-year Kaplan-Meier TTP estimate was 85% ± 5% for LDR-PB compared with 67% ± 7% for DE-EBRT (log rank P < .001). Ten-year time to distant metastasis (DM) was 88% ± 5% for the LDR-PB arm and 86% ± 6% for the DE-EBRT arm (P = .56). There were 117 (29%) deaths. Ten-year overall survival (OS) estimates were 80% ± 6% for the LDR-PB arm and 75% ± 7% for the DE-EBRT arm (P = .51). There were 30 (8%) patients who died of prostate cancer: 12 (6%) in the LDR-PB arm, including 2 treatment-related deaths, and 18 (9%) in the DE-EBRT arm. CONCLUSIONS Men randomized to the LDR-PB boost arm of the ASCENDE-RT trial continue to experience a large advantage in TTP compared with those randomized to the DE-EBRT arm. ASCENDE-RT was not powered to detect differences in its secondary survival endpoints (OS, DM, and time to prostate cancer-specific death) and none are apparent.
Collapse
Affiliation(s)
- Justin Oh
- Department of Radiation Oncology, BC Cancer - Vancouver, Vancouver, British Columbia, Canada; Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Scott Tyldesley
- Department of Radiation Oncology, BC Cancer - Vancouver, Vancouver, British Columbia, Canada; Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Howard Pai
- Department of Radiation Oncology, BC Cancer - Victoria, Victoria, British Columbia, Canada
| | - Michael McKenzie
- Department of Radiation Oncology, BC Cancer - Vancouver, Vancouver, British Columbia, Canada; Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ross Halperin
- Department of Radiation Oncology, BC Cancer - Kelowna, Kelowna, British Columbia, Canada
| | - Graeme Duncan
- Department of Radiation Oncology, BC Cancer - Vancouver, Vancouver, British Columbia, Canada; Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gerard Morton
- Department of Radiation Oncology, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Mira Keyes
- Department of Radiation Oncology, BC Cancer - Vancouver, Vancouver, British Columbia, Canada; Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jeremy Hamm
- Department of Population Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - W James Morris
- Department of Radiation Oncology, BC Cancer - Vancouver, Vancouver, British Columbia, Canada; Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
12
|
Valle LF, Jiang T, Weiner AB, Reiter RE, Rettig MB, Shen J, Chang AJ, Nickols NG, Steinberg ML, Kishan AU. Multimodality Therapies for Localized Prostate Cancer. Curr Oncol Rep 2023; 25:221-229. [PMID: 36723856 PMCID: PMC11288626 DOI: 10.1007/s11912-023-01374-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2022] [Indexed: 02/02/2023]
Abstract
PURPOSE OF REVIEW Multimodality therapy including radical prostatectomy, radiation therapy, and hormone therapy are frequently deployed in the management of localized prostate cancer. We sought to perform a critical appraisal of the most contemporary literature focusing on the multimodality management of localized prostate cancer. RECENT FINDINGS Men who are ideal candidates for multimodality therapy include those with unfavorable intermediate-risk disease, high-risk disease, and very high-risk disease. Enhancements in both systemic agents (including second-generation antiandrogens) as well as localized therapies (such as stereotactic body radiotherapy and brachytherapy) are refining the optimal balance between the use of systemic and local therapies for localized prostate cancer. Genomic predictors are emerging as critical tools for more precisely allocating treatment intensification with multimodality therapies as well as treatment de-intensification. Close collaboration among medical oncologists, surgeons, and radiation oncologists will be critical for coordinating evidence-based multimodality therapies when clearly indicated and for supporting shared decision-making in areas where the evidence is mixed.
Collapse
Affiliation(s)
- Luca F Valle
- Department of Radiation Oncology, University of California Los Angeles, 200 Medical Plaza, Suite B265, Los Angeles, CA, 90095, USA
- Department of Radiation Oncology, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, USA
| | - Tommy Jiang
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, USA
| | - Adam B Weiner
- Department of Urology, University of California Los Angeles, Los Angeles, USA
| | - Robert E Reiter
- Department of Urology, University of California Los Angeles, Los Angeles, USA
| | - Matthew B Rettig
- Department of Hematology/Oncology, University of California Los Angeles, Los Angeles, USA
- Department of Hematology/Oncology, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, USA
| | - John Shen
- Department of Hematology/Oncology, University of California Los Angeles, Los Angeles, USA
| | - Albert J Chang
- Department of Radiation Oncology, University of California Los Angeles, 200 Medical Plaza, Suite B265, Los Angeles, CA, 90095, USA
| | - Nicholas G Nickols
- Department of Radiation Oncology, University of California Los Angeles, 200 Medical Plaza, Suite B265, Los Angeles, CA, 90095, USA
- Department of Radiation Oncology, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, USA
- Department of Urology, University of California Los Angeles, Los Angeles, USA
| | - Michael L Steinberg
- Department of Radiation Oncology, University of California Los Angeles, 200 Medical Plaza, Suite B265, Los Angeles, CA, 90095, USA
| | - Amar U Kishan
- Department of Radiation Oncology, University of California Los Angeles, 200 Medical Plaza, Suite B265, Los Angeles, CA, 90095, USA.
- Department of Urology, University of California Los Angeles, Los Angeles, USA.
| |
Collapse
|
13
|
Ma TM, Sun Y, Malone S, Roach M, Dearnaley D, Pisansky TM, Feng FY, Sandler HM, Efstathiou JA, Syndikus I, Hall EC, Tree AC, Sydes MR, Cruickshank C, Roy S, Bolla M, Maingon P, De Reijke T, Nabid A, Carrier N, Souhami L, Zapatero A, Guerrero A, Alvarez A, Gonzalez San-Segundo C, Maldonado X, Romero T, Steinberg ML, Valle LF, Rettig MB, Nickols NG, Shoag JE, Reiter RE, Zaorsky NG, Jia AY, Garcia JA, Spratt DE, Kishan AU. Sequencing of Androgen-Deprivation Therapy of Short Duration With Radiotherapy for Nonmetastatic Prostate Cancer (SANDSTORM): A Pooled Analysis of 12 Randomized Trials. J Clin Oncol 2023; 41:881-892. [PMID: 36269935 PMCID: PMC9902004 DOI: 10.1200/jco.22.00970] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/24/2022] [Accepted: 08/17/2022] [Indexed: 02/01/2023] Open
Abstract
PURPOSE The sequencing of androgen-deprivation therapy (ADT) with radiotherapy (RT) may affect outcomes for prostate cancer in an RT-field size-dependent manner. Herein, we investigate the impact of ADT sequencing for men receiving ADT with prostate-only RT (PORT) or whole-pelvis RT (WPRT). MATERIALS AND METHODS Individual patient data from 12 randomized trials that included patients receiving neoadjuvant/concurrent or concurrent/adjuvant short-term ADT (4-6 months) with RT for localized disease were obtained from the Meta-Analysis of Randomized trials in Cancer of the Prostate consortium. Inverse probability of treatment weighting (IPTW) was performed with propensity scores derived from age, initial prostate-specific antigen, Gleason score, T stage, RT dose, and mid-trial enrollment year. Metastasis-free survival (primary end point) and overall survival (OS) were assessed by IPTW-adjusted Cox regression models, analyzed independently for men receiving PORT versus WPRT. IPTW-adjusted Fine and Gray competing risk models were built to evaluate distant metastasis (DM) and prostate cancer-specific mortality. RESULTS Overall, 7,409 patients were included (6,325 neoadjuvant/concurrent and 1,084 concurrent/adjuvant) with a median follow-up of 10.2 years (interquartile range, 7.2-14.9 years). A significant interaction between ADT sequencing and RT field size was observed for all end points (P interaction < .02 for all) except OS. With PORT (n = 4,355), compared with neoadjuvant/concurrent ADT, concurrent/adjuvant ADT was associated with improved metastasis-free survival (10-year benefit 8.0%, hazard ratio [HR], 0.65; 95% CI, 0.54 to 0.79; P < .0001), DM (subdistribution HR, 0.52; 95% CI, 0.33 to 0.82; P = .0046), prostate cancer-specific mortality (subdistribution HR, 0.30; 95% CI, 0.16 to 0.54; P < .0001), and OS (HR, 0.69; 95% CI, 0.57 to 0.83; P = .0001). However, in patients receiving WPRT (n = 3,049), no significant difference in any end point was observed in regard to ADT sequencing except for worse DM (HR, 1.57; 95% CI, 1.20 to 2.05; P = .0009) with concurrent/adjuvant ADT. CONCLUSION ADT sequencing exhibits a significant impact on clinical outcomes with a significant interaction with field size. Concurrent/adjuvant ADT should be the standard of care where short-term ADT is indicated in combination with PORT.
Collapse
Affiliation(s)
- Ting Martin Ma
- Department of Radiation Oncology, University of California, Los Angeles, CA
| | - Yilun Sun
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Shawn Malone
- The Ottawa Hospital Cancer Centre, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Mack Roach
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA
| | - David Dearnaley
- Academic Urology Unit, Royal Marsden Hospital, London, United Kingdom
- Institute of Cancer Research, London, United Kingdom
| | | | - Felix Y. Feng
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA
| | | | - Jason A. Efstathiou
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Isabel Syndikus
- Clatterbridge Cancer Centre, Bebington, Wirral, United Kingdom
| | - Emma C. Hall
- Clinical Trials and Statistics Unit (ICR-CTSU), The Institute of Cancer Research, London, United Kingdom
| | - Alison C. Tree
- The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, London, United Kingdom
| | | | - Claire Cruickshank
- Clinical Trials and Statistics Unit (ICR-CTSU), The Institute of Cancer Research, London, United Kingdom
| | - Soumyajit Roy
- Department of Radiation Oncology, Rush University Medical Center, Chicago, IL
| | - Michel Bolla
- Radiotherapy Department Grenoble, Grenoble Alpes University, Centre Hospitalier Universitaire de Grenoble, Grenoble, France
| | - Philippe Maingon
- Sorbonne University, APHP Sorbonne University, La Pitié Salpêtrière, Paris, France
| | - Theo De Reijke
- Department of Urology, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands
| | - Abdenour Nabid
- Department of Radiation Oncology, Centre Hospitaler Universitaire de Sherbrooke, Sherbrooke, Canada
| | - Nathalie Carrier
- Department of Radiation Oncology, Centre Hospitaler Universitaire de Sherbrooke, Sherbrooke, Canada
| | - Luis Souhami
- Division of Radiation Oncology, McGill University Health Center, Montreal, Canada
| | - Almudena Zapatero
- Department of Radiation Oncology, University Hospital La Princesa, Health Research Institute, Madrid, Spain
| | | | - Ana Alvarez
- Department of Radiation Oncology, University Hospital Gregorio Maranon, Complutense University, Madrid, Spain
| | - Carmen Gonzalez San-Segundo
- Department of Radiation Oncology, University Hospital Gregorio Maranon, Complutense University, Madrid, Spain
| | | | - Tahmineh Romero
- Department of Medicine Statistics Core, University of California Los Angeles, Los Angeles, CA
| | | | - Luca F. Valle
- Department of Radiation Oncology, University of California, Los Angeles, CA
| | - Matthew B. Rettig
- Department of Urology, University of California, Los Angeles, CA
- Department of Medicine, University of California Los Angeles, Los Angeles, CA
| | | | - Jonathan E. Shoag
- Department of Urology, University Hospitals Seidman Cancer Center, Cleveland Medical Center, Cleveland, OH
| | - Robert E. Reiter
- Department of Urology, University of California, Los Angeles, CA
| | - Nicholas G. Zaorsky
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Cleveland Medical Center, Cleveland, OH
| | - Angela Y. Jia
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Cleveland Medical Center, Cleveland, OH
| | - Jorge A. Garcia
- Department of Hematology Oncology, University Hospital Cleveland Medical Center, Cleveland, OH
| | - Daniel E. Spratt
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Cleveland Medical Center, Cleveland, OH
| | - Amar U. Kishan
- Department of Radiation Oncology, University of California, Los Angeles, CA
- Department of Urology, University of California, Los Angeles, CA
| |
Collapse
|
14
|
Ni L, Chen K, Phuong C, Sabbagh AR, Wong AC, Mohamad O, Hsu IC. Outcomes of salvage high dose-rate brachytherapy with or without pelvic external beam radiotherapy in patients with palpable local recurrence of prostate cancer after radical prostatectomy. Brachytherapy 2023; 22:304-309. [PMID: 36623988 DOI: 10.1016/j.brachy.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/10/2022] [Accepted: 12/07/2022] [Indexed: 01/09/2023]
Abstract
PURPOSE This study aims to evaluate the outcomes and toxicities in patients with palpable local recurrence of prostate cancer after radical prostatectomy (RP), who were treated with salvage high dose-rate brachytherapy (HDR-BT) with or without pelvic external beam radiotherapy (EBRT). METHODS This retrospective review included patients with palpable local recurrence of prostate cancer after RP who underwent salvage HDR-BT at a single institution between 2002 and 2020. HDR-BT regimens included 950 cGy x 2 (N = 4) or 1500 cGy x 1 (N = 2) combined with EBRT; or monotherapy with 950 cGy x 4 (N = 1) or 800 cGy x 2 (N = 1). Toxicity was graded according to CTCAE Version 5.0. RESULTS A total of 8 patients were included. Median follow-up was 49 months (range: 9-223 months). Median age at time of salvage brachytherapy was 68 years (range: 59-85 years). Seven out of 8 patients were alive at last follow-up. There have been no locoregional recurrences. Three patients developed distant metastatic disease. One patient developed acute grade 3 urinary obstruction requiring catheterization, which lasted for 1 day postbrachytherapy. One patient developed late grade 3 urinary incontinence 18 months after brachytherapy. There were no other grade 2+ toxicities. CONCLUSIONS This study demonstrates the safety and efficacy of salvage HDR-BT in the setting of palpable local recurrence of prostate cancer after RP, with durable locoregional control and acceptable rates of toxicity. HDR-BT should be further explored as an option for dose-escalated salvage radiotherapy after prior radical prostatectomy.
