1
|
Xiao Y, Benedict S, Cui Y, Glide-Hurst C, Graves S, Jia X, Kry SF, Li H, Lin L, Matuszak M, Newpower M, Paganetti H, Qi XS, Roncali E, Rong Y, Sgouros G, Simone CB, Sunderland JJ, Taylor PA, Tchelebi L, Weldon M, Zou JW, Wuthrick EJ, Machtay M, Le QT, Buchsbaum JC. Embracing the Future of Clinical Trials in Radiation Therapy: An NRG Oncology CIRO Technology Retreat Whitepaper on Pioneering Technologies and AI-Driven Solutions. Int J Radiat Oncol Biol Phys 2025; 122:443-457. [PMID: 39848295 DOI: 10.1016/j.ijrobp.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/20/2024] [Accepted: 01/12/2025] [Indexed: 01/25/2025]
Abstract
This white paper examines the potential of pioneering technologies and artificial intelligence-driven solutions in advancing clinical trials involving radiation therapy. As the field of radiation therapy evolves, the integration of cutting-edge approaches such as radiopharmaceutical dosimetry, FLASH radiation therapy, image guided radiation therapy, and artificial intelligence promises to improve treatment planning, patient care, and outcomes. Additionally, recent advancements in quantum science, linear energy transfer/relative biological effect, and the combination of radiation therapy and immunotherapy create new avenues for innovation in clinical trials. The paper aims to provide an overview of these emerging technologies and discuss their challenges and opportunities in shaping the future of radiation oncology clinical trials. By synthesizing knowledge from experts across various disciplines, this white paper aims to present a foundation for the successful integration of these innovations into radiation therapy research and practice, ultimately enhancing patient outcomes and revolutionizing cancer care.
Collapse
Affiliation(s)
- Ying Xiao
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stanley Benedict
- Department of Radiation Oncology, University of California at Davis, Comprehensive Cancer Center, Davis, California
| | - Yunfeng Cui
- Department of Radiation Oncology, Duke University, Durham, North Carolina
| | - Carri Glide-Hurst
- Department of Human Oncology, University of Wisconsin, Madison, Wisconsin
| | - Stephen Graves
- Department of Radiology, Division of Nuclear Medicine, University of Iowa, Iowa City, Iowa
| | - Xun Jia
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Stephen F Kry
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Heng Li
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Liyong Lin
- Department of Radiation Oncology, Emory University, Atlanta, Georgia
| | - Martha Matuszak
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Mark Newpower
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - X Sharon Qi
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California
| | - Emilie Roncali
- Department of Radiology, University of California at Davis, Davis, California
| | - Yi Rong
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - George Sgouros
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland
| | | | - John J Sunderland
- Department of Radiology, Division of Nuclear Medicine, University of Iowa, Iowa City, Iowa
| | - Paige A Taylor
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Leila Tchelebi
- Department of Radiation Oncology, Northwell Health, Mt. Kisco, New York
| | - Michael Weldon
- Department of Radiation Oncology, The Ohio State University Medical Center, Columbus, Ohio
| | - Jennifer W Zou
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Evan J Wuthrick
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Mitchell Machtay
- Department of Radiation Oncology, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Quynh-Thu Le
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Jeffrey C Buchsbaum
- Division of Cancer Treatment and Diagnosis, Radiation Research Program, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|
2
|
Dědečková K, Andrlik M, Móciková H, Kaliská L, Zapletalová S, Kubeš J, Al-Hamami S, Cutter DJ, Ntentas G, Vondráček V, Ondrová B, Marková J, Gahérová Ľ, Mohammadová L, Procházka V, Michalka J, Sýkorová A, Ďuraš J, Kořen J, Navrátil M, Vařejková M, Doležal T, Prausová J. Proton beam therapy for mediastinal Hodgkin lymphoma: A prospective study of clinical efficacy and safety. Radiother Oncol 2025:110931. [PMID: 40355029 DOI: 10.1016/j.radonc.2025.110931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 04/14/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
BACKGROUND Proton beam therapy using pencil beam scanning is an advanced radiotherapy technique that utilises proton beams to precisely target tumours. It is known for its enhanced ability in sparing healthy tissue and potentially reducing toxicity. Clinical experience with pencil beam scanning in the treatment of mediastinal Hodgkin lymphoma remains limited. PATIENTS AND METHODS This study aimed to evaluate the toxicity and outcomes of a prospectively observed cohort. A total of 162 patients were irradiated between May 2013 and December 2020, with a median age of 32 years (range: 18.4-79.2) and followed up until April 2024. The median applied dose was 30 GyE (range: 20-40). Deep inspiration breath hold was used in 146 patients to enhance targeting precision. RESULTS The disease-free survival, overall survival and local control rates were 95.1 %, 98.8 % and 98.8 %, respectively. The median follow-up was 59.1 months (range: 4-120.1). The most common acute toxicities observed were oesophageal and skin toxicity. Grade 1 oesophageal mucositis occurred in 76 patients (47 %), grade 2 in 16 patients (10 %). Dermatitis of grade 1 and 2 was observed in 65 (40 %) and 4 (3 %) patients respectively. Grade 1 pulmonary toxicity presented in 8 patients (4.9 %), and grade 2 in one patient (0.6 %). The most predominant late toxicity was grade 2 hypothyroidism in 37 patients (23 %). Three patients (1.8 %) underwent coronary interventions during follow-up, and one patient was diagnosed with hepatocellular carcinoma 3 months post-RT. No unexpected acute or late toxicities were observed. CONCLUSION Proton beam therapy using pencil beam scanning is a safe and effective technique in terms of toxicity and local control, even when irradiating mediastinal targets.
