1
|
Breen WG, Palmer JD, Johnson DR, Kim MM. The Role of PET/CT in Radiation Oncology for Central Nervous System Tumors. PET Clin 2025; 20:195-204. [PMID: 39915188 DOI: 10.1016/j.cpet.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
The investigation and application of PET modalities for the evaluation and treatment of patients with central nervous system (CNS) tumors continues to evolve, with anticipated increased uptake in the United States for both benign and malignant CNS tumors in the decade to come.
Collapse
Affiliation(s)
- William G Breen
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Joshua D Palmer
- Department of Radiation Oncology, The James Cancer Hospital at the Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | | - Michelle M Kim
- Department of Radiation Oncology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA.
| |
Collapse
|
2
|
Moore-Palhares D, Lawrence LSP, Myrehaug S, Stewart J, Detsky J, Tseng CL, Chen H, Dinakaran D, Maralani P, Ruschin M, Zhang B, Perry J, Lim-Fat MJ, Sahgal A, Soliman H, Lau AZ. Temporal Apparent Diffusion Coefficient Changes During Chemoradiation: An Imaging Biomarker for Tumor Response Monitoring and Spatial Recurrence Prediction in Glioblastoma. Int J Radiat Oncol Biol Phys 2025:S0360-3016(25)00260-3. [PMID: 40154848 DOI: 10.1016/j.ijrobp.2025.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/07/2025] [Accepted: 03/15/2025] [Indexed: 04/01/2025]
Abstract
PURPOSE Apparent diffusion coefficient (ADC) from diffusion-weighted imaging has been shown to detect early treatment response in glioblastoma. This prospective observational serial imaging study aimed to compare ADC changes in gross tumor volume (GTV) regions that developed recurrence versus those that remained recurrence-free. METHODS AND MATERIALS Patients with glioblastoma underwent diffusion-weighted imaging at radiation planning (baseline, fraction 0), fraction 10, fraction 20, and 1 month after completing a 6-week course of chemoradiation. Recurrence was contoured at the earliest magnetic resonance imaging showing progression. The intersection of the GTV and recurrence was labeled resistant-GTV, whereas nonintersecting GTV was labeled sensitive-GTV. ADC values and percentage changes from fraction 0 were compared between these regions. RESULTS Eighty patients were analyzed. Median absolute ADC values for resistant (0.94 μm2/ms; IQR, 0.84-1.08) and sensitive-GTV (0.93 μm2/ms; IQR, 0.87-1.13) were similar at baseline (P = .193), but statistically significant differences were observed from the start of radiation therapy. Median ADC changes from baseline for resistant- and sensitive-GTV were +2.5% versus +15.1% at fraction 10 (P < .001), +8.1% versus +23.1% at fraction 20 (P < .001), and +21.2% versus +36.4% at 1 month after completing a 6-week course of chemoradiation (P <.001), respectively. Smaller ADC changes at fraction 10 (odds ratio, 0.95; P = .005) and fraction 20 (odds ratio, 0.95; P = .010) were independent predictors of increased risk of GTV failure, adjusting for O6-methylguanine DNA methyltransferase promoter methylation and extent of surgical resection. CONCLUSIONS Temporal ADC changes are promising imaging biomarkers for treatment response and spatial recurrence prediction and may provide a target for magnetic resonance imaging-guided biologically adapted radiation clinical trials.
Collapse
Affiliation(s)
- Daniel Moore-Palhares
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Liam S P Lawrence
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Sten Myrehaug
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - James Stewart
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Jay Detsky
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Chia-Lin Tseng
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Hanbo Chen
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Deepak Dinakaran
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Pejman Maralani
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Mark Ruschin
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Beibei Zhang
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - James Perry
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Mary Jane Lim-Fat
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Arjun Sahgal
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Hany Soliman
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Angus Z Lau
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Gal O, Mehta MP, Kotecha R. Radiotherapeutic advances in the management of glioblastoma. J Neurooncol 2024; 170:509-520. [PMID: 39269554 DOI: 10.1007/s11060-024-04824-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024]
Abstract
Glioblastoma remains a fatal diagnosis despite continuous efforts to improve upon the current standard backbone management paradigm of surgery, radiation therapy, systemic therapy and Tumor Treating Fields. Radiation therapy (RT) plays a pivotal role, with progress recently achieved in multiple key areas of research. The evolving landscape of dose and fractionation schedules and dose escalation options for different patient populations is explored, offering opportunities to better tailor treatment to a patient's overall status and preferences; novel efforts to modify treatment volumes are presented, such as utilizing state-of-the-art MRI-based linear accelerators to deliver adaptive therapy, hoping to reduce normal tissue exposure and treatment-related toxicity; specialized MR techniques and functional imaging using novel PET agents are described, providing improved treatment accuracy and the opportunity to target areas at risk of disease relapse; finally, the role of particle therapy and new altered dose-rate photon and proton therapy techniques in the treatment paradigm of glioblastoma is detailed, aiming to improve tumor control and patient outcome by exploiting novel radiobiological pathways. Improvements in each of these aforementioned areas are needed to make the critical necessary progress and allow for new approaches combining different advanced treatment modalities. This plethora of multiple new treatment options currently under investigation provides hope for a new outlook for patients with glioblastoma in the near future.
Collapse
Affiliation(s)
- Omer Gal
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 1R203, 8900 N Kendall Dr, Miami, FL, 33176, USA
| | - Minesh P Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 1R203, 8900 N Kendall Dr, Miami, FL, 33176, USA
- Herbert Wertheim College of Medicine, Florida International University, 8900 N Kendall Dr, Miami, FL, 33176, USA
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 1R203, 8900 N Kendall Dr, Miami, FL, 33176, USA.
- Herbert Wertheim College of Medicine, Florida International University, 8900 N Kendall Dr, Miami, FL, 33176, USA.
| |
Collapse
|
4
|
Vinogradskiy Y, Bahig H, Bucknell NW, Buchsbaum J, Shu HKG. Conference Report: Review of Clinical Implementation of Advanced Quantitative Imaging Techniques for Personalized Radiotherapy. Tomography 2024; 10:1798-1813. [PMID: 39590941 PMCID: PMC11598114 DOI: 10.3390/tomography10110132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
The topic of quantitative imaging in radiation therapy was presented as a "Masterclass" at the 2023 annual meeting of the American Society of Radiation Oncology (ASTRO). Dual-energy computed tomography (CT) and single-positron computed tomography were reviewed in detail as the first portion of the meeting session, with data showing utility in many aspects of radiation oncology including treatment planning and dose response. Positron emission tomography/CT scans evaluating the functional volume of lung tissue so as to provide optimal avoidance of healthy lungs were presented second. Advanced brain imaging was then discussed in the context of different forms of magnetic resonance scanning methods as the third area noted with significant discussion of ongoing research programs. Quantitative image analysis was presented to provide clinical utility for the analysis of patients with head and neck cancer. Finally, quality assurance was reviewed for different forms of quantitative imaging given the critical nature of imaging when numerical valuation, not just relative contrast, plays a crucial role in clinical process and decision-making. Conclusions and thoughts are shared in the conclusion, noting strong data supporting the use of quantitative imaging in radiation therapy going forward and that more studies are needed to move the field forward.
Collapse
Affiliation(s)
- Yevgeniy Vinogradskiy
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Houda Bahig
- Department of Radiology, Radiation Oncology and Nuclear Medicine, Centre Hospitalier de l’Universite de Montreal (CHUM), Montreal, QC H2X 3E4, Canada
| | | | | | - Hui-Kuo George Shu
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 19104, USA
| |
Collapse
|
5
|
Valerius AR, Webb LM, Thomsen A, Lehrer EJ, Breen WG, Campian JL, Riviere-Cazaux C, Burns TC, Sener U. Review of Novel Surgical, Radiation, and Systemic Therapies and Clinical Trials in Glioblastoma. Int J Mol Sci 2024; 25:10570. [PMID: 39408897 PMCID: PMC11477105 DOI: 10.3390/ijms251910570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Glioblastoma (GBM) is the most common malignant primary brain tumor in adults. Despite an established standard of care including surgical resection, radiation therapy, and chemotherapy, GBM unfortunately is associated with a dismal prognosis. Therefore, researchers are extensively evaluating avenues to expand GBM therapy and improve outcomes in patients with GBM. In this review, we provide a broad overview of novel GBM therapies that have recently completed or are actively undergoing study in clinical trials. These therapies expand across medical, surgical, and radiation clinical trials. We additionally review methods for improving clinical trial design in GBM.
Collapse
Affiliation(s)
| | - Lauren M. Webb
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA (U.S.)
| | - Anna Thomsen
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA (U.S.)
| | - Eric J. Lehrer
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - William G. Breen
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jian L. Campian
- Department of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Terry C. Burns
- Department of Neurosurgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Ugur Sener
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA (U.S.)