Collapse
Affiliation(s)
- Lisa Ni
- University of California San Francisco, Department of Radiation Oncology, San Francisco, CA
| | - Katherine Chen
- University of California San Francisco, Department of Radiation Oncology, San Francisco, CA
| | - Christina Phuong
- University of California San Francisco, Department of Radiation Oncology, San Francisco, CA
| | - Ali R Sabbagh
- University of California San Francisco, Department of Radiation Oncology, San Francisco, CA
| | - Anthony C Wong
- University of California San Francisco, Department of Radiation Oncology, San Francisco, CA
| | - Osama Mohamad
- University of California San Francisco, Department of Radiation Oncology, San Francisco, CA
| | - I-Chow Hsu
- University of California San Francisco, Department of Radiation Oncology, San Francisco, CA.
| |
Collapse
|
15
|
Li B, Zheng X, Zhang J, Lam S, Guo W, Wang Y, Cui S, Teng X, Zhang Y, Ma Z, Zhou T, Lou Z, Meng L, Ge H, Cai J. Lung Subregion Partitioning by Incremental Dose Intervals Improves Omics-Based Prediction for Acute Radiation Pneumonitis in Non-Small-Cell Lung Cancer Patients. Cancers (Basel) 2022; 14:cancers14194889. [PMID: 36230812 PMCID: PMC9564373 DOI: 10.3390/cancers14194889] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/19/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Purpose: To evaluate the effectiveness of features obtained from our proposed incremental-dose-interval-based lung subregion segmentation (IDLSS) for predicting grade ≥ 2 acute radiation pneumonitis (ARP) in lung cancer patients upon intensity-modulated radiotherapy (IMRT). (1) Materials and Methods: A total of 126 non-small-cell lung cancer patients treated with IMRT were retrospectively analyzed. Five lung subregions (SRs) were generated by the intersection of the whole lung (WL) and five sub-regions receiving incremental dose intervals. A total of 4610 radiomics features (RF) from pre-treatment planning computed tomographic (CT) and 213 dosiomics features (DF) were extracted. Six feature groups, including WL-RF, WL-DF, SR-RF, SR-DF, and the combined feature sets of WL-RDF and SR-RDF, were generated. Features were selected by using a variance threshold, followed by a Student t-test. Pearson’s correlation test was applied to remove redundant features. Subsequently, Ridge regression was adopted to develop six models for ARP using the six feature groups. Thirty iterations of resampling were implemented to assess overall model performance by using the area under the Receiver-Operating-Characteristic curve (AUC), accuracy, precision, recall, and F1-score. (2) Results: The SR-RDF model achieved the best classification performance and provided significantly better predictability than the WL-RDF model in training cohort (Average AUC: 0.98 ± 0.01 vs. 0.90 ± 0.02, p < 0.001) and testing cohort (Average AUC: 0.88 ± 0.05 vs. 0.80 ± 0.04, p < 0.001). Similarly, predictability of the SR-DF model was significantly stronger than that of the WL-DF model in training cohort (Average AUC: 0.88 ± 0.03 vs. 0.70 ± 0.030, p < 0.001) and in testing cohort (Average AUC: 0.74 ± 0.08 vs. 0.65 ± 0.06, p < 0.001). By contrast, the SR-RF model significantly outperformed the WL-RF model only in the training set (Average AUC: 0.93 ± 0.02 vs. 0.85 ± 0.03, p < 0.001), but not in the testing set (Average AUC: 0.79 ± 0.05 vs. 0.77 ± 0.07, p = 0.13). (3) Conclusions: Our results demonstrated that the IDLSS method improved model performance for classifying ARP with grade ≥ 2 when using dosiomics or combined radiomics-dosiomics features.
Collapse
Affiliation(s)
- Bing Li
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Xiaoli Zheng
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Jiang Zhang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Saikit Lam
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Wei Guo
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Yunhan Wang
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Sunan Cui
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, Stanford, CA 94305, USA
| | - Xinzhi Teng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yuanpeng Zhang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Zongrui Ma
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Ta Zhou
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Zhaoyang Lou
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Lingguang Meng
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Hong Ge
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
- Correspondence: (H.G.); (J.C.); Tel.: +852-3400-8645 (J.C.)
| | - Jing Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
- Correspondence: (H.G.); (J.C.); Tel.: +852-3400-8645 (J.C.)
| |
Collapse
|
16
|
Kowalchuk RO, Kim H, Harmsen WS, Jeans EB, Morris LK, Mullikin TC, Miller RC, Wong WW, Vargas CE, Trifiletti DM, Phillips RM, Choo CR, Davis BJ, Beriwal S, Tendulkar RD, Stish BJ, Breen WG, Waddle MR. Cost effectiveness of treatment strategies for high risk prostate cancer. Cancer 2022; 128:3815-3823. [PMID: 36070558 DOI: 10.1002/cncr.34450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/27/2022] [Accepted: 07/01/2022] [Indexed: 11/12/2022]
Abstract
BACKGROUND Patients with high-risk prostate cancer (HRPC) have multiple accepted treatment options. Because there is no overall survival benefit of one option over another, appropriate treatment must consider patient life expectancy, quality of life, and cost. METHODS The authors compared quality-adjusted life years (QALYs) and cost effectiveness among treatment options for HRPC using a Markov model with three treatment arms: (1) external-beam radiotherapy (EBRT) delivered with 20 fractions, (2) EBRT with 23 fractions followed by low-dose-rate (LDR) brachytherapy boost, or (3) radical prostatectomy alone. An exploratory analysis considered a simultaneous integrated boost according to the FLAME trial (ClinicalTrials.gov identifier NCT01168479). RESULTS Treatment strategies were compared using the incremental cost-effectiveness ratio (ICER). EBRT with LDR brachytherapy boost was a cost-effective strategy (ICER, $20,929 per QALY gained). These results were most sensitive to variations in the biochemical failure rate. However, the results still demonstrated cost effectiveness for the brachytherapy boost paradigm, regardless of any tested parameter ranges. Probabilistic sensitivity analysis demonstrated that EBRT with LDR brachytherapy was favored in 52% of 100,000 Monte Carlo iterations. In an exploratory analysis, EBRT with a simultaneous integrated boost was also a cost-effective strategy, resulting in an ICER of $62,607 per QALY gained; however, it was not cost effective compared with EBRT plus LDR brachytherapy boost. CONCLUSIONS EBRT with LDR brachytherapy boost may be a cost-effective treatment strategy compared with EBRT alone and radical prostatectomy for HRPC, demonstrating high-value care. The current analysis suggests that a reduction in biochemical failure alone can result in cost-effective care, despite no change in overall survival.
Collapse
Affiliation(s)
- Roman O Kowalchuk
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Hayeon Kim
- Department of Radiation Oncology, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | | | - Elizabeth B Jeans
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Lindsay K Morris
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Trey C Mullikin
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Robert C Miller
- Mayo Clinic, Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida, USA
| | - William W Wong
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona, USA
| | - Carlos E Vargas
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona, USA
| | - Daniel M Trifiletti
- Mayo Clinic, Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida, USA
| | - Ryan M Phillips
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - C R Choo
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Brian J Davis
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Sushil Beriwal
- Allegheny Health Networks, Pittsburgh, Pennsylvania, USA.,Medical Affairs, Varian Medical Systems, Pittsburgh, Pennsylvania, USA
| | - Rahul D Tendulkar
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Bradley J Stish
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - William G Breen
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Mark R Waddle
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
17
|
Kishan AU, Wang X, Sun Y, Romero T, Michalski JM, Ma TM, Feng FY, Sandler HM, Bolla M, Maingon P, De Reijke T, Neven A, Steigler A, Denham JW, Joseph D, Nabid A, Carrier N, Souhami L, Sydes MR, Dearnaley DP, Syndikus I, Tree AC, Incrocci L, Heemsbergen WD, Pos FJ, Zapatero A, Efstathiou JA, Guerrero A, Alvarez A, San-Segundo CG, Maldonado X, Xiang M, Rettig MB, Reiter RE, Zaorsky NG, Ong WL, Dess RT, Steinberg ML, Nickols NG, Roy S, Garcia JA, Spratt DE. High-dose Radiotherapy or Androgen Deprivation Therapy (HEAT) as Treatment Intensification for Localized Prostate Cancer: An Individual Patient-data Network Meta-analysis from the MARCAP Consortium. Eur Urol 2022; 82:106-114. [PMID: 35469702 DOI: 10.1016/j.eururo.2022.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/22/2022] [Accepted: 04/04/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND The relative benefits of radiotherapy (RT) dose escalation and the addition of short-term or long-term androgen deprivation therapy (STADT or LTADT) in the treatment of prostate cancer are unknown. OBJECTIVE To perform a network meta-analysis (NMA) of relevant randomized trials to compare the relative benefits of RT dose escalation ± STADT or LTADT. DESIGN, SETTING, AND PARTICIPANTS An NMA of individual patient data from 13 multicenter randomized trials was carried out for a total of 11862 patients. Patients received one of the six permutations of low-dose RT (64 to <74 Gy) ± STADT or LTADT, high-dose RT (≥74 Gy), or high-dose RT ± STADT or LTADT. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSES Metastasis-free survival (MFS) was the primary endpoint. Frequentist and Bayesian NMAs were performed to rank the various treatment strategies by MFS and biochemical recurrence-free survival (BCRFS). RESULTS AND LIMITATIONS Median follow-up was 8.8 yr (interquartile range 5.7-11.5). The greatest relative improvement in outcomes was seen for addition of LTADT, irrespective of RT dose, followed by addition of STADT, irrespective of RT dose. RT dose escalation did not improve MFS either in the absence of ADT (hazard ratio [HR] 0.97, 95% confidence interval [CI] 0.80-1.18) or with STADT (HR 0.99, 95% CI 0.8-1.23) or LTADT (HR 0.94, 95% CI 0.65-1.37). According to P-score ranking and rankogram analysis, high-dose RT + LTADT was the optimal treatment strategy for both BCRFS and longer-term outcomes. CONCLUSIONS Conventionally escalated RT up to 79.2 Gy, alone or in the presence of ADT, does not improve MFS, while addition of STADT or LTADT to RT alone, regardless of RT dose, consistently improves MFS. RT dose escalation does provide a high probability of improving BCRFS and, provided it can be delivered without compromising quality of life, may represent the optimal treatment strategy when used in conjunction with ADT. PATIENT SUMMARY Using a higher radiotherapy dose when treating prostate cancer does not reduce the chance of developing metastases or death, but it does reduce the chance of having a rise in prostate-specific antigen (PSA) signifying recurrence of cancer. Androgen deprivation therapy improves all outcomes. A safe increase in radiotherapy dose in conjunction with androgen deprivation therapy may be the optimal treatment.