Collapse
Affiliation(s)
| | | | - Heidi Móciková
- University Hospital Královské Vinohrady, Department of Haematology and Third Faculty of Medicine, Charles University, Praha, Czech Republic
| | - Lucia Kaliská
- Proton Therapy Center Czech, Praha, Czech Republic; Institute of Nuclear and Molecular Medicine, Banská Bystrica, Slovakia
| | | | - Jiří Kubeš
- Proton Therapy Center Czech, Praha, Czech Republic; Department of Health Care Disciplines and Population Protection, Faculty of Biomedical Engineering, Czech Technical University Prague, Kladno, Czech Republic
| | | | - David J Cutter
- Nuffield Department of Population Health, University of Oxford, Oxford, UK; Oxford Cancer and Haematology Centre, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford, UK
| | - Georgios Ntentas
- Nuffield Department of Population Health, University of Oxford, Oxford, UK; Department of Medical Physics and Clinical Engineering, Guy's and St Thomas' NHS Foundation Trust, London, UK; School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Vladimír Vondráček
- Proton Therapy Center Czech, Praha, Czech Republic; Department of Health Care Disciplines and Population Protection, Faculty of Biomedical Engineering, Czech Technical University Prague, Kladno, Czech Republic
| | | | - Jana Marková
- University Hospital Královské Vinohrady, Department of Haematology and Third Faculty of Medicine, Charles University, Praha, Czech Republic
| | - Ľubica Gahérová
- University Hospital Královské Vinohrady, Department of Haematology and Third Faculty of Medicine, Charles University, Praha, Czech Republic
| | - Lekaá Mohammadová
- University Hospital Pilsen, Department of Haematology and Oncology, Plzeň, Czech Republic
| | - Vít Procházka
- Department of Hemato-Oncology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, Olomouc, Czech Republic
| | - Jozef Michalka
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Czech Republic; Faculty of Medicine, Masaryk University Brno, Czech Republic
| | - Alice Sýkorová
- University Hospital Hradec Králové, The 4th Department of Internal Medicine - Hematology, Hradec Králové, Czech Republic
| | - Juraj Ďuraš
- University Hospital Ostrava and Faculty of Medicine, University of Ostrava, Department of Haematooncology, Ostrava, Czech Republic
| | - Jan Kořen
- General University Hospital in Praque, 1st Medical Department-Department of Heamatology, Praha, Czech Republic; Charles University, First Faculty of Medicine, Praha, Czech Republic
| | | | - Michaela Vařejková
- Value Outcomes, Praha, Czech Republic; Faculty of Mathematics and Physics, Charles University, Praha, Czech Republic
| | | | | |
Collapse
|
3
|
Chang CW, Tian Z, Qiu RLJ, Scott Mcginnis H, Bohannon D, Patel P, Wang Y, Yu DS, Patel SA, Zhou J, Yang X. Exploration of an adaptive proton therapy strategy using CBCT with the concept of digital twins. Phys Med Biol 2025; 70:025010. [PMID: 39761649 PMCID: PMC11740008 DOI: 10.1088/1361-6560/ada684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Objective.This study aims to develop a digital twin (DT) framework to achieve adaptive proton prostate stereotactic body radiation therapy (SBRT) with fast treatment plan selection and patient-specific clinical target volume (CTV) setup uncertainty. Prostate SBRT has emerged as a leading option for external beam radiotherapy due to its effectiveness and reduced treatment duration. However, interfractional anatomy variations can impact treatment outcomes. This study seeks to address these uncertainties using DT concept to improve treatment quality.Approach. A retrospective study on two-fraction prostate proton SBRT was conducted, involving a cohort of 10 randomly selected patient cases from an institutional database (n= 43). DT-based treatment plans were developed using patient-specific CTV setup uncertainty, determined through machine learning predictions. Plans were optimized using pre-treatment CT and corrected cone-beam CT (cCBCT). The cCBCT was corrected for CT numbers and artifacts, and plan evaluation was performed using cCBCT to account for actual patient anatomy. The ProKnow scoring system was adapted to determine the optimal treatment plans.Main Results.Average CTV D98 values for original clinical and DT-based plans across 10 patients were 99.0% and 98.8%, with hot spots measuring 106.0% and 105.1%. Regarding bladder, clinical plans yielded average bladder neck V100 values of 29.6% and bladder V20.8 Gy values of 12.0cc, whereas DT-based plans showed better sparing of bladder neck with values of 14.0% and 9.5cc. Clinical and DT-based plans resulted in comparable rectum dose statistics due to SpaceOAR. Compared to clinical plans, the proposed DT-based plans improved dosimetry quality, improving plan scores ranging from 2.0 to 15.5.Significance.Our study presented a pioneering approach that leverages DT technology to enhance adaptive proton SBRT, potentially revolutionizing prostate radiotherapy to offer personalized treatment solutions using fast adaptive treatment plan selections and patient-specific setup uncertainty. This research contributes to the ongoing efforts to achieve personalized prostate radiotherapy.
Collapse
Affiliation(s)
- Chih-Wei Chang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30308, United States of America
| | - Zhen Tian
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, United States of America
| | - Richard L J Qiu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30308, United States of America
| | - H Scott Mcginnis
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30308, United States of America
| | - Duncan Bohannon
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30308, United States of America
| | - Pretesh Patel
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30308, United States of America
| | - Yinan Wang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30308, United States of America
| | - David S Yu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30308, United States of America
| | - Sagar A Patel
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30308, United States of America
| | - Jun Zhou
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30308, United States of America
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30308, United States of America
| |
Collapse
|
4
|
Paganetti H, Simone CB, Bosch WR, Haas-Kogan D, Kirsch DG, Li H, Liang X, Liu W, Mahajan A, Story MD, Taylor PA, Willers H, Xiao Y, Buchsbaum JC. NRG Oncology White Paper on the Relative Biological Effectiveness in Proton Therapy. Int J Radiat Oncol Biol Phys 2025; 121:202-217. [PMID: 39059509 PMCID: PMC11646189 DOI: 10.1016/j.ijrobp.2024.07.2152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/17/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024]
Abstract
This position paper, led by the NRG Oncology Particle Therapy Work Group, focuses on the concept of relative biologic effect (RBE) in clinical proton therapy (PT), with the goal of providing recommendations for the next-generation clinical trials with PT on the best practice of investigating and using RBE, which could deviate from the current standard proton RBE value of 1.1 relative to photons. In part 1, current clinical utilization and practice are reviewed, giving the context and history of RBE. Evidence for variation in RBE is presented along with the concept of linear energy transfer (LET). The intertwined nature of tumor radiobiology, normal tissue constraints, and treatment planning with LET and RBE considerations is then reviewed. Part 2 summarizes current and past clinical data and then suggests the next steps to explore and employ tools for improved dynamic models for RBE. In part 3, approaches and methods for the next generation of prospective clinical trials are explored, with the goal of optimizing RBE to be both more reflective of clinical reality and also deployable in trials to allow clinical validation and interpatient comparisons. These concepts provide the foundation for personalized biologic treatments reviewed in part 4. Finally, we conclude with a summary including short- and long-term scientific focus points for clinical PT. The practicalities and capacity to use RBE in treatment planning are reviewed and considered with more biological data in hand. The intermediate step of LET optimization is summarized and proposed as a potential bridge to the ultimate goal of case-specific RBE planning that can be achieved as a hypothesis-generating tool in near-term proton trials.
Collapse
Affiliation(s)
- Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts; Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts
| | - Charles B Simone
- New York Proton Center, New York, New York; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Walter R Bosch
- Department of Radiation Oncology, Washington University, St. Louis, Missouri
| | - Daphne Haas-Kogan
- Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts; Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston Children's Hospital, Boston, Massachusetts
| | - David G Kirsch
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Heng Li
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Xiaoying Liang
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, Florida
| | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Anita Mahajan
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Michael D Story
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts; Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts
| | - Ying Xiao
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jeffrey C Buchsbaum
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
5
|
Witzmann K, Raschke F, Wesemann T, Löck S, Funer F, Linn J, Troost EGC. Diffusion decrease in normal-appearing white matter structures following photon or proton irradiation indicates differences in regional radiosensitivity. Radiother Oncol 2024; 199:110459. [PMID: 39069087 DOI: 10.1016/j.radonc.2024.110459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
PURPOSE Radio(chemo)therapy (RCT) as part of the standard treatment of glioma patients, inevitably leads to radiation exposure of the tumor-surrounding normal-appearing (NA) tissues. The effect of radiotherapy on the brain microstructure can be assessed by magnetic resonance imaging (MRI) using diffusion tensor imaging (DTI). The aim of this study was to analyze regional DTI changes of white matter (WM) structures and to determine their dose- and time-dependency. METHODS As part of a longitudinal prospective clinical study (NCT02824731), MRI data of 23 glioma patients treated with proton or photon beam therapy were acquired at three-monthly intervals until 36 months following irradiation. Mean, radial and axial diffusivity (MD, RD, AD) as well as fractional anisotropy (FA) were investigated in the NA tissue of 15 WM structures and their dependence on radiation dose, follow-up time and distance to the clinical target volume (CTV) was analyzed in a multivariate linear regression model. Due to the small and non-comparable patient numbers for proton and photon beam irradiation, a separate assessment of the findings per treatment modality was not performed. RESULTS Four WM structures (i.e., internal capsule, corona radiata, posterior thalamic radiation, and superior longitudinal fasciculus) showed statistically significantly decreased RD and MD after RT, whereas AD decrease and FA increase occurred less frequently. The posterior thalamic radiation showed the most pronounced changes after RCT [i.e., ΔRD = -8.51 % (p = 0.012), ΔMD = -6.14 % (p = 0.012)]. The DTI changes depended significantly on mean dose and time. CONCLUSION Significant changes in DTI for WM substructures were found even at low radiation doses. These findings may prompt new radiation dose constraints sparing the vulnerable structures from damage and subsequent side-effects.