- Department of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
6
|
Zhu Z, Gong G, Wang L, Su Y, Lu J, Dong G, Yin Y. Dose-Painting Proton Radiotherapy Guided by Functional MRI in Non-enhancing High-Grade Gliomas. Clin Oncol (R Coll Radiol) 2024; 36:552-561. [PMID: 38876805 DOI: 10.1016/j.clon.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/16/2024]
Abstract
AIMS This study aimed to demonstrate the feasibility and evaluate the dosimetric effect and clinical impact of dose-painting proton radiotherapy (PRT) guided by functional MRI in non-enhancing high-grade gliomas (NE-HGGs). MATERIALS AND METHODS The 3D-ASL and T2 FLAIR MR images of ten patients with NE-HGGs before radiotherapy were studied retrospectively. The hyperintensity on T2 FLAIR was used to generate the planning target volume (PTV), and the high-perfusion volume on 3D-ASL (PTV-ASL) was used to generate the simultaneous integrated boost (SIB) volume. Each patient received pencil beam scanning PRT and photon intensity-modulated radiotherapy (IMRT). There were five plans in each modality: (1) Uniform plans (IMRT60 vs. PRT60): 60Gy in 30 fractions to the PTV. (2)-(5) SIB plans (IMRT72, 84, 96, 108 vs. PRT72, 84, 96, 108): Uniform plan plus additional dose boost to PTV-ASL in 30 fractions to 72, 84, 96, 108 Gy. The dosimetric differences between various plans were compared. The clinical effects of target volume and organs at risk (OARs) were assessed using biological models for both tumor control probability (TCP) and normal tissue complication probability (NTCP). RESULTS Compared with the IMRT plan, the D2 and D50 of the PRT plans with the same prescription dose increased by 1.27-4.12% and 0.64-2.01%, respectively; the R30 decreased by > 32%; the dose of brainstem and chiasma decreased by > 27% and >32%; and the dose of normal brain tissue (Br-PTV), optic nerves, eyeballs, lens, cochlea, spinal cord, and hippocampus decreased by > 50% (P < 0.05). The maximum necessary dose was 96GyE to achieve >98% TCP for PRT, and it was 84Gy to achieve >91% TCP for IMRT. The average NTCP of Br-PTV was 1.30% and 1.90% for PRT and IMRT at the maximum dose escalation, respectively. The NTCP values of the remaining OARs approached zero in all PRT plans. CONCLUSION The functional MRI-guided dose escalation using PRT is feasible while sparing the OARs constraints and demonstrates a potential clinical benefit by improving TCP with no or minimal increase in NCTP for tissues outside the PTV. This retrospective study suggested that the use of PRT-based SIB guided by functional MRI may represent a strategy to provide benefits for patients with NE-HGGs.
Collapse
Affiliation(s)
- Z Zhu
- Harbin Medical University, No.157, Baojian Road, Nangang District, Harbin City, 150081, Heilongjiang Province, China; Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No.440 Jiyan Road, Huaiyin District, Jinan City, 250117, Shandong Province, China
| | - G Gong
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No.440 Jiyan Road, Huaiyin District, Jinan City, 250117, Shandong Province, China
| | - L Wang
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No.440 Jiyan Road, Huaiyin District, Jinan City, 250117, Shandong Province, China
| | - Y Su
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No.440 Jiyan Road, Huaiyin District, Jinan City, 250117, Shandong Province, China
| | - J Lu
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No.440 Jiyan Road, Huaiyin District, Jinan City, 250117, Shandong Province, China
| | - G Dong
- Harbin Medical University, No.157, Baojian Road, Nangang District, Harbin City, 150081, Heilongjiang Province, China.
| | - Y Yin
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No.440 Jiyan Road, Huaiyin District, Jinan City, 250117, Shandong Province, China.
| |
Collapse
|
7
|
Pandey S, Kutuk T, Abdalah MA, Stringfield O, Ravi H, Mills MN, Graham JA, Latifi K, Moreno WA, Ahmed KA, Raghunand N. Prediction of radiologic outcome-optimized dose plans and post-treatment magnetic resonance images: A proof-of-concept study in breast cancer brain metastases treated with stereotactic radiosurgery. Phys Imaging Radiat Oncol 2024; 31:100602. [PMID: 39040435 PMCID: PMC11261135 DOI: 10.1016/j.phro.2024.100602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/24/2024] Open
Abstract
Background and purpose Information in multiparametric Magnetic Resonance (mpMR) images is relatable to voxel-level tumor response to Radiation Treatment (RT). We have investigated a deep learning framework to predict (i) post-treatment mpMR images from pre-treatment mpMR images and the dose map ("forward models"), and, (ii) the RT dose map that will produce prescribed changes within the Gross Tumor Volume (GTV) on post-treatment mpMR images ("inverse model"), in Breast Cancer Metastases to the Brain (BCMB) treated with Stereotactic Radiosurgery (SRS). Materials and methods Local outcomes, planning computed tomography (CT) images, dose maps, and pre-treatment and post-treatment Apparent Diffusion Coefficient of water (ADC) maps, T1-weighted unenhanced (T1w) and contrast-enhanced (T1wCE), T2-weighted (T2w) and Fluid-Attenuated Inversion Recovery (FLAIR) mpMR images were curated from 39 BCMB patients. mpMR images were co-registered to the planning CT and intensity-calibrated. A 2D pix2pix architecture was used to train 5 forward models (ADC, T2w, FLAIR, T1w, T1wCE) and 1 inverse model on 1940 slices from 18 BCMB patients, and tested on 437 slices from another 9 BCMB patients. Results Root Mean Square Percent Error (RMSPE) within the GTV between predicted and ground-truth post-RT images for the 5 forward models, in 136 test slices containing GTV, were (mean ± SD) 0.12 ± 0.044 (ADC), 0.14 ± 0.066 (T2w), 0.08 ± 0.038 (T1w), 0.13 ± 0.058 (T1wCE), and 0.09 ± 0.056 (FLAIR). RMSPE within the GTV on the same 136 test slices, between the predicted and ground-truth dose maps, was 0.37 ± 0.20 for the inverse model. Conclusions A deep learning-based approach for radiologic outcome-optimized dose planning in SRS of BCMB has been demonstrated.
Collapse
Affiliation(s)
- Shraddha Pandey
- Department of Cancer Physiology, Moffitt Cancer Center, Tampa, FL 33612, USA
- Department of Electrical Engineering, University of South Florida, Tampa, FL 33612, USA
| | - Tugce Kutuk
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Mahmoud A. Abdalah
- Quantitative Imaging Shared Service, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Olya Stringfield
- Quantitative Imaging Shared Service, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Harshan Ravi
- Department of Cancer Physiology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Matthew N. Mills
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Jasmine A. Graham
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Department of Oncologic Sciences, University of South Florida, Tampa, FL 33612, USA
| | - Kujtim Latifi
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Department of Oncologic Sciences, University of South Florida, Tampa, FL 33612, USA
| | - Wilfrido A. Moreno
- Department of Electrical Engineering, University of South Florida, Tampa, FL 33612, USA
| | - Kamran A. Ahmed
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Department of Oncologic Sciences, University of South Florida, Tampa, FL 33612, USA
| | - Natarajan Raghunand
- Department of Cancer Physiology, Moffitt Cancer Center, Tampa, FL 33612, USA
- Department of Oncologic Sciences, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
8
|
Tseng CL, Zeng KL, Mellon EA, Soltys SG, Ruschin M, Lau AZ, Lutsik NS, Chan RW, Detsky J, Stewart J, Maralani PJ, Sahgal A. Evolving concepts in margin strategies and adaptive radiotherapy for glioblastoma: A new future is on the horizon. Neuro Oncol 2024; 26:S3-S16. [PMID: 38437669 PMCID: PMC10911794 DOI: 10.1093/neuonc/noad258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
Chemoradiotherapy is the standard treatment after maximal safe resection for glioblastoma (GBM). Despite advances in molecular profiling, surgical techniques, and neuro-imaging, there have been no major breakthroughs in radiotherapy (RT) volumes in decades. Although the majority of recurrences occur within the original gross tumor volume (GTV), treatment of a clinical target volume (CTV) ranging from 1.5 to 3.0 cm beyond the GTV remains the standard of care. Over the past 15 years, the incorporation of standard and functional MRI sequences into the treatment workflow has become a routine practice with increasing adoption of MR simulators, and new integrated MR-Linac technologies allowing for daily pre-, intra- and post-treatment MR imaging. There is now unprecedented ability to understand the tumor dynamics and biology of GBM during RT, and safe CTV margin reduction is being investigated with the goal of improving the therapeutic ratio. The purpose of this review is to discuss margin strategies and the potential for adaptive RT for GBM, with a focus on the challenges and opportunities associated with both online and offline adaptive workflows. Lastly, opportunities to biologically guide adaptive RT using non-invasive imaging biomarkers and the potential to define appropriate volumes for dose modification will be discussed.