Collapse
Affiliation(s)
- Amar U Kishan
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA, USA; Department of Urology, University of California Los Angeles, Los Angeles, CA, USA.
| | - Xiaoyan Wang
- Division of General Internal Medicine and Health Services Research, University of California Los Angeles, Los Angeles, CA, USA
| | - Yilun Sun
- Department of Population Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA; Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Tahmineh Romero
- Division of General Internal Medicine and Health Services Research, University of California Los Angeles, Los Angeles, CA, USA
| | - Jeff M Michalski
- Department of Radiation Oncology, Washington University, St. Louis, MO, USA
| | - Ting Martin Ma
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA, USA
| | - Felix Y Feng
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Howard M Sandler
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michel Bolla
- Radiotherapy Department, University Hospital, Grenoble, France
| | - Philippe Maingon
- Department of Oncology, Hematology, and Supportive Care, Sorbonne University, Paris, France
| | - Theo De Reijke
- Department of Urology, Prostate Cancer Network in the Netherlands, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Anouk Neven
- Statistics Department, European Organisation for Research and Treatment of Cancer Headquarters, Brussels, Belgium; Competence Center for Methodology and Statistics, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Allison Steigler
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, Australia
| | - James W Denham
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, Australia
| | - David Joseph
- Department of Medicine and Surgery, University of Western Australia, Perth, WA, Australia
| | - Abdenour Nabid
- Department of Radiation Oncology, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Nathalie Carrier
- Clinical Research Center, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Luis Souhami
- Department of Radiation Oncology, McGill University Health Centre, Montréal, QC, Canada
| | - Matt R Sydes
- Medical Research Council Clinical Trials Unit, University College London, London, UK
| | | | | | | | - Luca Incrocci
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Wilma D Heemsbergen
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Floris J Pos
- Department of Radiation Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | | | - Jason A Efstathiou
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Ana Alvarez
- Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | | | - Michael Xiang
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA, USA
| | - Matthew B Rettig
- Department of Medical Oncology, University of California Los Angeles, Los Angeles, CA, USA
| | - Robert E Reiter
- Department of Urology, University of California Los Angeles, Los Angeles, CA, USA
| | - Nicholas G Zaorsky
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Wee Loon Ong
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| | - Robert T Dess
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Michael L Steinberg
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA, USA
| | - Nicholas G Nickols
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA, USA
| | - Soumyajit Roy
- Department of Radiation Oncology, Rush University, Chicago, IL, USA
| | - Jorge A Garcia
- Division of Oncology, Seidman Cancer Center, Cleveland, OH, USA
| | - Daniel E Spratt
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
18
|
Oh J, Morris WJ, Spadinger I, Tyldesley S, Keyes M, Halperin R, Crook J, Lapointe V, Pickles T. After ASCENDE-RT: Biochemical and survival outcomes following combined external beam radiotherapy and low-dose-rate brachytherapy for high-risk and unfavourable intermediate-risk prostate cancer, a population-based analysis. Brachytherapy 2022; 21:605-616. [PMID: 35729030 DOI: 10.1016/j.brachy.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/08/2022] [Accepted: 05/05/2022] [Indexed: 11/15/2022]
Abstract
PURPOSE To evaluate the outcomes of unfavorable intermediate-risk (UIR) and high-risk (HR) prostate cancer patients treated with combined external beam radiation therapy (EBRT) and low-dose-rate prostate brachytherapy (LDR-PB). METHODS AND MATERIALS A population-based cohort of 568 prostate cancer patients treated with combined EBRT and LDR-PB from 2010 to 2016 was analyzed. All patients received EBRT followed by LDR-PB boost. Outcomes were compared with the results for the brachytherapy arm of the ASCENDE-RT trial. RESULTS The median followup was 4.5 years. Sixty-nine percent (N = 391) had HR disease. Ninety-four percent of the HR and 57% of UIR were treated with androgen deprivation therapy (ADT) with a median duration of 12 months. The 5-year K-M biochemical progression-free survival (b-PFS), metastasis-free survival (MFS), and overall survival (OS) were 84 ± 2%, 90 ± 2%, and 88 ± 2%, similar to 89 ± 5%, 94 ± 4%, and 92 ± 4% for the ASCENDE-RT LDR-PB arm. The likelihood of achieving a PSA ≤0.2 ng/mL at 4 years was 88%, similar to 86% in the ASCENDE-RT LDR-PB arm. Thirty-three men (5.8%) would have been ineligible for ASCENDE-RT due to high-risk features. The 5-year K-M b-PFS, MFS and OS estimates were 86 ± 2%, 92 ± 1% and 89 ± 2% for the ASCENDE-RT eligible versus 56 ± 10% (p < 0.001), 73 ± 8% (p < 0.001), and 77 ± 9% (p = 0.098) for the ineligible patients. CONCLUSIONS In this population-based cohort, combining LDR-PB with pelvic EBRT (+/- ADT) achieves very favorable b-PFS that compares to the LDR-PB arm of the ASCENDE-RT, supporting the generalizability of those results. Men ineligible for ASCENDE-RT, based on prognostic features, have a much higher risk of biochemical recurrence and metastatic relapse.
Collapse
Affiliation(s)
- Justin Oh
- Department of Radiation Oncology, British Columbia Cancer Agency Vancouver Centre, Vancouver, British Columbia, Canada; Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - W James Morris
- Department of Radiation Oncology, British Columbia Cancer Agency Vancouver Centre, Vancouver, British Columbia, Canada; Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ingrid Spadinger
- Department of Radiation Oncology, British Columbia Cancer Agency Vancouver Centre, Vancouver, British Columbia, Canada; Department of Medical Physics, British Columbia Cancer Agency Vancouver Centre, Vancouver, British Columbia, Canada
| | - Scott Tyldesley
- Department of Radiation Oncology, British Columbia Cancer Agency Vancouver Centre, Vancouver, British Columbia, Canada; Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Mira Keyes
- Department of Radiation Oncology, British Columbia Cancer Agency Vancouver Centre, Vancouver, British Columbia, Canada; Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ross Halperin
- Department of Radiation Oncology, British Columbia Cancer Agency Vancouver Centre, Vancouver, British Columbia, Canada; Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Juanita Crook
- Department of Radiation Oncology, British Columbia Cancer Agency Vancouver Centre, Vancouver, British Columbia, Canada; Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vincent Lapointe
- Department of Radiation Oncology, British Columbia Cancer Agency Vancouver Centre, Vancouver, British Columbia, Canada
| | - Tom Pickles
- Department of Radiation Oncology, British Columbia Cancer Agency Vancouver Centre, Vancouver, British Columbia, Canada; Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
19
|
Tree A, Griffin C, Syndikus I, Birtle A, Choudhury A, Graham J, Ferguson C, Khoo V, Malik Z, O'Sullivan J, Panades M, Parker C, Rimmer Y, Scrase C, Staffurth J, Dearnaley D, Hall E. Nonrandomized Comparison of Efficacy and Side Effects of Bicalutamide Compared With Luteinizing Hormone-Releasing Hormone (LHRH) Analogs in Combination With Radiation Therapy in the CHHiP Trial. Int J Radiat Oncol Biol Phys 2022; 113:305-315. [PMID: 35017008 PMCID: PMC9119688 DOI: 10.1016/j.ijrobp.2021.12.160] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 12/19/2021] [Accepted: 12/23/2021] [Indexed: 12/02/2022]
Abstract
PURPOSE CHHiP is a randomized trial evaluating moderately hypofractionated radiation therapy for treatment of localized prostate cancer. Of all participants, 97% of them had concurrent short-course hormone therapy (HT), either luteinizing hormone-releasing hormone analog (LHRHa) or 150 mg of bicalutamide daily. This exploratory analysis compares efficacy and side effects in a nonrandomized comparison. METHODS AND MATERIALS In our study, 2700 patients received LHRHa and 403 received bicalutamide. The primary endpoint was biochemical/clinical failure. Groups were compared with Cox regression adjusted for various prognostic factors and stratified by radiation therapy dose. A key secondary endpoint was erectile dysfunction (ED) assessed by clinicians (using scores from Late Effects on Normal Tissues: Subjective/Objective/Management [LENT-SOM] subjective erectile function for vaginal penetration) and patients (single items within the University of California-Los Angeles Prostate Cancer Index [UCLA PCI] and Expanded Prostate Cancer Index Composite [EPIC]-50 questionnaires) at 2 years and compared between HT regimens by χ2 trend test. RESULTS Bicalutamide patients were significantly younger (median 67 vs 69 years LHRHa). Median follow-up was 9.3 years. There was no difference in biochemical or clinical failure with an adjusted hazard ratio or 0.97 (95% confidence interval, 0.77-1.23; P = .8). At 2 years, grade ≥2 LENT-SOM ED was reported in significantly more LHRHa patients (313 out of 590; 53%) versus bicalutamide (17 out of 68; 25%) (P < .0001). There were no differences in ED seen with UCLA-PCI and EPIC-50 questionnaires. CONCLUSIONS In this nonrandomized comparison, there was no evidence of a difference in efficacy according to type of HT received. Bicalutamide preserved clinician assessed (LENT-SOM) erectile function at 2 years but patient-reported outcomes were similar between groups.