Collapse
Affiliation(s)
- Katharina Witzmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Felix Raschke
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Tim Wesemann
- Institute of Diagnostic and Interventional Neuroradiology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Steffen Löck
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universitat Dresden; Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Fabian Funer
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jennifer Linn
- Institute of Diagnostic and Interventional Neuroradiology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universitat Dresden; Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Esther G C Troost
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universitat Dresden; Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.
| |
Collapse
|
6
|
Demyashkin G, Parshenkov M, Koryakin S, Skovorodko P, Shchekin V, Yakimenko V, Uruskhanova Z, Ugurchieva D, Pugacheva E, Ivanov S, Shegay P, Kaprin A. Targeting Oxidative Stress: The Potential of Vitamin C in Protecting against Liver Damage after Electron Beam Therapy. Biomedicines 2024; 12:2195. [PMID: 39457507 PMCID: PMC11504655 DOI: 10.3390/biomedicines12102195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Radiation-induced liver disease (RILD) is a severe complication arising from radiotherapy, particularly when treating abdominal malignancies such as hepatocellular carcinoma. The liver's critical role in systemic metabolism and its proximity to other abdominal organs make it highly susceptible to radiation-induced damage. This vulnerability significantly limits the maximum safe therapeutic dose of radiation, thereby constraining the overall efficacy of radiotherapy. Among the various modalities, electron beam therapy has gained attention due to its ability to precisely target tumors while minimizing exposure to surrounding healthy tissues. However, despite its advantages, the long-term impacts of electron beam exposure on liver tissue remain inadequately understood, particularly concerning chronic injury and fibrosis driven by sustained oxidative stress. Objectives: to investigate the molecular and cellular mechanisms underlying the radioprotective effects of vitamin C in a model of radiation-induced liver disease. Methods: Male Wistar rats (n = 120) were randomly assigned to four groups: control, fractionated local electron irradiation (30 Gy), pre-treatment with vitamin C before irradiation, and vitamin C alone. The study evaluated the effects of electron beam radiation and vitamin C on liver tissue through a comprehensive approach, including biochemical analysis of serum enzymes (ALT, AST, ALP, and bilirubin), cytokine levels (IL-1β, IL-6, IL-10, and TNF-α), and oxidative stress markers (MDA and SOD). Histological and morphometric analyses were conducted on liver tissue samples collected at 7, 30, 60, and 90 days, which involved standard staining techniques and advanced imaging, including light and electron microscopy. Gene expression of Bax, Bcl-2, and caspase-3 was analyzed using real-time PCR. Results: The present study demonstrated that fractional local electron irradiation led to significant reductions in body weight and liver mass, as well as marked increases in biochemical markers of liver damage (ALT, AST, ALP, and bilirubin), inflammatory cytokines (IL-1β, IL-6, and TNF-α), and oxidative stress markers (MDA) in the irradiated group. These changes were accompanied by substantial histopathological alterations, including hepatocyte degeneration, fibrosis, and disrupted microvascular circulation. Pre-treatment with vitamin C partially mitigated these effects, reducing the severity of the liver damage, oxidative stress, and inflammation, and preserving a more favorable balance between hepatocyte proliferation and apoptosis. Overall, the results highlight the potential protective role of vitamin C in reducing radiation-induced liver injury, although the long-term benefits require further investigation. Conclusions: The present study highlights vitamin C's potential as a radioprotective agent against electron beam-induced liver damage. It effectively reduced oxidative stress, apoptosis, and inflammation, particularly in preventing the progression of radiation-induced liver fibrosis. These findings suggest that vitamin C could enhance radiotherapy outcomes by minimizing liver damage, warranting further exploration into its broader clinical applications.
Collapse
Affiliation(s)
- Grigory Demyashkin
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia; (S.K.); (V.S.); (S.I.); (P.S.); (A.K.)
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya st., 8/2, 119048 Moscow, Russia; (M.P.); (P.S.); (V.Y.); (Z.U.); (D.U.); (E.P.)
| | - Mikhail Parshenkov
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya st., 8/2, 119048 Moscow, Russia; (M.P.); (P.S.); (V.Y.); (Z.U.); (D.U.); (E.P.)
| | - Sergey Koryakin
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia; (S.K.); (V.S.); (S.I.); (P.S.); (A.K.)
| | - Polina Skovorodko
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya st., 8/2, 119048 Moscow, Russia; (M.P.); (P.S.); (V.Y.); (Z.U.); (D.U.); (E.P.)
| | - Vladimir Shchekin
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia; (S.K.); (V.S.); (S.I.); (P.S.); (A.K.)
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya st., 6, 117198 Moscow, Russia
| | - Vladislav Yakimenko
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya st., 8/2, 119048 Moscow, Russia; (M.P.); (P.S.); (V.Y.); (Z.U.); (D.U.); (E.P.)
| | - Zhanna Uruskhanova
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya st., 8/2, 119048 Moscow, Russia; (M.P.); (P.S.); (V.Y.); (Z.U.); (D.U.); (E.P.)
| | - Dali Ugurchieva
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya st., 8/2, 119048 Moscow, Russia; (M.P.); (P.S.); (V.Y.); (Z.U.); (D.U.); (E.P.)
| | - Ekaterina Pugacheva
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya st., 8/2, 119048 Moscow, Russia; (M.P.); (P.S.); (V.Y.); (Z.U.); (D.U.); (E.P.)
| | - Sergey Ivanov
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia; (S.K.); (V.S.); (S.I.); (P.S.); (A.K.)
| | - Petr Shegay
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia; (S.K.); (V.S.); (S.I.); (P.S.); (A.K.)
| | - Andrey Kaprin
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia; (S.K.); (V.S.); (S.I.); (P.S.); (A.K.)