Collapse
Affiliation(s)
- Chia-Lin Tseng
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - K Liang Zeng
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Radiation Oncology, Simcoe Muskoka Regional Cancer Program, Royal Victoria Regional Health Centre, University of Toronto, Toronto, Ontario, Canada
| | - Eric A Mellon
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Scott G Soltys
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Mark Ruschin
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Angus Z Lau
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Natalia S Lutsik
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Rachel W Chan
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Jay Detsky
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - James Stewart
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Pejman J Maralani
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Breen WG, Aryal MP, Cao Y, Kim MM. Integrating multi-modal imaging in radiation treatments for glioblastoma. Neuro Oncol 2024; 26:S17-S25. [PMID: 38437666 PMCID: PMC10911793 DOI: 10.1093/neuonc/noad187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
Advances in diagnostic and treatment technology along with rapid developments in translational research may now allow the realization of precision radiotherapy. Integration of biologically informed multimodality imaging to address the spatial and temporal heterogeneity underlying treatment resistance in glioblastoma is now possible for patient care, with evidence of safety and potential benefit. Beyond their diagnostic utility, several candidate imaging biomarkers have emerged in recent early-phase clinical trials of biologically based radiotherapy, and their definitive assessment in multicenter prospective trials is already in development. In this review, the rationale for clinical implementation of candidate advanced magnetic resonance imaging and positron emission tomography imaging biomarkers to guide personalized radiotherapy, the current landscape, and future directions for integrating imaging biomarkers into radiotherapy for glioblastoma are summarized. Moving forward, response-adaptive radiotherapy using biologically informed imaging biomarkers to address emerging treatment resistance in rational combination with novel systemic therapies may ultimately permit improvements in glioblastoma outcomes and true individualization of patient care.
Collapse
Affiliation(s)
- William G Breen
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Madhava P Aryal
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - Yue Cao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - Michelle M Kim
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
10
|
Bodensohn R, Fleischmann DF, Maier SH, Anagnostatou V, Garny S, Nitschmann A, Büttner M, Mücke J, Schönecker S, Unger K, Hoffmann E, Paulsen F, Thorwarth D, Holzgreve A, Albert NL, Corradini S, Tabatabai G, Belka C, Niyazi M. Dosimetric feasibility analysis and presentation of an isotoxic dose-escalated radiation therapy concept for glioblastoma used in the PRIDE trial (NOA-28; ARO-2022-12). Clin Transl Radiat Oncol 2024; 45:100706. [PMID: 38116137 PMCID: PMC10726217 DOI: 10.1016/j.ctro.2023.100706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023] Open
Abstract
Background and purpose The PRIDE trial (NOA-28; ARO-2022-12; NCT05871021) is scheduled to start recruitment in October 2023. Its primary objective is to enhance median overall survival (OS), compared to historical median OS rates, in patients with methylguanine methlyltransferase (MGMT) promotor unmethylated glioblastoma by incorporating isotoxic dose escalation to 75 Gy in 30 fractions. To achieve isotoxicity and counteract the elevated risk of radiation necrosis (RN) associated with dose-escalated regimens, the addition of protective concurrent bevacizumab (BEV) serves as an innovative approach. The current study aims to assess the dosimetric feasibility of the proposed concept. Materials and methods A total of ten patients diagnosed with glioblastoma were included in this dosimetric analysis. Delineation of target volumes for the reference plans adhered to the ESTRO-EANO 2023 guideline. The experimental plans included an additional volume for the integrated boost. Additionally, the 60 Gy-volume was reduced by using a margin of 1.0 cm instead of 1.5 cm. To assess the risk of symptomatic RN, the Normal Tissue Complication Probability (NTCP) was calculated and compared between the reference and experimental plans. Results Median NTCP of the reference plan (NTCPref) and of the experimental plan (NTCPex) were 0.24 (range 0.11-0.29) and 0.42 (range 0.18-0.54), respectively. NTCPex was a median of 1.77 (range 1.60-1.99) times as high as the NTXPref. In a logarithmic comparison, the risk of RN is enhanced by a factor of median 2.00 (range 1.66-2.35). The defined constraints for the organs at risk were feasible. Conclusion When considering the potential protective effect of BEV, which we hypothesized might reduce the risk of RN by approximately two-fold, achieving isotoxicity with the proposed dose-escalated experimental plan for the PRIDE trial seems feasible.
Collapse
Affiliation(s)
- Raphael Bodensohn
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Daniel F. Fleischmann
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, a partnership between DKFZ and LMU University Hospital, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian H. Maier
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Vasiliki Anagnostatou
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sylvia Garny
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Alexander Nitschmann
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Marcel Büttner
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Johannes Mücke
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Stephan Schönecker
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Kristian Unger
- Helmholtz Zentrum Munich, Neuherberg, Germany
- Faculty of Medicine, LMU Munich, Munich Germany
| | - Elgin Hoffmann
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
| | - Frank Paulsen
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
| | - Daniela Thorwarth
- Section for Biomedical Physics, Department of Radiation Oncology, University Hospital Tübingen, Germany
- German Cancer Consortium (DKTK), partner site Tübingen, a partnership between DKFZ and University Hospital, Tübingen, Germany
| | - Adrien Holzgreve
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Nathalie L. Albert
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Ghazaleh Tabatabai
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
- Department of Neurology and Interdisciplinary Neuro-Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Tübingen, Germany
- German Cancer Consortium (DKTK), partner site Tübingen, a partnership between DKFZ and University Hospital, Tübingen, Germany
| | - Claus Belka
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Tübingen, a partnership between DKFZ and University Hospital, Tübingen, Germany
| |
Collapse
|
11
|
Laprie A, Noel G, Chaltiel L, Truc G, Sunyach MP, Charissoux M, Magne N, Auberdiac P, Biau J, Ken S, Tensaouti F, Khalifa J, Sidibe I, Roux FE, Vieillevigne L, Catalaa I, Boetto S, Uro-Coste E, Supiot S, Bernier V, Filleron T, Mounier M, Poublanc M, Olivier P, Delord JP, Cohen-Jonathan-Moyal E. Randomized phase III trial of metabolic imaging-guided dose escalation of radio-chemotherapy in patients with newly diagnosed glioblastoma (SPECTRO GLIO trial). Neuro Oncol 2024; 26:153-163. [PMID: 37417948 PMCID: PMC10768994 DOI: 10.1093/neuonc/noad119] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) systematically recurs after a standard 60 Gy radio-chemotherapy regimen. Since magnetic resonance spectroscopic imaging (MRSI) has been shown to predict the site of relapse, we analyzed the effect of MRSI-guided dose escalation on overall survival (OS) of patients with newly diagnosed GBM. METHODS In this multicentric prospective phase III trial, patients who had undergone biopsy or surgery for a GBM were randomly assigned to a standard dose (SD) of 60 Gy or a high dose (HD) of 60 Gy with an additional simultaneous integrated boost totaling 72 Gy to MRSI metabolic abnormalities, the tumor bed and residual contrast enhancements. Temozolomide was administered concomitantly and maintained for 6 months thereafter. RESULTS One hundred and eighty patients were included in the study between March 2011 and March 2018. After a median follow-up of 43.9 months (95% CI [42.5; 45.5]), median OS was 22.6 months (95% CI [18.9; 25.4]) versus 22.2 months (95% CI [18.3; 27.8]) for HD, and median progression-free survival was 8.6 (95% CI [6.8; 10.8]) versus 7.8 months (95% CI [6.3; 8.6]), in SD versus HD, respectively. No increase in toxicity rate was observed in the study arm. The pseudoprogression rate was similar across the SD (14.4%) and HD (16.7%) groups. For O(6)-methylguanine-DNA methyltransferase (MGMT) methylated patients, the median OS was 38 months (95% CI [23.2; NR]) for HD patients versus 28.5 months (95% CI [21.1; 35.7]) for SD patients. CONCLUSION The additional MRSI-guided irradiation dose totaling 72 Gy was well tolerated but did not improve OS in newly diagnosed GBM. TRIAL REGISTRATION NCT01507506; registration date: December 20, 2011. https://clinicaltrials.gov/ct2/show/NCT01507506?cond=NCT01507506&rank=1.