Collapse
Affiliation(s)
- Alison Tree
- Royal Marsden NHS Foundation Trust, London, United Kingdom; Institute of Cancer Research, London, United Kingdom.
| | - Clare Griffin
- Institute of Cancer Research, London, United Kingdom
| | | | | | | | - John Graham
- Beatson Oncology Centre, Glasgow, United Kingdom
| | | | - Vincent Khoo
- Royal Marsden NHS Foundation Trust, London, United Kingdom; Institute of Cancer Research, London, United Kingdom
| | - Zafar Malik
- Whiston Hospital, Merseyside, United Kingdom
| | - Joe O'Sullivan
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
| | | | - Chris Parker
- Royal Marsden NHS Foundation Trust, London, United Kingdom; Institute of Cancer Research, London, United Kingdom
| | | | | | - John Staffurth
- Cardiff University/Velindre Cancer Centre, Cardiff, United Kingdom
| | - David Dearnaley
- Royal Marsden NHS Foundation Trust, London, United Kingdom; Institute of Cancer Research, London, United Kingdom
| | - Emma Hall
- Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
20
|
Baboudjian M, Beauval JB, Barret E, Brureau L, Créhange G, Dariane C, Fiard G, Fromont G, Gauthé M, Mathieu R, Renard-Penna R, Roubaud G, Ruffion A, Sargos P, Rouprêt M, Ploussard G. Avancées récentes dans la prise en charge du cancer de la prostate localisé à haut risque : mise au point par le Comité Prostate de l’Association française d’urologie. Prog Urol 2022; 32:623-634. [DOI: 10.1016/j.purol.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/05/2022] [Accepted: 04/28/2022] [Indexed: 10/18/2022]
|
21
|
Andruska N, Agabalogun T, Fischer-Valuck BW, Brenneman RJ, Huang Y, Gay HA, Michalski JM, Carmona R, Baumann BC. Assessing the impact of brachytherapy boost and androgen deprivation therapy on survival outcomes for patients with unfavorable intermediate-risk prostate cancer patients treated with external beam radiotherapy. Brachytherapy 2022; 21:617-625. [DOI: 10.1016/j.brachy.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022]
|
22
|
Kissel M, Créhange G, Graff P. Stereotactic Radiation Therapy versus Brachytherapy: Relative Strengths of Two Highly Efficient Options for the Treatment of Localized Prostate Cancer. Cancers (Basel) 2022; 14:2226. [PMID: 35565355 PMCID: PMC9105931 DOI: 10.3390/cancers14092226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022] Open
Abstract
Stereotactic body radiation therapy (SBRT) has become a valid option for the treatment of low- and intermediate-risk prostate cancer. In randomized trials, it was found not inferior to conventionally fractionated external beam radiation therapy (EBRT). It also compares favorably to brachytherapy (BT) even if level 1 evidence is lacking. However, BT remains a strong competitor, especially for young patients, as series with 10-15 years of median follow-up have proven its efficacy over time. SBRT will thus have to confirm its effectiveness over the long-term as well. SBRT has the advantage over BT of less acute urinary toxicity and, more hypothetically, less sexual impairment. Data are limited regarding SBRT for high-risk disease while BT, as a boost after EBRT, has demonstrated superiority against EBRT alone in randomized trials. However, patients should be informed of significant urinary toxicity. SBRT is under investigation in strategies of treatment intensification such as combination of EBRT plus SBRT boost or focal dose escalation to the tumor site within the prostate. Our goal was to examine respective levels of evidence of SBRT and BT for the treatment of localized prostate cancer in terms of oncologic outcomes, toxicity and quality of life, and to discuss strategies of treatment intensification.
Collapse
Affiliation(s)
| | | | - Pierre Graff
- Department of Radiation Oncology, Institut Curie, 26 Rue d’Ulm, 75005 Paris, France; (M.K.); (G.C.)
| |
Collapse
|
23
|
Strnad V, Lotter M, Kreppner S, Fietkau R. Brachytherapy focal dose escalation using ultrasound based tissue characterization by patients with non-metastatic prostate cancer: Five-year results from single-center phase 2 trial. Brachytherapy 2022; 21:415-423. [PMID: 35396138 DOI: 10.1016/j.brachy.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 01/11/2022] [Accepted: 02/21/2022] [Indexed: 11/20/2022]
Abstract
PURPOSE This prospective trial investigates side effects and efficacy of focal dose escalation with brachytherapy for patients with prostate cancer. METHODS AND MATERIALS In the Phase II, monocentric prospective trial 101 patients with low-/intermediate- and high-risk prostate cancer were enrolled between 2011 and 2013. Patients received either PDR-/HDR-brachytherapy alone with 86-90 Gy (EQD2, α/β = 3 Gy) or PDR-/HDR-brachytherapy as boost after external beam radiation therapy up to a total dose of 91-96 Gy (EQD2, α/β = 3 Gy). Taking place brachytherapy all patients received the simultaneous integrated focal boost to the intra-prostatic tumor lesions visible in computer-aided ultrasonography (HistoScanning™) - up to a total dose of 108-119 Gy (EQD2, α/β = 3 Gy). The primary endpoint was toxicity. Secondary endpoints were cumulative freedom from local recurrence, PSA-free survival, distant metastases-free survival, and overall survival. This trial is registered with ClinicalTrials.gov, number NCT01409876. RESULTS Median follow-up was 65 months. Late toxicity was generally low with only four patients scoring urinary grade 3 toxicity (4/101, 4%). Occurrence of any grade of late rectal toxicities was very low. We did not register any grade ≥2 of late rectal toxicities. The cumulative 5 years local recurrence rate (LRR) for all patients was 1%. Five years- biochemical disease-free survival estimates according Kaplan-Meier were 98,1% and 81,3% for low-/intermediate-risk and high-risk patients, respectively. Five years metastases-free survival estimates according Kaplan-Meier were 98,0% and 83,3% for all patients, low-/intermediate-risk and high-risk patients, respectively. CONCLUSIONS The 5 years-results from this Phase II Trial show that focal dose escalation with computer-aided ultrasonography and brachytherapy for patients with non-metastatic prostate cancer is safe and effective.
Collapse
Affiliation(s)
- Vratislav Strnad
- Department of Radiation Oncology, University Hospital Erlangen, Erlangen, Germany.
| | - Michael Lotter
- Department of Radiation Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Stephan Kreppner
- Department of Radiation Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
24
|
Tree A. Androgen Deprivation Therapy, Perseverance, and Greek Mythology. Int J Radiat Oncol Biol Phys 2022; 112:304-305. [PMID: 34998533 DOI: 10.1016/j.ijrobp.2021.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 11/18/2022]
Affiliation(s)
- Alison Tree
- The Royal Marsden NHS Foundation Trust and the Institute of Cancer Research, Sutton, United Kingdom.
| |
Collapse
|
25
|
Stone NN, Unger PD, Sheu R, Rosenstein BS, Stock RG. Factors associated with late local failure and its influence on survival in men undergoing prostate brachytherapy. Brachytherapy 2022; 21:460-467. [DOI: 10.1016/j.brachy.2022.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/26/2021] [Accepted: 01/05/2022] [Indexed: 11/30/2022]
|
26
|
Kishan AU, Sun Y, Hartman H, Pisansky TM, Bolla M, Neven A, Steigler A, Denham JW, Feng FY, Zapatero A, Armstrong JG, Nabid A, Carrier N, Souhami L, Dunne MT, Efstathiou JA, Sandler HM, Guerrero A, Joseph D, Maingon P, de Reijke TM, Maldonado X, Ma TM, Romero T, Wang X, Rettig MB, Reiter RE, Zaorsky NG, Steinberg ML, Nickols NG, Jia AY, Garcia JA, Spratt DE. Androgen deprivation therapy use and duration with definitive radiotherapy for localised prostate cancer: an individual patient data meta-analysis. Lancet Oncol 2022; 23:304-316. [DOI: 10.1016/s1470-2045(21)00705-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 12/22/2022]
|
27
|
An Expert Review on the Combination of Relugolix with Definitive Radiation Therapy for Prostate Cancer. Int J Radiat Oncol Biol Phys 2021; 113:278-289. [PMID: 34923058 DOI: 10.1016/j.ijrobp.2021.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 11/20/2022]
Abstract
Androgen deprivation therapy (ADT) is an integral component in the management of prostate cancer across multiple disease states. Traditionally, luteinizing hormone-releasing hormone (LHRH) agonists constituted the backbone of ADT. However, gonadotropin-releasing hormone receptor hormone (GnRH) antagonists are also available, which offer faster testosterone suppression and reduced likelihood of ADT-related adverse effects compared to LHRH agonists, including the potential for fewer ADT-associated major cardiac events. Until recently, all forms of LHRH agonists and GnRH antagonist formulations are of parenteral administration. However, recently relugolix gained FDA approval as the first oral GnRH antagonist. Relugolix achieves faster and more complete testosterone suppression compared to an LHRH agonist. This translates to more rapid prostate-specific antigen response compared to LHRH agonists. After discontinuation of relugolix, testosterone recovers faster than after GnRH agonists or injectable GnRH antagonist therapy. Overall, these factors provide opportunities for more precisely defined ADT duration when combined with radiation therapy. The rapid onset and offset testosterone suppression with relugolix, however, may require physicians to rethink the mechanism and goals of ADT when prescribing. As an oral formulation, relugolix enables patients to avoid pain and injection site reactions, limit extra office visits for injections, and achieve a shorter duration of experiencing the side effects of castrate testosterone levels. This convenience and tolerability may enhance physicians' willingness to prescribe ADT and patients' feeling of control over their ADT course, but the potential advantages are accompanied by the risks of patients choosing to discontinue therapy to escape side effects of ADT. This article focuses on different aspects of what is known and unknown regarding the optimal use of ADT and radiation therapy, and how relugolix, due to its properties, fit into our current treatment paradigms for localized prostate cancer.
Collapse
|
28
|
Delahunt B, Steigler A, Atkinson C, Christie D, Duchesne G, Egevad L, Joseph D, Kenwright D, Matthews J, Murray J, Oldmeadow C, Samaratunga H, Spry N, Thunders M, Hondermarck H, Denham J. Percentage grade 4 tumour predicts outcome for prostate adenocarcinoma in needle biopsies from patients with advanced disease: 10-year data from the TROG 03.04 RADAR trial. Pathology 2021; 54:49-54. [DOI: 10.1016/j.pathol.2021.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 11/26/2022]
|
29
|
de Chavez R, Grogan G, Hug B, Howe K, Grigg A, Waterhouse D, Lane J, Glyde A, Brown E, Bydder S, Pryor D, Hargrave C, Charles PH, Hellyer J, Ebert MA. Assessment of HDR brachytherapy-replicating prostate radiotherapy planning for tomotherapy, cyberknife and VMAT. Med Dosim 2021; 47:61-69. [PMID: 34551879 DOI: 10.1016/j.meddos.2021.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 11/19/2022]
Abstract
A dosimetric study was undertaken to assess the ability of Cyberknife (CK), Volumetric Modulated Arc Therapy (VMAT), and TomoTherapy (Tomo) to generate treatment plans that mimic the dosimetry of high dose-rate brachytherapy (HDR BT) for prostate cancer. The project aimed to assess the potential of using stereotactic body radiotherapy (SBRT) for boost treatment of high-risk prostate cancer patients where HDR BT in combination with conformal external beam radiotherapy (EBRT) is the standard of care. The datasets of 6 prostate patients previously treated with HDR BT were collated. VMAT, CK, and TomoTherapy treatment plans were generated for each dataset using the target and organ-at-risk structures as defined by the Radiation Oncologist during the HDR BT treatment process. The HDR BT plan isodoses were also converted into planning structures to assist the other modalities to achieve a HDR BT-like dose distribution. CK plans were created using both the iris collimator (IC) and a multileaf collimator (MLC). Comparison of the techniques was made based on dose-volume indices. Each plan was created at centres experienced using the respective treatment planning systems (TPS). Planning target volume (PTV V100%), i.e., the volume of the planning target volume (PTV) receiving 100% of the relative dose, in VMAT and TomoTherapy SBRT plans was higher than HDR BT plans. PTV V150% and V200%, i.e., volume of the PTV receiving 150% and 200% of the relative dose, were approached on all the CK MLC and TomoTherapy SBRT plans. However, it is not presently achievable for "virtual brachytherapy" SBRT to replicate the same high intraprostatic doses as HDR BT while meeting the constraints on the organs-at-risk (OARs). Half of the CK IC plans achieved PTV V150% but this was at the expense of high rectal dose. TomoTherapy and CK MLC plans achieved PTV V150% and V200% but the bladder dose was higher compared to CK IC plans. VMAT exhibited excellent PTV coverage based on V100 and OAR sparing, but without any ability to achieve the high intra-prostatic doses of HDR (V150% and V200%). SBRT techniques can be used to deliver hypofractionated radiotherapy to the PTV V100%. Based on the comparison of "physical" dose distributions, SBRT cannot presently achieve the same high intraprostatic doses as HDR BT while respecting the OAR constraints. SBRT still remains an attractive treatment option for delivering hypofractionated treatments for prostate cancer compared to HDR BT, in particular as it is less invasive and less resource intensive. Long-term outcomes of clinical trials comparing HDR BT and SBRT "prostate boosts" may show whether the high intraprostatic doses are clinically significant and correlate with outcomes.