- Department of Urology and Operative Nephrology, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya str. 6, 117198 Moscow, Russia
| |
Collapse
|
7
|
Pachler KS, Lauwers I, Verkaik NS, Rovituso M, van der Wal E, Mast H, Jonker BP, Sewnaik A, Hardillo JA, Keereweer S, Monserez D, Kremer B, Koppes S, van den Bosch TPP, Verduijn GM, Petit S, Sørensen BS, van Gent DC, Capala ME. Development of an Ex Vivo Functional Assay for Prediction of Irradiation Related Toxicity in Healthy Oral Mucosa Tissue. Int J Mol Sci 2024; 25:7157. [PMID: 39000262 PMCID: PMC11241643 DOI: 10.3390/ijms25137157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Radiotherapy in the head-and-neck area is one of the main curative treatment options. However, this comes at the cost of varying levels of normal tissue toxicity, affecting up to 80% of patients. Mucositis can cause pain, weight loss and treatment delays, leading to worse outcomes and a decreased quality of life. Therefore, there is an urgent need for an approach to predicting normal mucosal responses in patients prior to treatment. We here describe an assay to detect irradiation responses in healthy oral mucosa tissue. Mucosa specimens from the oral cavity were obtained after surgical resection, cut into thin slices, irradiated and cultured for three days. Seven samples were irradiated with X-ray, and three additional samples were irradiated with both X-ray and protons. Healthy oral mucosa tissue slices maintained normal morphology and viability for three days. We measured a dose-dependent response to X-ray irradiation and compared X-ray and proton irradiation in the same mucosa sample using standardized automated image analysis. Furthermore, increased levels of inflammation-inducing factors-major drivers of mucositis development-could be detected after irradiation. This model can be utilized for investigating mechanistic aspects of mucositis development and can be developed into an assay to predict radiation-induced toxicity in normal mucosa.
Collapse
Affiliation(s)
- Katrin S. Pachler
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (K.S.P.); (D.C.v.G.)
| | - Iris Lauwers
- Department of Radiotherapy, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Nicole S. Verkaik
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (K.S.P.); (D.C.v.G.)
| | - Marta Rovituso
- Holland Proton Therapy Centre (HPTC), Huismansingel 4, 2629 JH Delft, The Netherlands
| | - Ernst van der Wal
- Holland Proton Therapy Centre (HPTC), Huismansingel 4, 2629 JH Delft, The Netherlands
| | - Hetty Mast
- Department of Oral and Maxillofacial Surgery, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Brend P. Jonker
- Department of Oral and Maxillofacial Surgery, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Aniel Sewnaik
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Jose A. Hardillo
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Stijn Keereweer
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Dominiek Monserez
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Bernd Kremer
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Sjors Koppes
- Department of Pathology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | | | - Gerda M. Verduijn
- Department of Radiotherapy, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Steven Petit
- Department of Radiotherapy, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Brita S. Sørensen
- Department of Radiotherapy, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
- Department of Experimental Clinical Oncology, Danish Centre for Particle Therapy, Aarhus University Hospital, 8200 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Nordre Ringgade 1, 8000 Aarhus, Denmark
| | - Dik C. van Gent
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (K.S.P.); (D.C.v.G.)
| | - Marta E. Capala
- Department of Radiotherapy, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
8
|
Abdel-Wahab M, Coleman CN, Eriksen JG, Lee P, Kraus R, Harsdorf E, Lee B, Dicker A, Hahn E, Agarwal JP, Prasanna PGS, MacManus M, Keall P, Mayr NA, Jereczek-Fossa BA, Giammarile F, Kim IA, Aggarwal A, Lewison G, Lu JJ, Guedes de Castro D, Kong FMS, Afifi H, Sharp H, Vanderpuye V, Olasinde T, Atrash F, Goethals L, Corn BW. Addressing challenges in low-income and middle-income countries through novel radiotherapy research opportunities. Lancet Oncol 2024; 25:e270-e280. [PMID: 38821101 PMCID: PMC11382686 DOI: 10.1016/s1470-2045(24)00038-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 06/02/2024]
Abstract
Although radiotherapy continues to evolve as a mainstay of the oncological armamentarium, research and innovation in radiotherapy in low-income and middle-income countries (LMICs) faces challenges. This third Series paper examines the current state of LMIC radiotherapy research and provides new data from a 2022 survey undertaken by the International Atomic Energy Agency and new data on funding. In the context of LMIC-related challenges and impediments, we explore several developments and advances-such as deep phenotyping, real-time targeting, and artificial intelligence-to flag specific opportunities with applicability and relevance for resource-constrained settings. Given the pressing nature of cancer in LMICs, we also highlight some best practices and address the broader need to develop the research workforce of the future. This Series paper thereby serves as a resource for radiation professionals.
Collapse
Affiliation(s)
- May Abdel-Wahab
- Division of Human Health, International Atomic Energy Agency, Vienna, Austria.
| | - C Norman Coleman
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jesper Grau Eriksen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Lee
- Division of Human Health, International Atomic Energy Agency, Vienna, Austria
| | - Ryan Kraus
- Department of Radiation Oncology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Ekaterina Harsdorf
- Division of Human Health, International Atomic Energy Agency, Vienna, Austria
| | - Becky Lee
- Department of Radiation Medicine, Loma Linda University, Loma Linda, CA, USA; Department of Radiation Oncology, Summa Health, Akron, OH, USA
| | - Adam Dicker
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ezra Hahn
- Department of Radiation Oncology, Radiation Medicine Program, Princess Margaret Cancer Centre, University of Toronto, ON, Canada
| | - Jai Prakash Agarwal
- Department of Radiation Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Pataje G S Prasanna
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael MacManus
- Department of Radiation Oncology, Peter MacCallum Cancer Centre and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Paul Keall
- Image X Institute, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Nina A Mayr
- College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Barbara Alicja Jereczek-Fossa
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy; Division of Radiotherapy, European Institute of Oncology, IRCCS, Milan, Italy
| | | | - In Ah Kim
- Department of Radiation Oncology, Seoul National University Bundang Hospital, Seoul, South Korea; Seoul National University, College of Medicine, Seoul, South Korea
| | - Ajay Aggarwal
- Department of Health Services Research and Policy, London School of Hygiene & Tropical Medicine, London, UK; Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Grant Lewison
- Institute of Cancer Policy, King's College London, London, UK
| | - Jiade J Lu
- Shanghai Proton and Heavy Ion Centre, Fudan University School of Medicine, Shanghai, China
| | | | - Feng-Ming Spring Kong
- Department of Clinical Oncology, HKU-Shenzhen Hospital and Queen Mary Hospital, Li Ka Shing Faculty of Medicine, Hong Kong Special Administrative Region, China
| | - Haidy Afifi
- Division of Human Health, International Atomic Energy Agency, Vienna, Austria
| | - Hamish Sharp
- Institute of Cancer Policy, King's College London, London, UK
| | - Verna Vanderpuye
- National Center for Radiotherapy, Oncology and Nuclear Medicine, Korlebu Teaching Hospital, Accra, Ghana
| | | | - Fadi Atrash
- Augusta Victoria Hospital, Jerusalem, Israel
| | - Luc Goethals
- Division of Human Health, International Atomic Energy Agency, Vienna, Austria
| | | |
Collapse
|
9
|
Sioen S, Vanhove O, Vanderstraeten B, De Wagter C, Engelbrecht M, Vandevoorde C, De Kock E, Van Goethem MJ, Vral A, Baeyens A. Impact of proton therapy on the DNA damage induction and repair in hematopoietic stem and progenitor cells. Sci Rep 2023; 13:16995. [PMID: 37813904 PMCID: PMC10562436 DOI: 10.1038/s41598-023-42362-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/08/2023] [Indexed: 10/11/2023] Open
Abstract
Proton therapy is of great interest to pediatric cancer patients because of its optimal depth dose distribution. In view of healthy tissue damage and the increased risk of secondary cancers, we investigated DNA damage induction and repair of radiosensitive hematopoietic stem and progenitor cells (HSPCs) exposed to therapeutic proton and photon irradiation due to their role in radiation-induced leukemia. Human CD34+ HSPCs were exposed to 6 MV X-rays, mid- and distal spread-out Bragg peak (SOBP) protons at doses ranging from 0.5 to 2 Gy. Persistent chromosomal damage was assessed with the micronucleus assay, while DNA damage induction and repair were analyzed with the γ-H2AX foci assay. No differences were found in induction and disappearance of γ-H2AX foci between 6 MV X-rays, mid- and distal SOBP protons at 1 Gy. A significantly higher number of micronuclei was found for distal SOBP protons compared to 6 MV X-rays and mid- SOBP protons at 0.5 and 1 Gy, while no significant differences in micronuclei were found at 2 Gy. In HSPCs, mid-SOBP protons are as damaging as conventional X-rays. Distal SOBP protons showed a higher number of micronuclei in HSPCs depending on the radiation dose, indicating possible changes of the in vivo biological response.