Collapse
Affiliation(s)
- Anne Laprie
- Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | | | - Leonor Chaltiel
- Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Gilles Truc
- Centre Georges-François Leclerc, Dijon, France
| | | | | | - Nicolas Magne
- Institut de Cancérologie de la Loire, Saint-Priest en Jarez, France
| | | | - Julian Biau
- Centre Jean-Perrin, Clermont-Ferrand, France
| | - Soléakhéna Ken
- Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse-Oncopole, RadOpt-CRCT-INSERM, Toulouse, France
| | - Fatima Tensaouti
- Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse-Oncopole & ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Jonathan Khalifa
- Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | | | - Franck-Emmanuel Roux
- Centre Hospitalier Universitaire de Toulouse, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Laure Vieillevigne
- Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | | | - Sergio Boetto
- Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Emmanuelle Uro-Coste
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse-Oncopole, RadOpt-CRCT-INSERM, Toulouse, France
| | - Stéphane Supiot
- Institut de Cancerologie de l’Ouest, Nantes st Herblain, France
| | - Valérie Bernier
- Institut de Cancérologie de Lorraine Centre Alexis Vautrin, Nancy, France
| | - Thomas Filleron
- Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Muriel Mounier
- Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Muriel Poublanc
- Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Pascale Olivier
- Service de Pharmacologie Médicale et Clinique, Centre Régional de Pharmacovigilance, de Pharmacoépidémiologie et d’Information sur le Médicament CHU de Toulouse, Toulouse, France
| | - Jean-Pierre Delord
- Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | | |
Collapse
|
12
|
Shu HKG, Shim H. SPECTRO GLIO trial aftermath: Where do we go from here? Neuro Oncol 2024; 26:164-165. [PMID: 37675932 PMCID: PMC10768972 DOI: 10.1093/neuonc/noad166] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Indexed: 09/08/2023] Open
Affiliation(s)
- Hui-Kuo G Shu
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Hyunsuk Shim
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Biomedical Engineering, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
13
|
Karschnia P, Smits M, Reifenberger G, Le Rhun E, Ellingson BM, Galldiks N, Kim MM, Huse JT, Schnell O, Harter PN, Mohme M, von Baumgarten L, Albert NL, Huang RY, Mehta MP, van den Bent M, Weller M, Vogelbaum MA, Chang SM, Berger MS, Tonn JC. A framework for standardised tissue sampling and processing during resection of diffuse intracranial glioma: joint recommendations from four RANO groups. Lancet Oncol 2023; 24:e438-e450. [PMID: 37922934 PMCID: PMC10849105 DOI: 10.1016/s1470-2045(23)00453-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/23/2023] [Accepted: 09/07/2023] [Indexed: 11/07/2023]
Abstract
Surgical resection represents the standard of care for people with newly diagnosed diffuse gliomas, and the neuropathological and molecular profile of the resected tissue guides clinical management and forms the basis for research. The Response Assessment in Neuro-Oncology (RANO) consortium is an international, multidisciplinary effort that aims to standardise research practice in neuro-oncology. These recommendations represent a multidisciplinary consensus from the four RANO groups: RANO resect, RANO recurrent glioblastoma, RANO radiotherapy, and RANO/PET for a standardised workflow to achieve a representative tumour evaluation in a disease characterised by intratumoural heterogeneity, including recommendations on which tumour regions should be surgically sampled, how to define those regions on the basis of preoperative imaging, and the optimal sample volume. Practical recommendations for tissue sampling are given for people with low-grade and high-grade gliomas, as well as for people with newly diagnosed and recurrent disease. Sampling of liquid biopsies is also addressed. A standardised workflow for subsequent handling of the resected tissue is proposed to avoid information loss due to decreasing tissue quality or insufficient clinical information. The recommendations offer a framework for prospective biobanking studies.
Collapse
Affiliation(s)
- Philipp Karschnia
- Department of Neurosurgery, Ludwig-Maximilians-University of Munich, Munich, Germany; German Cancer Consortium, Partner Site Munich, Munich, Germany
| | - Marion Smits
- Department of Neuroradiology and Nuclear Medicine, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Guido Reifenberger
- Institute of Neuropathology, Heinrich Heine University Medical Faculty and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Emilie Le Rhun
- Department of Neurosurgery, University Hospital of Zurich and University of Zurich, Zurich, Switzerland; Department of Neurology, University Hospital of Zurich and University of Zurich, Zurich, Switzerland
| | - Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory, Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Norbert Galldiks
- Department of Neurology, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany; Research Center Juelich, Institute of Neuroscience and Medicine, Juelich, Germany
| | - Michelle M Kim
- Department of Radiation Oncology, University of Michigan Hospital, Ann Arbor, MI, USA
| | - Jason T Huse
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Oliver Schnell
- Department of Neurosurgery, University of Freiburg, Freiburg, Germany
| | - Patrick N Harter
- German Cancer Consortium, Partner Site Munich, Munich, Germany; Center for Neuropathology and Prion Research, Faculty of Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Malte Mohme
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Louisa von Baumgarten
- Department of Neurosurgery, Ludwig-Maximilians-University of Munich, Munich, Germany; German Cancer Consortium, Partner Site Munich, Munich, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Raymond Y Huang
- Division of Neuroradiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Minesh P Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| | - Martin van den Bent
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Michael Weller
- Department of Neurology, University Hospital of Zurich and University of Zurich, Zurich, Switzerland
| | | | - Susan M Chang
- Department of Neurosurgery and Division of Neuro-Oncology, University of California, San Francisco, CA, USA
| | - Mitchel S Berger
- Department of Neurosurgery and Division of Neuro-Oncology, University of California, San Francisco, CA, USA
| | - Joerg-Christian Tonn
- Department of Neurosurgery, Ludwig-Maximilians-University of Munich, Munich, Germany; German Cancer Consortium, Partner Site Munich, Munich, Germany.
| |
Collapse
|
14
|
Trifiletti DM, Milano MT, Redmond KJ, Pollom EL, Hattangadi-Gluth JA, Kim MM. Treatment Planning Expansions in Glioblastoma: How Less Can Be More. Int J Radiat Oncol Biol Phys 2023; 117:293-296. [PMID: 37652602 DOI: 10.1016/j.ijrobp.2023.03.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 09/02/2023]
Affiliation(s)
| | - Michael T Milano
- Department of Radiation Oncology, University of Rochester, Rochester, New York
| | - Kristin J Redmond
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Erqi L Pollom
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Jona A Hattangadi-Gluth
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California
| | - Michelle M Kim
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
15
|
Jabehdar Maralani P, Stewart J, Hiremath S, Lawrence L, Chan R, Lau A, Chen H, Chan A, Zeng LK, Tseng CL, Myrehaug S, Soliman H, Detsky J, Heyn C, Lim Fat M, Lipsman N, Sahgal A. Relationship between apparent diffusion coefficient and survival as a function of distance from gross tumor volume on radiation planning MRI in newly diagnosed glioblastoma. J Neurooncol 2023; 164:597-605. [PMID: 37707752 DOI: 10.1007/s11060-023-04440-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/26/2023] [Indexed: 09/15/2023]
Abstract
PURPOSE To investigate the changes in apparent diffusion coefficient (ADC) within incrementally-increased margins beyond the gross tumor volume (GTV) on post-operative radiation planning MRI and their prognostic utility in glioblastoma. METHODS Radiation planning MRIs of adult patients with newly diagnosed glioblastoma from 2017 to 2020 were assessed. The ADC values were normalized to contralateral normal white matter (nADC). Using 1 mm isotropic incremental margin increases from the GTV, the nADC values were calculated at each increment. Age, ECOG performance status, extent of resection and MGMT promoter methylation status were obtained from medical records. Using univariate and multivariable Cox regression analysis, association of nADC to progression-free and overall survival (PFS, OS) was assessed at each increment. RESULTS Seventy consecutive patients with mean age of 53.6 ± 10.3 years, were evaluated. The MGMT promoter was methylated in 31 (44.3%), unmethylated in 36 (51.6%) and unknown in 3 (4.3%) patients. 11 (16%) underwent biopsy, 41 (44%) subtotal resection and 18 (26%) gross total resection. For each 1 mm increase in distance from GTV, the nADC decreased by 0.16% (p < 0.0001). At 1-5 mm increment, the nADC was associated with OS (p < 0.01). From 6 to 11 mm increment the nADC was associated with OS with the p-value gradually increasing from 0.018 to 0.046. nADC was not associated with PFS. CONCLUSION The nADC values at 1-11 mm increments from the GTV margin were associated with OS. Future prospective multicenter studies are needed to validate the findings and to pave the way for the utilization of ADC for margin reduction in radiation planning.