Collapse
Affiliation(s)
- Romena de Chavez
- Princess Alexandra Hospital, Brisbane, Australia; GenesisCare, Australia.
| | - Garry Grogan
- Sir Charles Gairdner Hospital, Perth, Australia.
| | - Ben Hug
- 5D Clinics, Perth, Australia.
| | - Kate Howe
- Princess Alexandra Hospital, Brisbane, Australia.
| | - Alice Grigg
- Royal Brisbane and Women's Hospital, Brisbane, Australia.
| | - David Waterhouse
- Sir Charles Gairdner Hospital, Perth, Australia; GenesisCare, Australia.
| | | | - Alan Glyde
- Princess Alexandra Hospital, Brisbane, Australia.
| | | | - Sean Bydder
- Sir Charles Gairdner Hospital, Perth, Australia; 5D Clinics, Perth, Australia.
| | - David Pryor
- Princess Alexandra Hospital, Brisbane, Australia.
| | - Cathy Hargrave
- Princess Alexandra Hospital, Brisbane, Australia; Royal Brisbane and Women's Hospital, Brisbane, Australia.
| | - Paul H Charles
- Princess Alexandra Hospital, Brisbane, Australia; Royal Brisbane and Women's Hospital, Brisbane, Australia; Queensland University of Technology, Brisbane, Australia; Herston Biofabrication Institute, Brisbane, Australia; School of Information Technology and Electrical Engineering, University of Queensland, St Lucia, Brisbane, Australia; School of Chemistry and Physics, Queensland University of Technology, Brisbane, Australia.
| | | | - Martin A Ebert
- Sir Charles Gairdner Hospital, Perth, Australia; 5D Clinics, Perth, Australia; University of Western Australia, Perth, Australia.
| |
Collapse
|
30
|
Sandhu S, Moore CM, Chiong E, Beltran H, Bristow RG, Williams SG. Prostate cancer. Lancet 2021; 398:1075-1090. [PMID: 34370973 DOI: 10.1016/s0140-6736(21)00950-8] [Citation(s) in RCA: 320] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022]
Abstract
The management of prostate cancer continues to evolve rapidly, with substantial advances being made in understanding the genomic landscape and biology underpinning both primary and metastatic prostate cancer. Similarly, the emergence of more sensitive imaging methods has improved diagnostic and staging accuracy and refined surveillance strategies. These advances have introduced personalised therapeutics to clinical practice, with treatments targeting genomic alterations in DNA repair pathways now clinically validated. An important shift in the therapeutic framework for metastatic disease has taken place, with metastatic-directed therapies being evaluated for oligometastatic disease, aggressive management of the primary lesion shown to benefit patients with low-volume metastatic disease, and with several novel androgen pathway inhibitors significantly improving survival when used as a first-line therapy for metastatic disease. Research into the molecular characterisation of localised, recurrent, and progressive disease will undoubtedly have an impact on clinical management. Similarly, emerging research into novel therapeutics, such as targeted radioisotopes and immunotherapy, holds much promise for improving the lives of patients with prostate cancer.
Collapse
Affiliation(s)
- Shahneen Sandhu
- Division of Cancer Medicine, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | | | - Edmund Chiong
- Department of Urology and Department of Surgery, National University of Singapore, Singapore
| | | | - Robert G Bristow
- Manchester Cancer Research Centre and University of Manchester, Manchester, UK
| | - Scott G Williams
- Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
31
|
King MT, Keyes M, Frank SJ, Crook JM, Butler WM, Rossi PJ, Cox BW, Showalter TN, Mourtada F, Potters L, Stock RG, Kollmeier MA, Zelefsky MJ, Davis BJ, Merrick GS, Orio PF. Low dose rate brachytherapy for primary treatment of localized prostate cancer: A systemic review and executive summary of an evidence-based consensus statement. Brachytherapy 2021; 20:1114-1129. [PMID: 34509378 DOI: 10.1016/j.brachy.2021.07.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/28/2021] [Accepted: 07/14/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE The purpose of this guideline is to present evidence-based consensus recommendations for low dose rate (LDR) permanent seed brachytherapy for the primary treatment of prostate cancer. METHODS AND MATERIALS The American Brachytherapy Society convened a task force for addressing key questions concerning ultrasound-based LDR prostate brachytherapy for the primary treatment of prostate cancer. A comprehensive literature search was conducted to identify prospective and multi-institutional retrospective studies involving LDR brachytherapy as monotherapy or boost in combination with external beam radiation therapy with or without adjuvant androgen deprivation therapy. Outcomes included disease control, toxicity, and quality of life. RESULTS LDR prostate brachytherapy monotherapy is an appropriate treatment option for low risk and favorable intermediate risk disease. LDR brachytherapy boost in combination with external beam radiation therapy is appropriate for unfavorable intermediate risk and high-risk disease. Androgen deprivation therapy is recommended in unfavorable intermediate risk and high-risk disease. Acceptable radionuclides for LDR brachytherapy include iodine-125, palladium-103, and cesium-131. Although brachytherapy monotherapy is associated with increased urinary obstructive and irritative symptoms that peak within the first 3 months after treatment, the median time toward symptom resolution is approximately 1 year for iodine-125 and 6 months for palladium-103. Such symptoms can be mitigated with short-term use of alpha blockers. Combination therapy is associated with worse urinary, bowel, and sexual symptoms than monotherapy. A prostate specific antigen <= 0.2 ng/mL at 4 years after LDR brachytherapy may be considered a biochemical definition of cure. CONCLUSIONS LDR brachytherapy is a convenient, effective, and well-tolerated treatment for prostate cancer.
Collapse
Affiliation(s)
- Martin T King
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA.
| | - Mira Keyes
- Department of Radiation Oncology, British Columbia Cancer Agency, University of British Columbia, Vancouver, Canada
| | - Steven J Frank
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Juanita M Crook
- Department of Radiation Oncology, British Columbia Cancer Agency, University of British Columbia, Kelowna, Canada
| | - Wayne M Butler
- Department of Radiation Oncology, Schiffler Cancer Center, Wheeling Jesuit University, Wheeling, WV
| | - Peter J Rossi
- Calaway Young Cancer Center, Valley View Hospital, Glenwood Springs, CO
| | - Brett W Cox
- Department of Radiation Oncology, Rush University Medical Center, Chicago, IL
| | - Timothy N Showalter
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA
| | - Firas Mourtada
- Helen F. Graham Cancer Center & Research Institute, Christiana Care Health System, Newark, DE
| | - Louis Potters
- Department of Radiation Oncology, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY
| | - Richard G Stock
- Department of Radiation Oncology, Mt. Sinai Medical Center, New York, NY
| | - Marisa A Kollmeier
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michael J Zelefsky
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Brian J Davis
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN
| | - Gregory S Merrick
- Department of Radiation Oncology, Schiffler Cancer Center, Wheeling Jesuit University, Wheeling, WV
| | - Peter F Orio
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
32
|
Burgess L, Roy S, Morgan S, Malone S. A Review on the Current Treatment Paradigm in High-Risk Prostate Cancer. Cancers (Basel) 2021; 13:4257. [PMID: 34503067 PMCID: PMC8428221 DOI: 10.3390/cancers13174257] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 01/17/2023] Open
Abstract
High-risk prostate cancer is traditionally treated with a combination of radiotherapy (RT) and androgen deprivation therapy (ADT). However, recent advancements in systemic treatment and radiotherapy have widened the spectrum of treatment for this patient population. Use of image guidance and intensity modulation, as well as the incorporation of brachytherapy, has led to safe radiotherapy dose escalation with reduced risk of recurrence. Clinical trials have helped define the role of pelvic nodal radiotherapy, the role of stereotactic ablative radiotherapy, and the optimal duration and sequencing of ADT in combination with radiotherapy. Emerging evidence has redefined the role of surgery in this cohort. Contemporary clinical trials have identified new systemic therapy options in high-risk prostate cancer. Finally, new imaging modalities including multi-parametric MRI and molecular imaging and genomic classifiers have ushered a new era in patient selection, risk stratification, and treatment tailoring.
Collapse
Affiliation(s)
- Laura Burgess
- Division of Radiation Oncology, Department of Radiology, University of Ottawa, Ottawa, ON K1H 8L6, Canada;
- Radiation Medicine Program, The Ottawa Hospital Cancer Centre, Ottawa, ON K1H 8L6, Canada
| | - Soumyajit Roy
- Department of Radiation Oncology, Rush University Medical Center, Chicago, IL 60605, USA;
| | - Scott Morgan
- Division of Radiation Oncology, Department of Radiology, University of Ottawa, Ottawa, ON K1H 8L6, Canada;
- Radiation Medicine Program, The Ottawa Hospital Cancer Centre, Ottawa, ON K1H 8L6, Canada
| | - Shawn Malone
- Division of Radiation Oncology, Department of Radiology, University of Ottawa, Ottawa, ON K1H 8L6, Canada;
- Radiation Medicine Program, The Ottawa Hospital Cancer Centre, Ottawa, ON K1H 8L6, Canada
| |
Collapse
|
33
|
Dhere VR, Fischer-Valuck BW, Goyal S, Liu Y, Morgan TM, Ghavidel E, Moghanaki DM, Hershatter BW, Patel PR, Jani AB, Godette KD, Rossi PJ, Patel SA. Patient-reported outcomes after Low-dose-rate versus High-dose-rate brachytherapy boost in combination with external beam radiation for intermediate and high risk prostate cancer. Brachytherapy 2021; 20:1130-1138. [PMID: 34417136 DOI: 10.1016/j.brachy.2021.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/24/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE Addition of a brachytherapy boost to external beam radiation therapy (EBRT) reduces prostate cancer (PCa) recurrence at the expense of genitourinary (GU) toxicity. Whether brachytherapy boost technique, specifically low-dose-rate (LDR-BT) versus high-dose-rate (HDR-BT), impacts treatment-related toxicity is unclear. METHODS Between 2012-2018, 106 men with intermediate/high risk PCa underwent EBRT (37.5-45 Gy in 1.8-2.5 Gy/fraction) plus brachytherapy boost, either with LDR-BT (110 Gy I-125 or 100 Gy Pd-103; n = 51) or HDR-BT (15 Gy x1 Ir-192; n = 55). Patient-reported outcomes (PRO) were assessed by International Prostate Symptom Score (IPSS) and Expanded Prostate Cancer Index Composite (EPIC-CP) surveys at 3-6-month intervals for up to three years following treatment, with higher scores indicating more severe toxicity. Provider-reported GU and gastrointestinal (GI) toxicity was graded per CTCAE v5.0 at each follow-up. Linear mixed models comparing PROs between LDR-BT versus HDR-BT were fitted. Stepwise multivariable analysis (MVA) was performed to account for age, gland size, androgen deprivation therapy use, and alpha-blocker medication use. Incidence rates of grade 2+ GU/GI toxicity was compared using Fisher's exact test. RESULTS Use of LDR-BT was associated with greater change in IPSS (p=0.003) and EPIC-CP urinary irritative score (p = 0.002) compared with HDR-BT, but effect size diminished over time (LDR-BT versus HDR-BT: baseline to 6-/24-month mean IPSS change, +6.4/+1.4 versus +2.7/-3.0, respectively; mean EPIC-CP irritative/obstructive change, +2.5/+0.1 versus +0.9/+0.1, respectively). Results remained significant on MVA. Post-treatment grade 2+ GU toxicity was significantly higher in the LDR-BT group (67.5% versus 42.9% for LDR-BT and HDR-BT, respectively; p <0.001). There were no differences between groups in incontinence, bowel function, and erectile function, or grade 2+ GI toxicity. CONCLUSION Compared with LDR-BT, HDR-BT was associated with lower acute patient- and provider-reported GU toxicity.