Collapse
Affiliation(s)
- Simon Sioen
- Radiobiology, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
| | - Oniecha Vanhove
- Radiobiology, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Barbara Vanderstraeten
- Medical Physics, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent, Belgium
- Department of Radiotherapy-Oncology, Ghent University Hospital, Ghent, Belgium
| | - Carlos De Wagter
- Medical Physics, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent, Belgium
- Department of Radiotherapy-Oncology, Ghent University Hospital, Ghent, Belgium
| | - Monique Engelbrecht
- Separated Sector Cyclotron Laboratory, Radiation Biophysics Division, iThemba LABS (NRF), Cape Town, 7131, South Africa
| | - Charlot Vandevoorde
- Separated Sector Cyclotron Laboratory, Radiation Biophysics Division, iThemba LABS (NRF), Cape Town, 7131, South Africa
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Evan De Kock
- Separated Sector Cyclotron Laboratory, Radiation Biophysics Division, iThemba LABS (NRF), Cape Town, 7131, South Africa
| | - Marc-Jan Van Goethem
- Department of Radiation Oncology and Particle Therapy Research Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anne Vral
- Radiobiology, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Ans Baeyens
- Radiobiology, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
10
|
Taysi S, Algburi FS, Taysi ME, Caglayan C. Caffeic acid phenethyl ester: A review on its pharmacological importance, and its association with free radicals, COVID-19, and radiotherapy. Phytother Res 2023; 37:1115-1135. [PMID: 36562210 PMCID: PMC9880688 DOI: 10.1002/ptr.7707] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/04/2022] [Accepted: 11/11/2022] [Indexed: 12/24/2022]
Abstract
Caffeic acid phenethyl ester (CAPE), a main active component of propolis and a flavonoid, is one of the natural products that has attracted attention in recent years. CAPE, which has many properties such as anti-cancer, anti-inflammatory, antioxidant, antibacterial and anti-fungal, has shown many pharmacological potentials, including protective effects on multiple organs. Interestingly, molecular docking studies showed the possibility of binding of CAPE with replication enzyme. In addition, it was seen that in order to increase the binding security of the replication enzyme and CAPE, modifications can be made at three sites on the CAPE molecule, which leads to the possibility of the compound working more powerfully and usefully to prevent the proliferation of cancer cells and reduce its rate. Also, it was found that CAPE has an inhibitory effect against the main protease enzyme and may be effective in the treatment of SARS-CoV-2. This review covers in detail the importance of CAPE in alternative medicine, its pharmacological value, its potential as a cancer anti-proliferative agent, its dual role in radioprotection and radiosensitization, and its use against coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Seyithan Taysi
- Department of Medical Biochemistry, Medical School, Gaziantep University, Gaziantep, Turkey
| | - Firas Shawqi Algburi
- Department of Medical Biochemistry, Medical School, Gaziantep University, Gaziantep, Turkey.,Department of Biology, College of Science, Tikrit University, Tikrit, Iraq.,College of Dentistry, Al-Kitab University, Altun Kupri, Iraq
| | - Muhammed Enes Taysi
- Department of Emergency Medicine, Medical School, Bolu Izzet Baysal University-Bolu, Bolu, Turkey
| | - Cuneyt Caglayan
- Department of Medical Biochemistry, Medical School, Bilecik Seyh Edebali University, Bilecik, Turkey
| |
Collapse
|
11
|
Zhang Z, Wang Z, Luo T, Yan M, Dekker A, De Ruysscher D, Traverso A, Wee L, Zhao L. Computed tomography and radiation dose images-based deep-learning model for predicting radiation pneumonitis in lung cancer patients after radiation therapy. Radiother Oncol 2023; 182:109581. [PMID: 36842666 DOI: 10.1016/j.radonc.2023.109581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 02/28/2023]
Abstract
PURPOSE To develop a deep learning model that combines CT and radiation dose (RD) images to predict the occurrence of radiation pneumonitis (RP) in lung cancer patients who received radical (chemo)radiotherapy. METHODS CT, RD images and clinical parameters were obtained from 314 retrospectively-collected patients (training set) and 35 prospectively-collected patients (test-set-1) who were diagnosed with lung cancer and received radical radiotherapy in the dose range of 50 Gy and 70 Gy. Another 194 (60 Gy group, test-set-2) and 158 (74 Gy group, test-set-3) patients from the clinical trial RTOG 0617 were used for external validation. A ResNet architecture was used to develop a prediction model that combines CT and RD features. Thereafter, the CT and RD weights were adjusted by using 40 patients from test-set-2 or 3 to accommodate cohorts with different clinical settings or dose delivery patterns. Visual interpretation was implemented using a gradient-weighted class activation map (grad-CAM) to observe the area of model attention during the prediction process. To improve the usability, ready-to-use online software was developed. RESULTS The discriminative ability of a baseline trained model had an AUC of 0.83 for test-set-1, 0.55 for test-set-2, and 0.63 for test-set-3. After adjusting CT and RD weights of the model using a subset of the RTOG-0617 subjects, the discriminatory power of test-set-2 and 3 improved to AUC 0.65 and AUC 0.70, respectively. Grad-CAM showed the regions of interest to the model that contribute to the prediction of RP. CONCLUSION A novel deep learning approach combining CT and RD images can effectively and accurately predict the occurrence of RP, and this model can be adjusted easily to fit new cohorts.