Collapse
Affiliation(s)
- Pejman Jabehdar Maralani
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada.
| | - James Stewart
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, Canada
| | - Shivaprakash Hiremath
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Liam Lawrence
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, Canada
| | - Rachel Chan
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, Canada
| | - Angus Lau
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, Canada
| | - Hanbo Chen
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, Canada
| | - Aimee Chan
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, Canada
| | - Liang K Zeng
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, Canada
| | - Chia-Lin Tseng
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, Canada
| | - Sten Myrehaug
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, Canada
| | - Hany Soliman
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, Canada
| | - Jay Detsky
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, Canada
| | - Chinthaka Heyn
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - MaryJane Lim Fat
- Division of Neurology, Department of Medicine, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, Canada
| | - Nir Lipsman
- Division of Neurosurgery, Department of Surgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, Canada
| |
Collapse
|
16
|
Aldawsari AM, Al-Qaisieh B, Broadbent DA, Bird D, Murray L, Speight R. The role and potential of using quantitative MRI biomarkers for imaging guidance in brain cancer radiotherapy treatment planning: A systematic review. Phys Imaging Radiat Oncol 2023; 27:100476. [PMID: 37565088 PMCID: PMC10410581 DOI: 10.1016/j.phro.2023.100476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 08/12/2023] Open
Abstract
Background and purpose Improving the accuracy of brain tumour radiotherapy (RT) treatment planning is important to optimise patient outcomes. This systematic review investigates primary studies providing clinical evidence for the integration of quantitative magnetic resonance imaging (qMRI) biomarkers and MRI radiomics to optimise brain tumour RT planning. Materials and methods PubMed, Scopus, Embase and Web of Science databases were searched for all years until June 21, 2022. The search identified original articles demonstrating clinical evidence for the use of qMRI biomarkers and MRI radiomics for the optimization of brain cancer RT planning. Relevant information was extracted and tabulated, including qMRI metrics and techniques, impact on RT plan optimization and changes in target and normal tissue contouring and dose distribution. Results Nineteen articles met the inclusion criteria. Studies were grouped according to the qMRI biomarkers into: 1) diffusion-weighted imaging (DWI) and perfusion-weighted imaging (PWI; five studies); 2) diffusion tensor imaging (DTI; seven studies); and 3) MR spectroscopic imaging (MRSI; seven studies). No relevant MRI-based radiomics studies were identified. Integration of DTI maps offers the potential for improved organs at risk (OAR) sparing. MRSI metabolic maps are a promising technique for improving delineation accuracy in terms of heterogeneity and infiltration, with OAR sparing. No firm conclusions could be drawn regarding the integration of DWI metrics and PWI maps. Conclusions Integration of qMRI metrics into RT planning offers the potential to improve delineation and OAR sparing. Clinical trials and consensus guidelines are required to demonstrate the clinical benefits of such approaches.
Collapse
Affiliation(s)
- Abeer M. Aldawsari
- Leeds Institute of Cardiovascular & Metabolic Medicine (LICAMM), University of Leeds, Woodhouse, Leeds LS2 9JT, United Kingdom
- Radiological Sciences Department, College of Applied Medical Sciences, King Saud University, Riyadh 12371, Saudi Arabia
| | - Bashar Al-Qaisieh
- Department of Medical Physics and Engineering, Leeds Teaching Hospitals NHS Trust, Leeds LS9 7TF, United Kingdom
| | - David A. Broadbent
- Leeds Institute of Cardiovascular & Metabolic Medicine (LICAMM), University of Leeds, Woodhouse, Leeds LS2 9JT, United Kingdom
- Department of Medical Physics and Engineering, Leeds Teaching Hospitals NHS Trust, Leeds LS9 7TF, United Kingdom
| | - David Bird
- Department of Medical Physics and Engineering, Leeds Teaching Hospitals NHS Trust, Leeds LS9 7TF, United Kingdom
| | - Louise Murray
- Department of Clinical Oncology, Leeds Teaching Hospitals NHS Trust, St James’s University Hospital, Leeds LS9 7LP, United Kingdom
- Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Richard Speight
- Department of Medical Physics and Engineering, Leeds Teaching Hospitals NHS Trust, Leeds LS9 7TF, United Kingdom
| |
Collapse
|
17
|
Guberina N, Padeberg F, Pöttgen C, Guberina M, Lazaridis L, Jabbarli R, Deuschl C, Herrmann K, Blau T, Wrede KH, Keyvani K, Scheffler B, Hense J, Layer JP, Glas M, Sure U, Stuschke M. Location of Recurrences after Trimodality Treatment for Glioblastoma with Respect to the Delivered Radiation Dose Distribution and Its Influence on Prognosis. Cancers (Basel) 2023; 15:cancers15112982. [PMID: 37296942 DOI: 10.3390/cancers15112982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND While prognosis of glioblastoma after trimodality treatment is well examined, recurrence pattern with respect to the delivered dose distribution is less well described. Therefore, here we examine the gain of additional margins around the resection cavity and gross-residual-tumor. METHODS All recurrent glioblastomas initially treated with radiochemotherapy after neurosurgery were included. The percentage overlap of the recurrence with the gross tumor volume (GTV) expanded by varying margins (10 mm to 20 mm) and with the 95% and 90% isodose was measured. Competing-risks analysis was performed in dependence on recurrence pattern. RESULTS Expanding the margins from 10 mm to 15 mm, to 20 mm, to the 95%- and 90% isodose of the delivered dose distribution with a median margin of 27 mm did moderately increase the proportion of relative in-field recurrence volume from 64% to 68%, 70%, 88% and 88% (p < 0.0001). Overall survival of patients with in-and out-field recurrence was similar (p = 0.7053). The only prognostic factor significantly associated with out-field recurrence was multifocality of recurrence (p = 0.0037). Cumulative incidences of in-field recurrences at 24 months were 60%, 22% and 11% for recurrences located within a 10 mm margin, outside a 10 mm margin but within the 95% isodose, or outside the 95% isodose (p < 0.0001). Survival from recurrence was improved after complete resection (p = 0.0069). Integrating these data into a concurrent-risk model shows that extending margins beyond 10 mm has only small effects on survival hardly detectable by clinical trials. CONCLUSIONS Two-thirds of recurrences were observed within a 10 mm margin around the GTV. Smaller margins reduce normal brain radiation exposure allowing for more extensive salvage radiation therapy options in case of recurrence. Prospective trials using margins smaller than 20 mm around the GTV are warranted.
Collapse
Affiliation(s)
- Nika Guberina
- Department of Radiation Therapy, West German Cancer Center, University of Duisburg-Essen, University Hospital Essen, 45147 Essen, Germany
| | - Florian Padeberg
- Department of Radiation Therapy, West German Cancer Center, University of Duisburg-Essen, University Hospital Essen, 45147 Essen, Germany
| | - Christoph Pöttgen
- Department of Radiation Therapy, West German Cancer Center, University of Duisburg-Essen, University Hospital Essen, 45147 Essen, Germany
| | - Maja Guberina
- Department of Radiation Therapy, West German Cancer Center, University of Duisburg-Essen, University Hospital Essen, 45147 Essen, Germany
| | - Lazaros Lazaridis
- Department of Neurology, University of Duisburg-Essen, University Hospital Essen, 45147 Essen, Germany
| | - Ramazan Jabbarli
- Department of Neurosurgery and Spine Surgery, West German Cancer Center, University of Duisburg-Essen, University Hospital Essen, 45147 Essen, Germany
| | - Cornelius Deuschl
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University of Duisburg-Essen, University Hospital Essen, 45147 Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Duisburg-Essen, University Hospital Essen, 45147 Essen, Germany
| | - Tobias Blau
- Institute of Neuropathology, University of Duisburg-Essen, University Hospital Essen, 45147 Essen, Germany
| | - Karsten H Wrede
- Department of Neurosurgery and Spine Surgery, West German Cancer Center, University of Duisburg-Essen, University Hospital Essen, 45147 Essen, Germany
| | - Kathy Keyvani
- Institute of Neuropathology, University of Duisburg-Essen, University Hospital Essen, 45147 Essen, Germany
| | - Björn Scheffler
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany
- DKFZ-Division Translational Neurooncology at the West German Cancer Center (WTZ), DKTK Partner Site, University Duisburg-Essen, University Hospital Essen, 45147 Essen, Germany
| | - Jörg Hense
- Department of Medical Oncology, West German Cancer Center, University of Duisburg-Essen, University Hospital Essen, 45147 Essen, Germany
| | - Julian P Layer
- Department of Radiation Oncology, University of Bonn, University Hospital Bonn, 53127 Bonn, Germany
- Institute of Experimental Oncology, University of Bonn, University Hospital Bonn, 53127 Bonn, Germany
| | - Martin Glas
- Department of Neurology, University of Duisburg-Essen, University Hospital Essen, 45147 Essen, Germany
| | - Ulrich Sure
- Department of Neurosurgery and Spine Surgery, West German Cancer Center, University of Duisburg-Essen, University Hospital Essen, 45147 Essen, Germany
| | - Martin Stuschke
- Department of Radiation Therapy, West German Cancer Center, University of Duisburg-Essen, University Hospital Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany
| |
Collapse
|
18
|
Kotecha R, Mehta M. Rethinking classification and categorization of resection extent and its impact on patient survival in glioblastoma: Was Walter Dandy ahead of his time? Neuro Oncol 2023; 25:955-957. [PMID: 36645373 PMCID: PMC10158154 DOI: 10.1093/neuonc/noad013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Indexed: 01/17/2023] Open
Affiliation(s)
- Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida 33176, USA
- Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, USA
| | - Minesh P Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida 33176, USA
- Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, USA
| |
Collapse
|
19
|
Liu L, Choi J, Musoro JZ, Sauerbrei W, Amdal CD, Alanya A, Barbachano Y, Cappelleri JC, Falk RS, Fiero MH, Regnault A, Reijneveld JC, Sandin R, Thomassen D, Roychoudhury S, Goetghebeur E, le Cessie S. Single-arm studies involving patient-reported outcome data in oncology: a literature review on current practice. Lancet Oncol 2023; 24:e197-e206. [PMID: 37142381 DOI: 10.1016/s1470-2045(23)00110-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 05/06/2023]
Abstract
Patient-reported outcomes (PROs) are increasingly used in single-arm cancer studies. We reviewed 60 papers published between 2018 and 2021 of single-arm studies of cancer treatment with PRO data for current practice on design, analysis, reporting, and interpretation. We further examined the studies' handling of potential bias and how they informed decision making. Most studies (58; 97%) analysed PROs without stating a predefined research hypothesis. 13 (22%) of the 60 studies used a PRO as a primary or co-primary endpoint. Definitions of PRO objectives, study population, endpoints, and missing data strategies varied widely. 23 studies (38%) compared the PRO data with external information, most often by using a clinically important difference value; one study used a historical control group. Appropriateness of methods to handle missing data and intercurrent events (including death) were seldom discussed. Most studies (51; 85%) concluded that PRO results supported treatment. Conducting and reporting of PROs in cancer single-arm studies need standards and a critical discussion of statistical methods and possible biases. These findings will guide the Setting International Standards in Analysing Patient-Reported Outcomes and Quality of Life Data in Cancer Clinical Trials-Innovative Medicines Initiative (SISAQOL-IMI) in developing recommendations for the use of PRO-measures in single-arm studies.