Collapse
Affiliation(s)
- Vishal R Dhere
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta GA
| | | | - Subir Goyal
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta GA
| | - Yuan Liu
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta GA
| | | | - Elizabeth Ghavidel
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta GA
| | - Drew M Moghanaki
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta GA
| | - Bruce W Hershatter
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta GA
| | - Pretesh R Patel
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta GA
| | - Ashesh B Jani
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta GA
| | - Karen D Godette
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta GA
| | - Peter J Rossi
- Calaway Young Cancer Center, Valley View Hospital, Glenwood Springs CO
| | - Sagar A Patel
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta GA.
| |
Collapse
|
34
|
Choudhury A, Henry Md Frcr A, Mitin Md PhD T, Chen Md Mph R, Joseph Md Frcr N, Spratt Md PhD DE. Photons, Protons, SBRT, Brachytherapy-What Is Leading the Charge for the Management of Prostate Cancer? A Perspective From the GU Editorial Team. Int J Radiat Oncol Biol Phys 2021; 110:1114-1121. [PMID: 34171236 DOI: 10.1016/j.ijrobp.2021.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/03/2021] [Indexed: 01/22/2023]
Affiliation(s)
- Ananya Choudhury
- Department of Clinical Oncology, Christie NHS Foundation Trust, Manchester, United Kingdom; Division of Cancer Sciences, University of Manchester and Christie NHS Foundation Trust, Manchester, United Kingdom.
| | - Ann Henry Md Frcr
- Department of Clinical Oncology, Leeds Teaching Hospitals NHS Trust and the University of Leeds, Leeds, United Kingdom
| | - Timur Mitin Md PhD
- Knight Cancer Institute, Department of Radiation Medicine, Oregon Health and Science University, Portland, Oregon
| | - Ronald Chen Md Mph
- Department of Radiation Oncology, University of Kansas, Kansas City, Kansas
| | - Nuradh Joseph Md Frcr
- General Hospital Chilaw, Ministry of Health, Colombo, Sri Lanka; Sri Lanka Cancer Research Group
| | | |
Collapse
|
35
|
Kishan AU, Karnes RJ, Romero T, Wong JK, Motterle G, Tosoian JJ, Trock BJ, Klein EA, Stish BJ, Dess RT, Spratt DE, Pilar A, Reddy C, Levin-Epstein R, Wedde TB, Lilleby WA, Fiano R, Merrick GS, Stock RG, Demanes DJ, Moran BJ, Braccioforte M, Huland H, Tran PT, Martin S, Martínez-Monge R, Krauss DJ, Abu-Isa EI, Alam R, Schwen Z, Chang AJ, Pisansky TM, Choo R, Song DY, Greco S, Deville C, McNutt T, DeWeese TL, Ross AE, Ciezki JP, Boutros PC, Nickols NG, Bhat P, Shabsovich D, Juarez JE, Chong N, Kupelian PA, D’Amico AV, Rettig MB, Berlin A, Tward JD, Davis BJ, Reiter RE, Steinberg ML, Elashoff D, Horwitz EM, Tendulkar RD, Tilki D. Comparison of Multimodal Therapies and Outcomes Among Patients With High-Risk Prostate Cancer With Adverse Clinicopathologic Features. JAMA Netw Open 2021; 4:e2115312. [PMID: 34196715 PMCID: PMC8251338 DOI: 10.1001/jamanetworkopen.2021.15312] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
IMPORTANCE The optimal management strategy for high-risk prostate cancer and additional adverse clinicopathologic features remains unknown. OBJECTIVE To compare clinical outcomes among patients with high-risk prostate cancer after definitive treatment. DESIGN, SETTING, AND PARTICIPANTS This retrospective cohort study included patients with high-risk prostate cancer (as defined by the National Comprehensive Cancer Network [NCCN]) and at least 1 adverse clinicopathologic feature (defined as any primary Gleason pattern 5 on biopsy, clinical T3b-4 disease, ≥50% cores with biopsy results positive for prostate cancer, or NCCN ≥2 high-risk features) treated between 2000 and 2014 at 16 tertiary centers. Data were analyzed in November 2020. EXPOSURES Radical prostatectomy (RP), external beam radiotherapy (EBRT) with androgen deprivation therapy (ADT), or EBRT plus brachytherapy boost (BT) with ADT. Guideline-concordant multimodal treatment was defined as RP with appropriate use of multimodal therapy (optimal RP), EBRT with at least 2 years of ADT (optimal EBRT), or EBRT with BT with at least 1 year ADT (optimal EBRT with BT). MAIN OUTCOMES AND MEASURES The primary outcome was prostate cancer-specific mortality; distant metastasis was a secondary outcome. Differences were evaluated using inverse probability of treatment weight-adjusted Fine-Gray competing risk regression models. RESULTS A total of 6004 men (median [interquartile range] age, 66.4 [60.9-71.8] years) with high-risk prostate cancer were analyzed, including 3175 patients (52.9%) who underwent RP, 1830 patients (30.5%) who underwent EBRT alone, and 999 patients (16.6%) who underwent EBRT with BT. Compared with RP, treatment with EBRT with BT (subdistribution hazard ratio [sHR] 0.78, [95% CI, 0.63-0.97]; P = .03) or with EBRT alone (sHR, 0.70 [95% CI, 0.53-0.92]; P = .01) was associated with significantly improved prostate cancer-specific mortality; there was no difference in prostate cancer-specific mortality between EBRT with BT and EBRT alone (sHR, 0.89 [95% CI, 0.67-1.18]; P = .43). No significant differences in prostate cancer-specific mortality were found across treatment cohorts among 2940 patients who received guideline-concordant multimodality treatment (eg, optimal EBRT alone vs optimal RP: sHR, 0.76 [95% CI, 0.52-1.09]; P = .14). However, treatment with EBRT alone or EBRT with BT was consistently associated with lower rates of distant metastasis compared with treatment with RP (eg, EBRT vs RP: sHR, 0.50 [95% CI, 0.44-0.58]; P < .001). CONCLUSIONS AND RELEVANCE These findings suggest that among patients with high-risk prostate cancer and additional unfavorable clinicopathologic features receiving guideline-concordant multimodal therapy, prostate cancer-specific mortality outcomes were equivalent among those treated with RP, EBRT, and EBRT with BT, although distant metastasis outcomes were more favorable among patients treated with EBRT and EBRT with BT. Optimal multimodality treatment is critical for improving outcomes in patients with high-risk prostate cancer.
Collapse
Affiliation(s)
- Amar U. Kishan
- Department of Radiation Oncology, University of California, Los Angeles
- Department of Urology, University of California, Los Angeles
| | | | - Tahmineh Romero
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Jessica K. Wong
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | | | | | - Bruce J. Trock
- Department of Urology, Brady Urological Institute, Johns Hopkins University, Baltimore, Maryland
| | - Eric A. Klein
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio
| | - Bradley J. Stish
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Robert T. Dess
- Department of Radiation Oncology, University of Michigan, Ann Arbor
| | - Daniel E. Spratt
- Department of Radiation Oncology, University of Michigan, Ann Arbor
| | - Avinash Pilar
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Chandana Reddy
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | | | - Trude B. Wedde
- Department of Oncology, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Wolfgang A. Lilleby
- Department of Oncology, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Ryan Fiano
- Schiffler Cancer Center, Wheeling Hospital, Wheeling Jesuit University, Wheeling, West Virginia
| | - Gregory S. Merrick
- Schiffler Cancer Center, Wheeling Hospital, Wheeling Jesuit University, Wheeling, West Virginia
| | - Richard G. Stock
- Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Brian J. Moran
- Prostate Cancer Foundation of Chicago, Westmont, Illinois
| | | | - Hartwig Huland
- Martini-Klinik Prostate Cancer Center, University Hospital Hamburg Eppendorf, Hamburg, Germany
| | - Phuoc T. Tran
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Santiago Martin
- Department of Oncology, Clínica Universitaria de Navarra, University of Navarra, Pamplona, Spain
| | | | - Daniel J. Krauss
- William Beaumont School of Medicine, Oakland University, Royal Oak, Michigan
| | - Eyad I. Abu-Isa
- Department of Radiation Oncology, University of Michigan, Ann Arbor
| | - Ridwan Alam
- Department of Urology, Brady Urological Institute, Johns Hopkins University, Baltimore, Maryland
| | - Zeyad Schwen
- Department of Urology, Brady Urological Institute, Johns Hopkins University, Baltimore, Maryland
| | - Albert J. Chang
- Department of Radiation Oncology, University of California, Los Angeles
| | | | - Richard Choo
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Daniel Y. Song
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Stephen Greco
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Curtiland Deville
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Todd McNutt
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Theodore L. DeWeese
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ashley E. Ross
- Texas Oncology, Dallas
- Now with Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Jay P. Ciezki
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - Paul C. Boutros
- Department of Urology, University of California, Los Angeles
- Department of Human Genetics, University of California, Los Angeles
| | - Nicholas G. Nickols
- Department of Radiation Oncology, University of California, Los Angeles
- Department of Radiation Oncology, VA Greater Los Angeles Healthcare System, Los Angeles, California
| | - Prashant Bhat
- Department of Radiation Oncology, University of California, Los Angeles
| | - David Shabsovich
- Department of Radiation Oncology, University of California, Los Angeles
| | - Jesus E. Juarez
- Department of Radiation Oncology, University of California, Los Angeles
| | - Natalie Chong
- Department of Radiation Oncology, University of California, Los Angeles
| | | | - Anthony V. D’Amico
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Matthew B. Rettig
- Division of Hematology and Oncology, Department of Medicine, University of California, Los Angeles
- Department of Hematology and Oncology, VA Greater Los Angeles Healthcare System, Los Angeles, California
| | - Alejandro Berlin
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Jonathan D. Tward
- Department of Radiation Oncology, Huntsman Cancer Institute, The University of Utah, Salt Lake City
| | - Brian J. Davis
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | | | | | - David Elashoff
- Department of Medicine Statistics Core, David Geffen School of Medicine, University of California, Los Angeles
| | - Eric M. Horwitz
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Rahul D. Tendulkar
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - Derya Tilki
- Martini-Klinik Prostate Cancer Center, University Hospital Hamburg Eppendorf, Hamburg, Germany
- Department of Urology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
36
|
Hsu IC, Rodgers JP, Shinohara K, Purdy J, Michalski J, Roach M, Vigneault E, Ivker RA, Pryzant RM, Kuettel M, Taussky D, Gustafson GS, Raben A, Sandler HM. Long-Term Results of NRG Oncology/RTOG 0321: A Phase II Trial of Combined High Dose Rate Brachytherapy and External Beam Radiation Therapy for Adenocarcinoma of the Prostate. Int J Radiat Oncol Biol Phys 2021; 110:700-707. [PMID: 33186617 PMCID: PMC8107184 DOI: 10.1016/j.ijrobp.2020.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 10/19/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE To report the long-term outcome of patients with prostate cancer treated with external beam radiation therapy and high dose rate (HDR) brachytherapy from a prospective multi-institutional trial conducted by NRG Oncology/RTOG. METHODS AND MATERIALS Patients with clinically localized (T1c-T3b) prostate cancer without prior history of transurethral resection of prostate or hip prosthesis were eligible for this study. All patients were treated with a combination of 45 Gy in 25 fractions from external beam radiation therapy and one HDR implant delivering 19 Gy in 2 fractions. Adverse events (AE) were collected using Common Toxicity Criteria for Adverse Events, version 3. Cumulative incidence was used to estimate time to severe late gastrointestinal (GI)/genitourinary (GU) toxicity, biochemical failure, disease-specific mortality, local failure, and distant failure. Overall survival was estimated using the Kaplan-Meier method. RESULTS One hundred and twenty-nine patients were enrolled from July 2004 to May 2006. AE data was available for 115 patients. Patients were National Comprehensive Cancer Network (NCCN) intermediate to very high risk. The median age was 68, T1c-T2c 91%, T3a-T3b 9%, PSA ≤10 70%, PSA >10 to ≤20 30%, GS 6 10%, GS 7 72%, and GS 8 to 10 18%. Forty-three percent of patients received hormonal therapy. At a median follow-up time of 10 years, there were 6 (5%) patients with grade 3 GI and GU treatment-related AEs, and no late grade 4 to 5 GI and GU AEs. At 5 and 10 years, the rate of late grade 3 gastrointestinal and genitourinary AEs was 4% and 5%, respectively. Five- and 10-year overall survival rates were 95% and 76%. Biochemical failure rates per Phoenix definition at 5 and 10 years were 14% and 23%. The 10-year rate of disease-specific mortality was 6%. At 5 and 10 years, the rates of distant failure were 4% and 8%, respectively. The rates of local failure at 5 and 10 years were 2% at both time points. CONCLUSIONS Combined modality treatment using HDR prostate brachytherapy leads to excellent long-term clinical outcomes in this prospective multi-institutional trial.