Collapse
Affiliation(s)
- Zhen Zhang
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China. 310022; Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands. 6229 ET
| | - Zhixiang Wang
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands. 6229 ET; Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Tianchen Luo
- Institute of System Science, National University of Singapore, Singapore. 119260
| | - Meng Yan
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, China. 300060
| | - Andre Dekker
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands. 6229 ET
| | - Dirk De Ruysscher
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands. 6229 ET
| | - Alberto Traverso
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands. 6229 ET
| | - Leonard Wee
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands. 6229 ET.
| | - Lujun Zhao
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, China. 300060.
| |
Collapse
|
12
|
Witzmann K, Raschke F, Löck S, Wesemann T, Krause M, Linn J, Troost EGC. Unchanged perfusion in normal-appearing white and grey matter of glioma patients nine months after proton beam irradiation. Acta Oncol 2023; 62:141-149. [PMID: 36801809 DOI: 10.1080/0284186x.2023.2176254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Purpose: Radio(chemo)therapy is used as a standard treatment for glioma patients. The surrounding normal tissue is inevitably affected by the irradiation. The aim of this longitudinal study was to investigate perfusion alterations in the normal-appearing tissue after proton irradiation and assess the dose sensitivity of the normal tissue perfusion.Methods: In 14 glioma patients, a sub-cohort of a prospective clinical trial (NCT02824731), perfusion changes in normal-appearing white matter (WM), grey matter (GM) and subcortical GM structures, i.e. caudate nucleus, hippocampus, amygdala, putamen, pallidum and thalamus, were evaluated before treatment and at three-monthly intervals after proton beam irradiation. The relative cerebral blood volume (rCBV) was assessed with dynamic susceptibility contrast MRI and analysed as the percentage ratio between follow-up and baseline image (ΔrCBV). Radiation-induced alterations were evaluated using Wilcoxon signed rank test. Dose and time correlations were investigated with univariate and multivariate linear regression models.Results: No significant ΔrCBV changes were found in any normal-appearing WM and GM region after proton beam irradiation. A positive correlation with radiation dose was observed in the multivariate regression model applied to the combined ΔrCBV values of low (1-20 Gy), intermediate (21-40 Gy) and high (41-60 Gy) dose regions of GM (p < 0.001), while no time dependency was detected in any normal-appearing area.Conclusion: The perfusion in normal-appearing brain tissue remained unaltered after proton beam therapy. In further studies, a direct comparison with changes after photon therapy is recommended to confirm the different effect of proton therapy on the normal-appearing tissue.
Collapse
Affiliation(s)
- Katharina Witzmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany.,OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Felix Raschke
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany.,OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Steffen Löck
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association / Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Tim Wesemann
- Institute of Neuroradiology, University Hospital Carl Gustav Carus and Medical Faculty of Technische Universität, Dresden, Germany
| | - Mechthild Krause
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany.,OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association / Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Jennifer Linn
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association / Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.,Institute of Neuroradiology, University Hospital Carl Gustav Carus and Medical Faculty of Technische Universität, Dresden, Germany
| | - Esther G C Troost
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany.,OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association / Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| |
Collapse
|
13
|
Sayan M, Hathout L, Kilic SS, Jan I, Gilles A, Hassell N, Kowzun M, George M, Potdevin L, Kumar S, Sinkin J, Agag R, Haffty BG, Ohri N. Reconstructive complications and early toxicity in breast cancer patients treated with proton-based postmastectomy radiation therapy. Front Oncol 2023; 13:1067500. [PMID: 36741008 PMCID: PMC9895832 DOI: 10.3389/fonc.2023.1067500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023] Open
Abstract
Background Postmastectomy radiation therapy (PMRT) decreases the risk of locoregional recurrence and increases overall survival rates in patients with high-risk node positive breast cancer. While the number of breast cancer patients treated with proton-based PMRT has increased in recent years, there is limited data on the use of proton therapy in the postmastectomy with reconstruction setting. In this study, we compared acute toxicities and reconstructive complications in patients treated with proton-based and photon-based PMRT. Methods A retrospective review of our institutional database was performed to identify breast cancer patients treated with mastectomy with implant or autologous reconstruction followed by PMRT from 2015 to 2020. Baseline clinical, disease, and treatment related factors were compared between the photon-based and proton-based PMRT groups. Early toxicity outcomes and reconstructive complications following PMRT were graded by the treating physician. Results A total of 11 patients treated with proton-based PMRT and 26 patients treated with photon-based PMRT were included with a median follow-up of 7.4 months (range, 0.7-33 months). Six patients (55%) in the proton group had a history of breast cancer (3 ipsilateral and 3 contralateral) and received previous RT 38 months ago (median, range 7-85). There was no significant difference in mean PMRT (p = 0.064) and boost dose (p = 0.608) between the two groups. Grade 2 skin toxicity was the most common acute toxicity in both groups (55% and 73% in the proton and photon group, respectively) (p = 0.077). Three patients (27%) in the proton group developed grade 3 skin toxicity. No Grade 4 acute toxicity was reported in either group. Reconstructive complications occurred in 4 patients (36%) in the proton group and 8 patients (31%) in photon group (p = 0.946). Conclusions Acute skin toxicity remains the most frequent adverse event in both proton- and photon-based PMRT. In our study, reconstructive complications were not significantly higher in patients treated with proton- versus photon-based PMRT. Longer follow-up is warranted to assess late toxicities.
Collapse
Affiliation(s)
- Mutlay Sayan
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, United States,Department of Radiation Oncology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States,*Correspondence: Mutlay Sayan,
| | - Lara Hathout
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, United States
| | - Sarah S. Kilic
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Imraan Jan
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, United States
| | - Ambroise Gilles
- Division of Plastic Surgery, Departments of Surgery, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, United States
| | - Natalie Hassell
- Division of Plastic Surgery, Departments of Surgery, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, United States
| | - Maria Kowzun
- Departments of Surgical Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, United States
| | - Mridula George
- Departments of Medicine, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, United States
| | - Lindsay Potdevin
- Departments of Surgical Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, United States
| | - Shicha Kumar
- Departments of Surgical Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, United States
| | - Jeremy Sinkin
- Division of Plastic Surgery, Departments of Surgery, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, United States
| | - Richard Agag
- Division of Plastic Surgery, Departments of Surgery, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, United States
| | - Bruce G. Haffty
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, United States
| | - Nisha Ohri
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, United States
| |
Collapse
|
14
|
Jennrich S, Pelzer M, Tertel T, Koska B, Vüllings M, Thakur BK, Jendrossek V, Timmermann B, Giebel B, Rudner J. CD9- and CD81-positive extracellular vesicles provide a marker to monitor glioblastoma cell response to photon-based and proton-based radiotherapy. Front Oncol 2022; 12:947439. [PMID: 36203458 PMCID: PMC9530604 DOI: 10.3389/fonc.2022.947439] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive tumor of the central nervous system with a poor prognosis. In the treatment of GBM tumors, radiotherapy plays a major role. Typically, GBM tumors cannot be cured by irradiation because of intrinsic resistance machanisms. An escalation of the irradiation dose in the GBM tumor is difficult due to the high risk of severe side effects in the brain. In the last decade, the development of new irradiation techniques, including proton-based irradiation, promised new chances in the treatment of brain tumors. In contrast to conventional radiotherapy, irradiation with protons allows a dosimetrically more confined dose deposition in the tumor while better sparing the normal tissue surrounding the tumor. A systematic comparison of both irradiation techniques on glioblastoma cells has not been performed so far. Despite the improvements in radiotherapy, it remains challenging to predict the therapeutical response of GBM tumors. Recent publications suggest extracellular vesicles (EVs) as promising markers predicting tumor response. Being part of an ancient intercellular communication system, virtually all cells release specifically composed EVs. The assembly of EVs varies between cell types and depends on environmental parameters. Here, we compared the impact of photon-based with proton-based radiotherapy on cell viability and phenotype of four different glioblastoma cell lines. Furthermore, we characterized EVs released by different glioblastoma cells and correlated released EVs with the cellular response to radiotherapy. Our results demonstrated that glioblastoma cells reacted more sensitive to irradiation with protons than photons, while radiation-induced cell death 72 h after single dose irradiation was independent of the irradiation modality. Moreover, we detected CD9 and CD81-positive EVs in the supernatant of all glioblastoma cells, although at different concentrations. The amount of released CD9 and CD81-positive EVs increased after irradiation when cells became apoptotic. Although secreted EVs of non-irradiated cells were not predictive for radiosensitivity, their increased EV release after irradiation correlated with the cytotoxic response to radiotherapy 72 h after irradiation. Thus, our data suggest a novel application of EVs in the surveillance of anti-cancer therapies.