Collapse
Affiliation(s)
- Limin Liu
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium.
| | - Jungyeon Choi
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Jammbe Z Musoro
- European Organisation for Research and Treatment of Cancer Headquarters, Brussels, Belgium
| | - Willi Sauerbrei
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Cecilie Delphin Amdal
- Research Support Services, Department of Oncology, Oslo University Hospital, Oslo, Norway; Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Ahu Alanya
- European Organisation for Research and Treatment of Cancer Headquarters, Brussels, Belgium
| | | | | | - Ragnhild Sørum Falk
- Research Support Services, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | | | | | - Jaap C Reijneveld
- Department of Neurology & Brain Tumor Center, VU University Medical Center, Amsterdam, Netherlands
| | | | - Doranne Thomassen
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, Netherlands
| | | | - Els Goetghebeur
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Saskia le Cessie
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium; Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, Netherlands; Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
20
|
Noeuveglise A, Sarafan-Vasseur N, Beaussire L, Marguet F, Modzelewski R, Hanzen C, Alexandru C, Magne N, Langlois O, Di Fiore F, Clatot F, Thureau S, Fontanilles M. Impact of EGFR A289T/V mutation on relapse pattern in glioblastoma. ESMO Open 2023; 8:100740. [PMID: 36566697 PMCID: PMC10024094 DOI: 10.1016/j.esmoop.2022.100740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Molecular factors influence relapse patterns in glioblastoma. The hotspot mutation located at position 289 of the extracellular domain of the epidermal growth factor receptor (EGFRA289mut) is associated with a more infiltrative phenotype. The primary objective of this study was to explore the impact of the EGFRA289 mutation on the pattern of relapse after chemoradiotherapy-based treatment of patients suffering from newly diagnosed glioblastoma. PATIENTS AND METHODS An ancillary study from a prospective cohort of patients suffering from glioblastoma was conducted. All patients received radiotherapy and concomitant temozolomide. The population was divided into two groups according to EGFRA289 status (mutated versus wild-type). The primary endpoint was the overlap score (varying from 0 to 1) between the initial irradiated tumor volume (Vinit) and the relapse volume (Vr). Secondary endpoints explored the impact of EGFRA289mut on survival. RESULTS One hundred twenty-eight patients were included and analyzed: 11% had EGFRA289mut glioblastoma (n = 14/128). EGFRA289mut glioblastomas had a relapse pattern that was more marginal than EGFRA289wt glioblastomas: a median overlap score Vinit/Vr of 0.96 was observed in the EGFRA289mut group versus 1 in the EGFRA289wt group (P = 0.05). Half of the population with EGFRA289mut tumor (n = 7/14) had a marginal relapse (i.e. overlap scoreVr/Vinit ≤ 0.95) compared to 23.7% (n = 27/114) in the EGFRA289wt group, P = 0.035. EGFRA289mut did not influence survival. CONCLUSION We highlighted a link between the EGFRA289 mutation and the relapse pattern in glioblastoma. The independent role of EGFRA289mut and its clinical implication should now be explored in further studies.
Collapse
Affiliation(s)
- A Noeuveglise
- Radiotherapy Department, Henri Becquerel Cancer Center, Rouen
| | - N Sarafan-Vasseur
- Univ Rouen Normandie, Inserm U1245, Cancer And Brain Genomics, Rouen
| | - L Beaussire
- Univ Rouen Normandie, Inserm U1245, Cancer And Brain Genomics, Rouen
| | - F Marguet
- Univ Rouen Normandie, Inserm U1245, Cancer And Brain Genomics, Rouen; Department of Pathology, Rouen University Hospital, Rouen
| | - R Modzelewski
- Nuclear Medicine Department, Henri Becquerel Center, Rouen
| | - C Hanzen
- Radiotherapy Department, Henri Becquerel Cancer Center, Rouen
| | - C Alexandru
- Department of Medical Oncology, Cancer Centre Henri Becquerel, Rue d'Amiens, Rouen
| | - N Magne
- Department of Radiology, Rouen University Hospital, Rouen
| | - O Langlois
- Department of Neurosurgery, Rouen University Hospital, Rouen
| | - F Di Fiore
- Univ Rouen Normandie, Inserm U1245, Cancer And Brain Genomics, Rouen; Department of Gastroenterology, Rouen University Hospital, Rouen
| | - F Clatot
- Univ Rouen Normandie, Inserm U1245, Cancer And Brain Genomics, Rouen; Department of Medical Oncology, Cancer Centre Henri Becquerel, Rue d'Amiens, Rouen
| | - S Thureau
- Radiotherapy Department, Henri Becquerel Cancer Center, Rouen; QuantIF-LITIS EA4108, University of Rouen, Rouen, France
| | - M Fontanilles
- Univ Rouen Normandie, Inserm U1245, Cancer And Brain Genomics, Rouen; Department of Medical Oncology, Cancer Centre Henri Becquerel, Rue d'Amiens, Rouen.
| |
Collapse
|
21
|
Zhu Z, Gong G, Wang L, Su Y, Lu J, Yin Y. Three-dimensional arterial spin labeling-guided dose painting radiotherapy for non-enhancing low-grade gliomas. Jpn J Radiol 2023; 41:335-346. [PMID: 36342645 PMCID: PMC9974719 DOI: 10.1007/s11604-022-01357-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/23/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE To investigate the feasibility and dosimetric characteristics of dose painting for non-enhancing low-grade gliomas (NE-LGGs) guided by three-dimensional arterial spin labeling (3D-ASL). MATERIALS AND METHODS Eighteen patients with NE-LGGs were enrolled. 3D-ASL, T2 fluid-attenuated inversion recovery (T2 Flair) and contrast-enhanced T1-weighted magnetic resonance images were obtained. The gross tumor volume (GTV) was delineated on the T2 Flair. The hyper-perfusion region of the GTV (GTV-ASL) was determined by 3D-ASL, and the GTV-SUB was obtained by subtracting the GTV-ASL from the GTV. The clinical target volume (CTV) was created by iso-tropically expanding the GTV by 1 cm. The planning target volume (PTV), PTV-ASL were obtained by expanding the external margins of the CTV, GTV-ASL, respectively. PTV-SUB was generated by subtracting PTV-ASL from PTV. Three plans were generated for each patient: a conventional plan (plan 1) without dose escalation delivering 95-110% of 45-60 Gy in 1.8-2 Gy fractions to the PTV and two dose-painting plans (plan 2 and plan 3) with dose escalating by 10-20% (range, 50-72 Gy) to the PTV-ASL based on plan 1. The plan 3 was obtained from plan 2 without the maximum dose constraint. The dosimetric differences among the three plans were compared. RESULTS The volume ratio of the PTV-ASL to the PTV was (23.49 ± 11.94)% (Z = - 3.724, P = 0.000). Compared with plan 1, D2%, D98% and Dmean of PTV-ASL increased by 14.67%,16.17% and 14.31% in plan2 and 19.84%,15.52% and 14.27% in plan3, respectively (P < 0.05); the D2% of the PTV and PTV-SUB increased by 11.89% and 8.34% in plan 2, 15.89% and 8.49% in plan 3, respectively (P < 0.05). The PTV coverages were comparable among the three plans (P > 0.05). In plan 2 and plan 3, the conformity indexes decreased by 18.60% and 12.79%; while the homogeneity index increased by 1.43 and 2 times (P < 0.05). Compared with plan 1, the D0.1 cc of brain stem and Dmax of optic chiasma were slightly increased in plan 2 and plan 3, and the absolute doses met the dose constraint. The doses of the other organs at risk (OARs) were similar among the three plans (P > 0.05). CONCLUSION The dose delivered to hyper-perfusion volume derived from 3D-ASL can increased by 10-20% while respecting the constraints to the OARs for NE-LGGs, which provides a basis for future individualized and precise radiotherapy, especially if the contrast agent cannot be injected or when contrast enhancement is uncertain.