Collapse
Affiliation(s)
- I-Chow Hsu
- University of California, San Francisco, California.
| | | | | | - James Purdy
- University of California Davis, Davis, California
| | | | - Mack Roach
- University of California, San Francisco, California
| | | | | | | | | | - Daniel Taussky
- Center Hospitalier de l'Université de Montréal-Notre Dame
| | | | | | | |
Collapse
|
37
|
Strouthos I, Karagiannis E, Zamboglou N, Ferentinos K. High-dose-rate brachytherapy for prostate cancer: Rationale, current applications, and clinical outcome. Cancer Rep (Hoboken) 2021; 5:e1450. [PMID: 34164950 PMCID: PMC8789612 DOI: 10.1002/cnr2.1450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/25/2022] Open
Abstract
Background High‐dose‐rate brachytherapy (HDR BRT) has been enjoying rapid acceptance as a treatment modality offered to selected prostate cancer patients devoid of risk group, employed either in monotherapy setting or combined with external beam radiation therapy (EBRT) and is currently one of the most active clinical research areas. Recent findings This review encompasses all the current evidence to support the use of HDR BRT in various clinical scenario and shines light to the HDR BRT rationale, as an ultimately conformal dose delivery method enabling safe dose escalation to the prostate. Conclusion Valid long‐term data, both in regard to the oncologic outcomes and toxicity profile, support the current clinical indication spectrum of HDR BRT. At the same time, this serves as solid, rigid ground for emerging therapeutic applications, allowing the technique to remain in the spotlight alongside stereotactic radiosurgery.
Collapse
Affiliation(s)
- Iosif Strouthos
- Department of Radiation Oncology, German Oncology Center, Limassol, Cyprus.,Clinical Faculty, School of Medicine, European University Cyprus, Nicosia, Cyprus
| | - Efstratios Karagiannis
- Department of Radiation Oncology, German Oncology Center, Limassol, Cyprus.,Clinical Faculty, School of Medicine, European University Cyprus, Nicosia, Cyprus
| | - Nikolaos Zamboglou
- Department of Radiation Oncology, German Oncology Center, Limassol, Cyprus.,Clinical Faculty, School of Medicine, European University Cyprus, Nicosia, Cyprus
| | - Konstantinos Ferentinos
- Department of Radiation Oncology, German Oncology Center, Limassol, Cyprus.,Clinical Faculty, School of Medicine, European University Cyprus, Nicosia, Cyprus
| |
Collapse
|
38
|
Roy A, Brenneman RJ, Hogan J, Barnes JM, Huang Y, Morris R, Goddu S, Altman M, Garcia-Ramirez J, Li H, Zoberi JE, Bullock A, Kim E, Smith Z, Figenshau R, Andriole GL, Baumann BC, Michalski JM, Gay HA. Does the sequence of high-dose rate brachytherapy boost and IMRT for prostate cancer impact early toxicity outcomes? Results from a single institution analysis. Clin Transl Radiat Oncol 2021; 29:47-53. [PMID: 34136665 PMCID: PMC8182264 DOI: 10.1016/j.ctro.2021.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 11/26/2022] Open
Abstract
The optimal sequence of HDR-BT boost and EBRT for prostate cancer is unclear. We compared early toxicity based on the timing of HDR-BT boost. The timing of HDR-BT was not based on any specific patient or clinical factors. We found no difference in early GI/GU toxicity between the two groups. Longer follow-up is needed to evaluate late toxicity and long-term disease control.
Background We present the first report comparing early toxicity outcomes with high-dose rate brachytherapy (HDR-BT) boost upfront versus intensity modulated RT (IMRT) upfront combined with androgen deprivation therapy (ADT) as definitive management for intermediate risk or higher prostate cancer. Methods and Materials We reviewed all non-metastatic prostate cancer patients who received HDR-BT boost from 2014 to 2019. HDR-BT boost was offered to patients with intermediate-risk disease or higher. ADT use and IMRT target volume was based on NCCN risk group. IMRT dose was typically 45 Gy in 25 fractions to the prostate and seminal vesicles ± pelvic lymph nodes. HDR-BT dose was 15 Gy in 1 fraction, delivered approximately 3 weeks before or after IMRT. The sequence was based on physician preference. Biochemical recurrence was defined per ASTRO definition. Gastrointestinal (GI) and Genitourinary (GU) toxicity was graded per CTCAE v5.0. Pearson Chi-squared test and Wilcoxon tests were used to compare toxicity rates. P-value < 0.05 was significant. Results Fifty-eight received HDR-BT upfront (majority 2014–2016) and 57 IMRT upfront (majority 2017–2018). Median follow-up was 26.0 months. The two cohorts were well-balanced for baseline patient/disease characteristics and treatment factors. There were differences in treatment sequence based on the year in which patients received treatment. Overall, rates of grade 3 or higher GI or GU toxicity were <1%. There was no significant difference in acute or late GI or GU toxicity between the two groups. Conclusion We found no significant difference in GI/GU toxicity in intermediate-risk or higher prostate cancer patients receiving HDR-BT boost upfront versus IMRT upfront combined with ADT. These findings suggest that either approach may be reasonable. Longer follow-up is needed to evaluate late toxicity and long-term disease control.
Collapse
Affiliation(s)
- Amit Roy
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, United States
| | - Randall J. Brenneman
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, United States
| | - Jacob Hogan
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, United States
| | - Justin M. Barnes
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, United States
| | - Yi Huang
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, United States
| | - Robert Morris
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, United States
| | - Sreekrishna Goddu
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, United States
| | - Michael Altman
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, United States
| | - Jose Garcia-Ramirez
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, United States
| | - Harold Li
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, United States
| | - Jacqueline E. Zoberi
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, United States
| | - Arnold Bullock
- Department of Urology, Washington University School of Medicine, St. Louis, MO, United States
| | - Eric Kim
- Department of Urology, Washington University School of Medicine, St. Louis, MO, United States
| | - Zachary Smith
- Department of Urology, Washington University School of Medicine, St. Louis, MO, United States
| | - Robert Figenshau
- Department of Urology, Washington University School of Medicine, St. Louis, MO, United States
| | - Gerald L. Andriole
- Department of Urology, Washington University School of Medicine, St. Louis, MO, United States
| | - Brian C. Baumann
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, United States
| | - Jeff M. Michalski
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, United States
| | - Hiram A. Gay
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, United States
- Corresponding author at: Department of Radiation Oncology, Washington University School of Medicine, 4921 Parkview Place, LL, Campus Box 8224, St. Louis, MO 63110, United States.
| |
Collapse
|
39
|
King MT, Chen MH, Collette L, Neven A, Bolla M, D’Amico AV. Association of Increased Prostate-Specific Antigen Levels After Treatment and Mortality in Men With Locally Advanced vs Localized Prostate Cancer: A Secondary Analysis of 2 Randomized Clinical Trials. JAMA Netw Open 2021; 4:e2111092. [PMID: 33999161 PMCID: PMC8129819 DOI: 10.1001/jamanetworkopen.2021.11092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
IMPORTANCE Increased prostate-specific antigen (PSA) levels after treatment (PSA failure) may have different associations with outcomes for men with locally advanced vs localized prostate cancer. OBJECTIVE To evaluate whether the association between PSA failure and death may be different in locally advanced vs localized prostate cancer. DESIGN, SETTING, AND PARTICIPANTS This multicenter cohort study included patients from 2 randomized clinical trials. The Dana-Farber Cancer Institute (DFCI) 95-096 trial randomized 206 men with localized prostate cancer from December 1, 1995, to April 15, 2001, whereas the European Organisation for Research and Treatment of Cancer (EORTC) 22961 trial randomized 970 men with locally advanced prostate cancer from October 30, 1997, to May 1, 2002. Data were analyzed from January 1, 2020, to October 31, 2020. INTERVENTIONS The DFCI 95-096 trial randomized men to 0 vs 6 months of androgen deprivation therapy (ADT) with external beam radiotherapy; the EORTC 22961 trial randomized men to 6 vs 36 months of ADT with external beam radiotherapy. MAIN OUTCOMES AND MEASURES For each trial, the PSA doubling time (time to doubling of PSA levels) associated with PSA failure was evaluated. The risk of all-cause mortality associated with PSA failure (nadir plus 2 definition) was evaluated after adjustment of baseline covariates and treatment. RESULTS This analysis included a total of 1173 men (206 from DFCI 95-096 and 967 with available tumor stage from EORTC 22961; median age, 70.0 [interquartile range (IQR), 65.0-74.0 years). For DFCI 95-096, 161 men died (30 [18.6%] due to prostate cancer) at a median follow-up of 18.2 (IQR, 17.3-18.8) years. Among the 108 men with PSA failure, the median PSA doubling time was 13.0 (IQR, 7.4-31.1) months. For EORTC 22961, 230 men died (75 [32.6%] due to prostate cancer) at a median follow-up of 6.4 (IQR, 6.3-6.6) years. Among 290 men who experienced PSA failure, the median PSA doubling time was 5.0 (IQR, 2.9-8.9) months. Compared with DFCI 95-096, PSA failure was associated with a higher risk of all-cause mortality in EORTC 22961 (adjusted hazard ratios, 3.98 [95% CI, 2.92-5.44]; P < .001 vs 1.51 [95% CI, 1.03-2.23]; P = .04). CONCLUSIONS AND RELEVANCE The association of PSA failure with outcomes may differ between locally advanced and localized prostate cancer. This finding supports the study of treatment intensification with the use of novel antiandrogen agents in addition to ADT at the time of PSA failure after treatment for locally advanced disease. TRIAL REGISTRATION ClinicalTrials.gov Identifiers: NCT00116220 and NCT00003026.