Collapse
Affiliation(s)
- Sara Jennrich
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Martin Pelzer
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Tobias Tertel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Benjamin Koska
- West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Melanie Vüllings
- West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Basant Kumar Thakur
- Department of Pediatrics III, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Beate Timmermann
- West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Justine Rudner
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- *Correspondence: Justine Rudner,
| |
Collapse
|
15
|
Nosrati H, Ghaffarlou M, Salehiabar M, Mousazadeh N, Abhari F, Barsbay M, Ertas YN, Rashidzadeh H, Mohammadi A, Nasehi L, Rezaeejam H, Davaran S, Ramazani A, Conde J, Danafar H. Magnetite and bismuth sulfide Janus heterostructures as radiosensitizers for in vivo enhanced radiotherapy in breast cancer. BIOMATERIALS ADVANCES 2022; 140:213090. [PMID: 36027669 DOI: 10.1016/j.bioadv.2022.213090] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Janus heterostructures based on bimetallic nanoparticles have emerged as effective radiosensitizers owing to their radiosensitization capabilities in cancer cells. In this context, this study aims at developing a novel bimetallic nanoradiosensitizer, Bi2S3-Fe3O4, to enhance tumor accumulation and promote radiation-induced DNA damage while reducing adverse effects. Due to the presence of both iron oxide and bismuth sulfide metallic nanoparticles in these newly developed nanoparticle, strong radiosensitizing capacity is anticipated through the generation of reactive oxygen species (ROS) to induce DNA damage under X-Ray irradiation. To improve blood circulation time, biocompatibility, colloidal stability, and tuning surface functionalization, the surface of Bi2S3-Fe3O4 bimetallic nanoparticles was coated with bovine serum albumin (BSA). Moreover, to achieve higher cellular uptake and efficient tumor site specificity, folic acid (FA) as a targeting moiety was conjugated onto the bimetallic nanoparticles, termed Bi2S3@BSA-Fe3O4-FA. Biocompatibility, safety, radiation-induced DNA damage by ROS activation and generation, and radiosensitizing ability were confirmed via in vitro and in vivo assays. The administration of Bi2S3@BSA-Fe3O4-FA in 4T1 breast cancer murine model upon X-ray radiation revealed highly effective tumor eradication without causing any mortality or severe toxicity in healthy tissues. These findings offer compelling evidence for the potential capability of Bi2S3@BSA-Fe3O4-FA as an ideal nanoparticle for radiation-induced cancer therapy and open interesting avenues of future research in this area.
Collapse
Affiliation(s)
- Hamed Nosrati
- Department of Biotechnology, Research Institute of Modern Biological Techniques (RIMBT), University of Zanjan, Zanjan 45371-38791, Iran
| | | | - Marziyeh Salehiabar
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey
| | - Navid Mousazadeh
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Fatemeh Abhari
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Murat Barsbay
- Hacettepe University, Department of Chemistry, Beytepe, Ankara 06800, Turkey
| | - Yavuz Nuri Ertas
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey; Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey
| | - Hamid Rashidzadeh
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey
| | - Ali Mohammadi
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Leila Nasehi
- Department of Medical Laboratory, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hamed Rezaeejam
- Department of Radiology, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan 45139-56184, Iran
| | - Soodabeh Davaran
- Drug Applied Research Center, Tabriz University of Medical Sciences, P.O. Box 51656-65811, Tabriz, Iran
| | - Ali Ramazani
- Department of Biotechnology, Research Institute of Modern Biological Techniques (RIMBT), University of Zanjan, Zanjan 45371-38791, Iran; Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran.
| | - João Conde
- ToxOmics, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal.
| | - Hossein Danafar
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey.
| |
Collapse
|
16
|
Burnet NG, Mee T, Gaito S, Kirkby NF, Aitkenhead AH, Anandadas CN, Aznar MC, Barraclough LH, Borst G, Charlwood FC, Clarke M, Colaco RJ, Crellin AM, Defourney NN, Hague CJ, Harris M, Henthorn NT, Hopkins KI, Hwang E, Ingram SP, Kirkby KJ, Lee LW, Lines D, Lingard Z, Lowe M, Mackay RI, McBain CA, Merchant MJ, Noble DJ, Pan S, Price JM, Radhakrishna G, Reboredo-Gil D, Salem A, Sashidharan S, Sitch P, Smith E, Smith EAK, Taylor MJ, Thomson DJ, Thorp NJ, Underwood TSA, Warmenhoven JW, Wylie JP, Whitfield G. Estimating the percentage of patients who might benefit from proton beam therapy instead of X-ray radiotherapy. Br J Radiol 2022; 95:20211175. [PMID: 35220723 PMCID: PMC10993980 DOI: 10.1259/bjr.20211175] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES High-energy Proton Beam Therapy (PBT) commenced in England in 2018 and NHS England commissions PBT for 1.5% of patients receiving radical radiotherapy. We sought expert opinion on the level of provision. METHODS Invitations were sent to 41 colleagues working in PBT, most at one UK centre, to contribute by completing a spreadsheet. 39 responded: 23 (59%) completed the spreadsheet; 16 (41%) declined, arguing that clinical outcome data are lacking, but joined six additional site-specialist oncologists for two consensus meetings. The spreadsheet was pre-populated with incidence data from Cancer Research UK and radiotherapy use data from the National Cancer Registration and Analysis Service. 'Mechanisms of Benefit' of reduced growth impairment, reduced toxicity, dose escalation and reduced second cancer risk were examined. RESULTS The most reliable figure for percentage of radical radiotherapy patients likely to benefit from PBT was that agreed by 95% of the 23 respondents at 4.3%, slightly larger than current provision. The median was 15% (range 4-92%) and consensus median 13%. The biggest estimated potential benefit was from reducing toxicity, median benefit to 15% (range 4-92%), followed by dose escalation median 3% (range 0 to 47%); consensus values were 12 and 3%. Reduced growth impairment and reduced second cancer risk were calculated to benefit 0.5% and 0.1%. CONCLUSIONS The most secure estimate of percentage benefit was 4.3% but insufficient clinical outcome data exist for confident estimates. The study supports the NHS approach of using the evidence base and developing it through randomised trials, non-randomised studies and outcomes tracking. ADVANCES IN KNOWLEDGE Less is known about the percentage of patients who may benefit from PBT than is generally acknowledged. Expert opinion varies widely. Insufficient clinical outcome data exist to provide robust estimates. Considerable further work is needed to address this, including international collaboration; much is already underway but will take time to provide mature data.