Collapse
Affiliation(s)
- Zihong Zhu
- grid.488387.8Department of Oncology, Affiliated Hospital of Southwest Medical University, No.25 Taiping Street, Jiangyang District, Luzhou, 646000 Sichuan China ,grid.440144.10000 0004 1803 8437Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No.440 Jiyan Road, Huaiyin District, Jinan, 250117 Shandong China
| | - Guanzhong Gong
- grid.440144.10000 0004 1803 8437Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No.440 Jiyan Road, Huaiyin District, Jinan, 250117 Shandong China
| | - Lizhen Wang
- grid.440144.10000 0004 1803 8437Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No.440 Jiyan Road, Huaiyin District, Jinan, 250117 Shandong China
| | - Ya Su
- grid.440144.10000 0004 1803 8437Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No.440 Jiyan Road, Huaiyin District, Jinan, 250117 Shandong China
| | - Jie Lu
- grid.440144.10000 0004 1803 8437Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No.440 Jiyan Road, Huaiyin District, Jinan, 250117 Shandong China
| | - Yong Yin
- Department of Oncology, Affiliated Hospital of Southwest Medical University, No.25 Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan, China. .,Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No.440 Jiyan Road, Huaiyin District, Jinan, 250117, Shandong, China.
| |
Collapse
|
22
|
McMahon DJ, Gleeson JP, O'Reilly S, Bambury RM. Management of newly diagnosed glioblastoma multiforme: current state of the art and emerging therapeutic approaches. Med Oncol 2022; 39:129. [PMID: 35716200 DOI: 10.1007/s12032-022-01708-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/14/2022] [Indexed: 12/21/2022]
Abstract
Glioblastoma multiforme represent > 50% of primary gliomas and have five year survival rates of ~ 5%. Maximal safe surgical resection followed by radiotherapy with concurrent and adjuvant temozolomide remains the standard treatment since published by Stupp et al. (in N Engl J Med 352:987-996, 2005), with additional benefit for patients with MGMT-methylated tumors. We review the current treatment landscape and ongoing efforts to improve these outcomes. An extensive literature search of Pubmed and Google Scholar involving the search terms "glioblastoma," "glioblastoma multiforme," or "GBM" for papers published to July 2021 was conducted and papers evaluated for relevance. As well as current data that informs clinical practice, we review ongoing clinical research in both newly diagnosed and recurrent settings that provides hope for a breakthrough. The Stupp protocol remains standard of care in 2021. Addition of tumor treating fields improved mOS modestly, with benefit seen in MGMT-methylated and unmethylated cohorts and also improved time to cognitive decline but has not been widely adopted. The addition of lomustine to temozolomide, in MGMT-methylated patients, also showed a mOS benefit but further investigation is required. Other promising therapeutic strategies including anti-angiogenic therapy, targeted therapy, and immunotherapy have yet to show a survival advantage. Improvements in the multidisciplinary management, surgical techniques and equipment, early palliative care, carrier support, and psychological support may be responsible for improving survival over time. Despite promising preclinical rationale, immunotherapy and targeted therapy are struggling to impact survival. A number of ongoing clinical trials provide hope for a breakthrough.
Collapse
Affiliation(s)
- D J McMahon
- Cork University Hospital, Cork, Ireland, UK.
| | | | - S O'Reilly
- Cork University Hospital, Cork, Ireland, UK
| | | |
Collapse
|
23
|
Initial results of a phase II trial of 18F-DOPA PET-guided re-irradiation for recurrent high-grade glioma. J Neurooncol 2022; 158:323-330. [PMID: 35583721 DOI: 10.1007/s11060-022-04011-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/07/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE In-field high-grade glioma (HGG) recurrence is a common challenge with limited treatment options, including re-irradiation. The radiotracer 3,4-dihydroxy-6-[18F]-fluoro-L-phenylalanine (18F-DOPA) crosses the blood brain barrier and demonstrates high uptake in tumor, but low uptake in normal tissue. This study investigated whether 18F-DOPA positron emission tomography (PET) and MRI guided re-irradiation for recurrent HGG may improve progression free survival (PFS). METHODS Adults with recurrent or progressive HGG previously treated with radiation were eligible. The primary endpoint was a 20% improvement from the historical control PFS at 3 months (PFS3) of 20% with systemic therapy alone. Re-RT dose was 35 Gy in 10 fractions. The target volume was MRI T1 contrast-enhancement defined tumor plus 18F-DOPA PET defined tumor. RESULTS Twenty patients completed treatment per protocol. Diagnosis was most commonly glioblastoma, IDH-wildtype (60%). MRI-defined volumes were expanded by a median 43% (0-436%) by utilizing 18F-DOPA PET. PFS3 was 85% (95% CI 63.2-95.8%), meeting the primary endpoint of PFS3 ≥ 40%. With 9.7 months median follow-up, 17 (85%) had progressed and 15 (75%) had died. Median OS from re-RT was 8.8 months. Failure following re-RT was within both the MRI and PET tumor volumes in 75%, MRI only in 13%, PET only in 0%, and neither in 13%. Four (20%) patients experienced grade 3 toxicity, including CNS necrosis (n = 2, both asymptomatic with bevacizumab initiation for radiographic findings), seizures (n = 1), fatigue (n = 1), and nausea (n = 1). No grade 4-5 toxicities were observed. CONCLUSION 18F-DOPA PET-guided re-irradiation for progressive high-grade glioma appears safe and promising for further investigation.
Collapse
|
24
|
Tang PLY, Méndez Romero A, Jaspers JPM, Warnert EAH. The potential of advanced MR techniques for precision radiotherapy of glioblastoma. MAGMA (NEW YORK, N.Y.) 2022; 35:127-143. [PMID: 35129718 PMCID: PMC8901515 DOI: 10.1007/s10334-021-00997-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
As microscopic tumour infiltration of glioblastomas is not visible on conventional magnetic resonance (MR) imaging, an isotropic expansion of 1-2 cm around the visible tumour is applied to define the clinical target volume for radiotherapy. An opportunity to visualize microscopic infiltration arises with advanced MR imaging. In this review, various advanced MR biomarkers are explored that could improve target volume delineation for radiotherapy of glioblastomas. Various physiological processes in glioblastomas can be visualized with different advanced MR techniques. Combining maps of oxygen metabolism (CMRO2), relative cerebral blood volume (rCBV), vessel size imaging (VSI), and apparent diffusion coefficient (ADC) or amide proton transfer (APT) can provide early information on tumour infiltration and high-risk regions of future recurrence. Oxygen consumption is increased 6 months prior to tumour progression being visible on conventional MR imaging. However, presence of the Warburg effect, marking a switch from an infiltrative to a proliferative phenotype, could result in CMRO2 to appear unaltered in high-risk regions. Including information on biomarkers representing angiogenesis (rCBV and VSI) and hypercellularity (ADC) or protein concentration (APT) can omit misinterpretation due to the Warburg effect. Future research should evaluate these biomarkers in radiotherapy planning to explore the potential of advanced MR techniques to personalize target volume delineation with the aim to improve local tumour control and/or reduce radiation-induced toxicity.
Collapse
Affiliation(s)
- Patrick L Y Tang
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands.