Collapse
Affiliation(s)
- Martin T. King
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Ming-Hui Chen
- Department of Statistics, University of Connecticut, Storrs
| | - Laurence Collette
- European Organisation for Research and Treatment of Cancer Headquarters, Brussels, Belgium
| | - Anouk Neven
- European Organisation for Research and Treatment of Cancer Headquarters, Brussels, Belgium
| | - Michel Bolla
- Department of Radiation Oncology, Grenoble University Hospital, Grenoble, France
| | - Anthony V. D’Amico
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Boston, Massachusetts
| |
Collapse
|
40
|
Lakosi F, Antal G, Pall J, Farkas A, Jenei T, Nagy D, Liptak J, Sipocz I, Pytel A, Csima M, Gulyban A, Toller G. HDR brachytherapy boost using MR-only workflow for intermediate- and high-risk prostate cancer: 8-year results of a pilot study. Brachytherapy 2021; 20:576-583. [PMID: 33478906 DOI: 10.1016/j.brachy.2020.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/05/2020] [Accepted: 12/09/2020] [Indexed: 11/28/2022]
Abstract
PURPOSE To report 8-year clinical outcome with high-dose-rate brachytherapy (HDRBT) boost using MRI-only workflow for intermediate (IR) and high-risk (HR) prostate cancer (PC) patients. METHODS AND MATERIALS Fifty-two patients were treated with 46-60 Gy of 3D conformal radiotherapy preceded and/or followed by a single dose of 8-10 Gy MRI-guided HDRBT. Interventions were performed in a 0.35 T MRI scanner. Trajectory planning, navigation, contouring, catheter reconstruction, and dose calculation were exclusively based on MRI images. Biochemical relapse-free- (BRFS), local relapse-free- (LRFS), distant metastasis-free- (DMFS), cancer-specific-(CCS) and overall survival (OS) were analyzed. Late morbidity was scored using the Common Terminology Criteria for Adverse Events (CTCAE 4.0) combined with RTOG (Radiation Therapy Oncology Group) scale for urinary toxicity and rectal urgency (RU) determined by Yeoh. RESULTS Median follow-up time was 107 (range: 19-143) months. The 8-year actuarial rates of BRFS, LRFS, DMFS, CSS and OS were 85.7%, 97%, 97.6%, and 77.6%, respectively. There were no Gr.3 GI side effects. The 8-year actuarial rate of Gr.2 proctitis was 4%. The 8-year cumulative incidence of Gr.3 GU side effects was 8%, including two urinary stenoses (5%) and one cystitis (3%). EPIC urinary and bowel scores did not change significantly over time. CONCLUSIONS MRI-only HDR-BT boost with moderate dose escalation provides excellent 8-year disease control with a favorable toxicity profile for IRPC and HRPC patients. Our results support the clinical importance of MRI across the BT workflow.
Collapse
Affiliation(s)
- Ferenc Lakosi
- Somogy County Kaposi Mór Teaching Hospital, Dr. József Baka Center, Department of Radiation Oncology, Kaposvár, Hungary.
| | - Gergely Antal
- Somogy County Kaposi Mór Teaching Hospital, Dr. József Baka Center, Department of Radiation Oncology, Kaposvár, Hungary
| | - Janos Pall
- Somogy County Kaposi Mór Teaching Hospital, Dr. József Baka Center, Department of Radiation Oncology, Kaposvár, Hungary; Department of Radiation Oncology, Csolnoky Ferenc Hospital, Veszprém, Hungary
| | - Andrea Farkas
- Somogy County Kaposi Mór Teaching Hospital, Dr. József Baka Center, Department of Radiation Oncology, Kaposvár, Hungary
| | - Tibor Jenei
- Somogy County Kaposi Mór Teaching Hospital, Department of Urology, Kaposvár, Hungary
| | - Denes Nagy
- Somogy County Kaposi Mór Teaching Hospital, Department of Urology, Kaposvár, Hungary
| | - Jozsef Liptak
- Kanizsai Dorottya Hospital, Department of Urology, Nagykanizsa, Hungary
| | - Istvan Sipocz
- Petz Aladár County Teaching Hospital, Department of Radiation Oncology, Győr, Hungary
| | - Akos Pytel
- Pécs University, Department of Urology, Pecs, Hungary
| | - Melinda Csima
- Faculty of Pedagogy, Szent István University, Kaposvár Campus, Kaposvár, Hungary
| | - Akos Gulyban
- Medical Physics Department, Institut Jules Bordet, Bruxelles, Belgium
| | - Gabor Toller
- Somogy County Kaposi Mór Teaching Hospital, Dr. József Baka Center, Department of Radiation Oncology, Kaposvár, Hungary
| |
Collapse
|
41
|
Castro Mendez L, Martell K, Crook JM. Brachytherapy and Androgen-Deprivation Therapy in Patients With Intermediate- and High-Risk Prostate Cancer: Not Necessarily an Either/Or Decision. J Clin Oncol 2020; 38:3820-3821. [PMID: 32997576 DOI: 10.1200/jco.20.01566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Lucas Castro Mendez
- Lucas Castro Mendez, MD, Western University, London, Ontario, Canada; Kevin Martell, MD, University of Calgary, Calgary, Alberta, Canada; and Juanita M. Crook, MD, University of British Columbia, Kelowna, British Columbia, Canada
| | - Kevin Martell
- Lucas Castro Mendez, MD, Western University, London, Ontario, Canada; Kevin Martell, MD, University of Calgary, Calgary, Alberta, Canada; and Juanita M. Crook, MD, University of British Columbia, Kelowna, British Columbia, Canada
| | - Juanita M Crook
- Lucas Castro Mendez, MD, Western University, London, Ontario, Canada; Kevin Martell, MD, University of Calgary, Calgary, Alberta, Canada; and Juanita M. Crook, MD, University of British Columbia, Kelowna, British Columbia, Canada
| |
Collapse
|
42
|
Jackson WC, Hartman HE, Dess RT, Spratt DE. Reply to L. C. Mendez et al and M. A. Kollmeier et al. J Clin Oncol 2020; 38:3823-3824. [PMID: 32997578 PMCID: PMC7655022 DOI: 10.1200/jco.20.02422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- William C. Jackson
- William C. Jackson, MD; Holly E. Hartman, MS; Robert T. Dess, MD; and Daniel E. Spratt, MD, University of Michigan, Ann Arbor, MI
| | - Holly E. Hartman
- William C. Jackson, MD; Holly E. Hartman, MS; Robert T. Dess, MD; and Daniel E. Spratt, MD, University of Michigan, Ann Arbor, MI
| | - Robert T. Dess
- William C. Jackson, MD; Holly E. Hartman, MS; Robert T. Dess, MD; and Daniel E. Spratt, MD, University of Michigan, Ann Arbor, MI
| | - Daniel E. Spratt
- William C. Jackson, MD; Holly E. Hartman, MS; Robert T. Dess, MD; and Daniel E. Spratt, MD, University of Michigan, Ann Arbor, MI
| |
Collapse
|
43
|
Evolving Brachytherapy Boost in Prostate Cancer in the Era of Hypofractionation. Int J Radiat Oncol Biol Phys 2020; 108:914-916. [DOI: 10.1016/j.ijrobp.2020.08.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/23/2020] [Accepted: 08/06/2020] [Indexed: 12/27/2022]
|
44
|
King MT, Muralidhar V, Yang DD, Mouw KW, Martin NE, D'Amico AV, Nguyen PL, Orio PF. Utilization of multimodality therapy with primary radical prostatectomy versus radiation therapy for Gleason 8-10 prostate cancer. Brachytherapy 2020; 20:1-9. [PMID: 33129714 DOI: 10.1016/j.brachy.2020.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE The role of multimodality therapy (MMT) in the treatment of Gleason 8-10 prostate cancer remains controversial. We sought to evaluate factors associated with MMT utilization for primary radical prostatectomy (RP) and primary radiation therapy (RT). METHODS AND MATERIALS From the National Cancer Database, we conducted a retrospective review of 81,528 men with National Cancer Center Network Gleason 8-10 prostate cancer diagnosed between 2004 and 2015, who underwent (1) primary RP with or without early postoperative external beam RT (EBRT) or (2) primary RT (androgen deprivation therapy + EBRT) with or without brachytherapy (BT) boost. Using multivariable logistic regression models, we evaluated factors associated with the utilization of MMT, defined as early postoperative EBRT for primary RP or BT boost for primary RT. RESULTS For primary RP, the percentages of men who underwent MMT for Gleason 8 and 9-10 disease were 12.2% and 24.1%, respectively. On multivariable logistic regression, men with Gleason 9-10 were more likely to undergo MMT (odds ratio 1.03 [1.02, 1.04]), although adverse pathologic features such as T3b-4 (1.24 [1.23, 1.25]) disease demonstrated the strongest associations. For primary RT, the percentages of men who underwent BT boost for Gleason 8 and 9-10 disease were 11.8% and 9.8%, respectively. On multivariable logistic regression, men with Gleason 9-10 disease were less likely to receive BT boost (0.99 [0.98, 0.99]). CONCLUSIONS Men with more aggressive Gleason 9 disease were more likely to undergo MMT if they underwent primary RP but not primary RT. Further blood-based or imaging biomarkers may aid in identifying optimal candidates for MMT, especially for primary RT.
Collapse
Affiliation(s)
- Martin T King
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA.
| | - Vinayak Muralidhar
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - David D Yang
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Kent W Mouw
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Neil E Martin
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Anthony V D'Amico
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Paul L Nguyen
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Peter F Orio
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA
| |
Collapse
|
45
|
Kim YJ, Ahn H, Kim CS, Kim YS. Phase I/IIa trial of androgen deprivation therapy, external beam radiotherapy, and stereotactic body radiotherapy boost for high-risk prostate cancer (ADEBAR). Radiat Oncol 2020; 15:234. [PMID: 33032643 PMCID: PMC7542889 DOI: 10.1186/s13014-020-01665-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/09/2020] [Indexed: 11/10/2022] Open
Abstract
Background To evaluate the clinical outcomes of combination of androgen deprivation therapy (ADT), whole pelvic radiotherapy (WPRT), and stereotactic body radiotherapy (SBRT) boost in high-risk prostate cancer patients. Methods This prospective phase I/IIa study was conducted between 2016 and 2017. Following WPRT of 44 Gy in 20 fractions, patients were randomized to two boost doses, 18 Gy and 21 Gy, in 3 fractions using the Cyberknife system. Primary endpoints were incidences of acute toxicities and short-term biochemical recurrence-free survival (BCRFS). Secondary endpoints included late toxicities and short-term clinical progression-free survival (CPFS). Results A total of 26 patients were enrolled. Twelve patients received a boost dose of 18 Gy, and the rest received 21 Gy. The Median follow-up duration was 35 months. There were no grade ≥ 3 genitourinary (GU) or gastrointestinal (GI) toxicities. Sixty-one and 4% of patients experienced grade 1–2 acute GU and GI toxicities, respectively. There were 12% late grade 1–2 GU toxicities and 8% late grade 1–2 GI toxicities. Patient-reported outcomes of urinary symptoms were aggravated after WPRT and SBRT boost. However, they resolved at 1 month and returned to the baseline level at 4 months. Three-year BCRFS was 88.1%, and CPFS was 92.3%. Conclusions The present study protocol demonstrated that the combination of ADT, WPRT, and SBRT boosts for high-risk prostate cancer is safe and feasible, and may reduce total treatment time to 5 weeks. Boost dose of 21 Gy in 3 fractions seems appropriate. Trial registration ClinicalTrials.gov, ID; NCT03322020 - Retrospectively registered on 26 October 2017.
Collapse
Affiliation(s)
- Yeon Joo Kim
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan, College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Hanjong Ahn
- Department of Urology, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, Republic of Korea
| | - Choung-Soo Kim
- Department of Urology, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, Republic of Korea
| | - Young Seok Kim
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan, College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
46
|
Dess RT. Treatment Intensification in High-Risk Prostate Cancer: Lessons From the TROG 03.04 RADAR Trial. Int J Radiat Oncol Biol Phys 2020; 106:703-705. [PMID: 32092344 DOI: 10.1016/j.ijrobp.2020.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Robert T Dess
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|