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| | - Alejandra Méndez Romero
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Jaap P M Jaspers
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Esther A H Warnert
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
25
|
Brighi C, Keall PJ, Holloway LC, Walker A, Whelan B, de Witt Hamer PC, Verburg N, Aly F, Chen C, Koh ES, Waddington DEJ. An investigation of the conformity, feasibility, and expected clinical benefits of multiparametric MRI-guided dose painting radiotherapy in glioblastoma. Neurooncol Adv 2022; 4:vdac134. [PMID: 36105390 PMCID: PMC9466270 DOI: 10.1093/noajnl/vdac134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background New technologies developed to improve survival outcomes for glioblastoma (GBM) continue to have limited success. Recently, image-guided dose painting (DP) radiotherapy has emerged as a promising strategy to increase local control rates. In this study, we evaluate the practical application of a multiparametric MRI model of glioma infiltration for DP radiotherapy in GBM by measuring its conformity, feasibility, and expected clinical benefits against standard of care treatment. Methods Maps of tumor probability were generated from perfusion/diffusion MRI data from 17 GBM patients via a previously developed model of GBM infiltration. Prescriptions for DP were linearly derived from tumor probability maps and used to develop dose optimized treatment plans. Conformity of DP plans to dose prescriptions was measured via a quality factor. Feasibility of DP plans was evaluated by dose metrics to target volumes and critical brain structures. Expected clinical benefit of DP plans was assessed by tumor control probability. The DP plans were compared to standard radiotherapy plans. Results The conformity of the DP plans was >90%. Compared to the standard plans, DP (1) did not affect dose delivered to organs at risk; (2) increased mean and maximum dose and improved minimum dose coverage for the target volumes; (3) reduced minimum dose within the radiotherapy treatment margins; (4) improved local tumor control probability within the target volumes for all patients. Conclusions A multiparametric MRI model of GBM infiltration can enable conformal, feasible, and potentially beneficial dose painting radiotherapy plans.
Collapse
Affiliation(s)
- Caterina Brighi
- ACRF Image X Institute, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney , Sydney , Australia
- Ingham Institute for Applied Medical Research , Sydney , Australia
| | - Paul J Keall
- ACRF Image X Institute, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney , Sydney , Australia
- Ingham Institute for Applied Medical Research , Sydney , Australia
| | - Lois C Holloway
- Ingham Institute for Applied Medical Research , Sydney , Australia
- Department of Radiation Oncology, Liverpool and Macarthur Cancer Therapy Centres , Liverpool , Australia
- Centre for Medical Radiation Physics, University of Wollongong , Wollongong, Australia
| | - Amy Walker
- Ingham Institute for Applied Medical Research , Sydney , Australia
- Department of Radiation Oncology, Liverpool and Macarthur Cancer Therapy Centres , Liverpool , Australia
- Centre for Medical Radiation Physics, University of Wollongong , Wollongong, Australia
| | - Brendan Whelan
- ACRF Image X Institute, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney , Sydney , Australia
- Ingham Institute for Applied Medical Research , Sydney , Australia
| | - Philip C de Witt Hamer
- Brain Tumor Center Amsterdam , Amsterdam UMC, Amsterdam , The Netherlands
- Department of Neurosurgery , Amsterdam UMC, Amsterdam , The Netherlands
| | - Niels Verburg
- Brain Tumor Center Amsterdam , Amsterdam UMC, Amsterdam , The Netherlands
- Department of Neurosurgery , Amsterdam UMC, Amsterdam , The Netherlands
| | - Farhannah Aly
- Ingham Institute for Applied Medical Research , Sydney , Australia
- Department of Radiation Oncology, Liverpool and Macarthur Cancer Therapy Centres , Liverpool , Australia
| | - Cathy Chen
- Department of Radiation Oncology, Liverpool and Macarthur Cancer Therapy Centres , Liverpool , Australia
| | - Eng-Siew Koh
- Ingham Institute for Applied Medical Research , Sydney , Australia
- Department of Radiation Oncology, Liverpool and Macarthur Cancer Therapy Centres , Liverpool , Australia
| | - David E J Waddington
- ACRF Image X Institute, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney , Sydney , Australia
- Ingham Institute for Applied Medical Research , Sydney , Australia
| |
Collapse
|
26
|
Connor M, Kim MM, Cao Y, Hattangadi-Gluth J. Precision Radiotherapy for Gliomas: Implementing Novel Imaging Biomarkers to Improve Outcomes With Patient-Specific Therapy. Cancer J 2021; 27:353-363. [PMID: 34570449 PMCID: PMC8480523 DOI: 10.1097/ppo.0000000000000546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
ABSTRACT Gliomas are the most common primary brain cancer, yet are extraordinarily challenging to treat because they can be aggressive and infiltrative, locally recurrent, and resistant to standard treatments. Furthermore, the treatments themselves, including radiation therapy, can affect patients' neurocognitive function and quality of life. Noninvasive imaging is the standard of care for primary brain tumors, including diagnosis, treatment planning, and monitoring for treatment response. This article explores the ways in which advanced imaging has and will continue to transform radiation treatment for patients with gliomas, with a focus on cognitive preservation and novel biomarkers, as well as precision radiotherapy and treatment adaptation. Advances in novel imaging techniques continue to push the field forward, to more precisely guided treatment planning, radiation dose escalation, measurement of therapeutic response, and understanding of radiation-associated injury.
Collapse
Affiliation(s)
- Michael Connor
- From the Department of Radiation Medicine and Applied Sciences, UC San Diego, Moores Cancer Center, La Jolla, CA
| | - Michelle M Kim
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI
| | - Yue Cao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI
| | - Jona Hattangadi-Gluth
- From the Department of Radiation Medicine and Applied Sciences, UC San Diego, Moores Cancer Center, La Jolla, CA
| |
Collapse
|
27
|
Kim MM, Aryal MP, Sun Y, Parmar HA, Li P, Schipper M, Wahl DR, Lawrence TS, Cao Y. Response assessment during chemoradiation using a hypercellular/hyperperfused imaging phenotype predicts survival in patients with newly diagnosed glioblastoma. Neuro Oncol 2021; 23:1537-1546. [PMID: 33599755 DOI: 10.1093/neuonc/noab038] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Adversely prognostic hypercellular and hyperperfused regions of glioblastoma (GBM) predict progression-free survival, and are a novel target for dose-intensified chemoradiation (chemoRT) recently implemented in a phase II clinical trial. As a secondary aim, we hypothesized that dose-intensified chemoRT would induce greater mid-treatment response of hypercellular/hyperperfused tumor regions vs standard chemoradiation, and that early response would improve overall survival (OS). METHODS Forty-nine patients with newly diagnosed GBM underwent prospective, multiparametric high b value diffusion-weighted MRI (DW-MRI) and perfusion dynamic contrast-enhanced MRI (DCE-MRI) pre-RT and 3-4 weeks into RT. The hypercellular tumor volume (TVHCV, mean contralateral normal brain + 2SD) and hyperperfused tumor volume (TVCBV, contralateral normal frontal gray matter + 1SD) were generated using automated thresholding. Twenty-six patients were enrolled on a dose-escalation trial targeting TVHCV/TVCBV with 75 Gy in 30 fractions, and 23 non-trial patients comprised the control group. OS was estimated using the Kaplan-Meier method and compared using the log-rank test. The effect of TVHCV/TVCBV and Gd-enhanced tumor volume on OS was assessed using multivariable Cox proportional-hazard regression. RESULTS Most patients had gross total (47%) or subtotal resection (37%), 25% were MGMT-methylated. Patients treated on the dose-escalation trial had significantly greater reduction in TVHCV/TVCBV (41% reduction, IQR 17%-75%) vs non-trial patients (6% reduction, IQR 6%-22%, P = .002). An increase in TVHCV/TVCBV during chemoRT was associated with worse OS (adjusted hazard ratio [aHR] 1.2, 95%CI 1.0-1.4, P = .02), while pre-treatment tumor volumes (P > .5) and changes in Gd-enhanced volume (P = .9) were not. CONCLUSIONS Multiparametric MRI permits identification of therapeutic resistance during chemoRT and supports adaptive strategies in future trials.
Collapse
Affiliation(s)
- Michelle M Kim
- Department of Radiation Oncology, The University of Michigan, Ann Arbor, Michigan, USA
| | - Madhava P Aryal
- Department of Radiation Oncology, The University of Michigan, Ann Arbor, Michigan, USA
| | - Yilun Sun
- Department of Radiation Oncology, The University of Michigan, Ann Arbor, Michigan, USA.,Department of Biostatistics, The University of Michigan, Ann Arbor, Michigan, USA
| | - Hemant A Parmar
- Department of Radiology, The University of Michigan, Ann Arbor, Michigan, USA
| | - Pin Li
- Department of Biostatistics, The University of Michigan, Ann Arbor, Michigan, USA
| | - Matthew Schipper
- Department of Biostatistics, The University of Michigan, Ann Arbor, Michigan, USA
| | - Daniel R Wahl
- Department of Radiation Oncology, The University of Michigan, Ann Arbor, Michigan, USA
| | - Theodore S Lawrence
- Department of Radiation Oncology, The University of Michigan, Ann Arbor, Michigan, USA
| | - Yue Cao
- Department of Radiation Oncology, The University of Michigan, Ann Arbor, Michigan, USA.,Department of Radiology, The University of Michigan, Ann Arbor, Michigan, USA.,Department of Biomedical Engineering, The University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|