Collapse
Affiliation(s)
- Neil G Burnet
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
| | - Thomas Mee
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - Simona Gaito
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - Norman F Kirkby
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - Adam H Aitkenhead
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
- Christie Medical Physics and Engineering, The Christie NHS
Foundation Trust, Wilmslow Road,
Manchester, United Kingdom
| | - Carmel N Anandadas
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
| | - Marianne C Aznar
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - Lisa H Barraclough
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
| | - Gerben Borst
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - Frances C Charlwood
- Christie Medical Physics and Engineering, The Christie NHS
Foundation Trust, Wilmslow Road,
Manchester, United Kingdom
| | - Matthew Clarke
- Christie Medical Physics and Engineering, The Christie NHS
Foundation Trust, Wilmslow Road,
Manchester, United Kingdom
| | - Rovel J Colaco
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - Adrian M Crellin
- NHS England National Clinical Lead Proton Beam Therapy, Leeds
Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds and St James's
Institute of Oncology, Leeds Teaching Hospitals NHS Trust, Beckett
Street, Leeds, LS9 7TF, UK, Leeds,
United Kingdom
| | - Noemie N Defourney
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - Christina J Hague
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
| | - Margaret Harris
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
| | - Nicholas T Henthorn
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - Kirsten I Hopkins
- International Atomic Energy Agency, Vienna International
Centre, Vienna,
Austria
| | - E Hwang
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
- Department of Radiation Oncology, Sydney West Radiation
Oncology Network, Crown Princess Mary Cancer Centre,
Sydney, New South Wales, Australia and
Institute of Medical Physics, School of Physics, University of Sydney,
Sydney, New South Wales, Australia
| | - Sam P Ingram
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
- Christie Medical Physics and Engineering, The Christie NHS
Foundation Trust, Wilmslow Road,
Manchester, United Kingdom
| | - Karen J Kirkby
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - Lip W Lee
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
| | - David Lines
- Christie Medical Physics and Engineering, The Christie NHS
Foundation Trust, Wilmslow Road,
Manchester, United Kingdom
| | - Zoe Lingard
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - Matthew Lowe
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
- Christie Medical Physics and Engineering, The Christie NHS
Foundation Trust, Wilmslow Road,
Manchester, United Kingdom
| | - Ranald I Mackay
- Christie Medical Physics and Engineering, The Christie NHS
Foundation Trust, Wilmslow Road,
Manchester, United Kingdom
| | - Catherine A McBain
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
| | - Michael J Merchant
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - David J Noble
- Department of Clinical Oncology, Edinburgh Cancer Centre,
Western General Hospital,
Edinburgh, United Kingdom
| | - Shermaine Pan
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - James M Price
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | | | - David Reboredo-Gil
- Christie Medical Physics and Engineering, The Christie NHS
Foundation Trust, Wilmslow Road,
Manchester, United Kingdom
| | - Ahmed Salem
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | | | - Peter Sitch
- Christie Medical Physics and Engineering, The Christie NHS
Foundation Trust, Wilmslow Road,
Manchester, United Kingdom
| | - Ed Smith
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
- Proton Clinical Outcomes Unit, The Christie NHS Foundation
Trust, Manchester, United
Kingdom
| | - Edward AK Smith
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
- Christie Medical Physics and Engineering, The Christie NHS
Foundation Trust, Wilmslow Road,
Manchester, United Kingdom
| | - Michael J Taylor
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - David J Thomson
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - Nicola J Thorp
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
| | - Tracy SA Underwood
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - John W Warmenhoven
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - James P Wylie
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
| | - Gillian Whitfield
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| |
Collapse
|
17
|
Read GH, Bailleul J, Vlashi E, Kesarwala AH. Metabolic response to radiation therapy in cancer. Mol Carcinog 2022; 61:200-224. [PMID: 34961986 PMCID: PMC10187995 DOI: 10.1002/mc.23379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 11/11/2022]
Abstract
Tumor metabolism has emerged as a hallmark of cancer and is involved in carcinogenesis and tumor growth. Reprogramming of tumor metabolism is necessary for cancer cells to sustain high proliferation rates and enhanced demands for nutrients. Recent studies suggest that metabolic plasticity in cancer cells can decrease the efficacy of anticancer therapies by enhancing antioxidant defenses and DNA repair mechanisms. Studying radiation-induced metabolic changes will lead to a better understanding of radiation response mechanisms as well as the identification of new therapeutic targets, but there are few robust studies characterizing the metabolic changes induced by radiation therapy in cancer. In this review, we will highlight studies that provide information on the metabolic changes induced by radiation and oxidative stress in cancer cells and the associated underlying mechanisms.
Collapse
Affiliation(s)
- Graham H. Read
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Justine Bailleul
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Erina Vlashi
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California
| | - Aparna H. Kesarwala
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
18
|
Alterio D, La Rocca E, Volpe S, Camarda AM, Casbarra A, Russell-Edu W, Zerella MA, Orecchia R, Galimberti V, Veronesi P, Leonardi MC, Jereczek-Fossa BA. Hypofractionated proton therapy in breast cancer: where are we? A critical review of the literature. Breast Cancer Res Treat 2022; 192:249-263. [PMID: 35025004 DOI: 10.1007/s10549-022-06516-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/03/2022] [Indexed: 02/06/2023]
Abstract
PURPOSE To critically review available literature on hypofractionated (≥ 3 Gy/fraction) proton therapy (PT) for breast cancer (BCa). METHODS A systematic screening of the literature was performed in April 2021 in compliance with the preferred reporting items for systematic reviews and meta-analyses recommendations. All full-text publication written in English were considered eligible. Acute and late toxicities, oncological outcomes and dosimetric features were considered for the analysis. RESULTS Twelve publications met the inclusion criteria; all studies but one focused on accelerated partial breast irradiation (APBI). Eleven works considered post-operative patients, one referred to ABPI as a curative-intent modality. The dosimetric profile of PT compared favorably with both photon-based 3D conformal and intensity-modulated techniques, while a more extended follow-up is warranted to fully assess both the long-term toxicities and the non-inferiority of oncological outcomes. CONCLUSION Our work shows that results on PT for BCa are currently only available for APBI applications, with dosimetric analyses demonstrating a clear advantage over both 3D conformal and intensity modulated X-rays techniques, especially when ≥ 2 treatment fields were used. However, further evidence is needed to define whether such theoretical benefit translates into clinical improvements, especially in the long-term.
Collapse
Affiliation(s)
- Daniela Alterio
- Department of Radiation Oncology, European Institute of Oncology (IEO) IRCSS, Milan, Italy
| | - Eliana La Rocca
- Department of Radiation Oncology, European Institute of Oncology (IEO) IRCSS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Stefania Volpe
- Department of Radiation Oncology, European Institute of Oncology (IEO) IRCSS, Milan, Italy. .,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
| | - Anna Maria Camarda
- Department of Radiation Oncology, European Institute of Oncology (IEO) IRCSS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Alessia Casbarra
- Department of Radiation Oncology, European Institute of Oncology (IEO) IRCSS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | | | - Maria Alessia Zerella
- Department of Radiation Oncology, European Institute of Oncology (IEO) IRCSS, Milan, Italy
| | - Roberto Orecchia
- Scientific Directorate, European Institute of Oncology (IEO) IRCSS, Milan, Italy
| | - Viviana Galimberti
- Division of Breast Surgery, European Institute of Oncology (IEO) IRCSS, Milan, Italy
| | - Paolo Veronesi
- Division of Breast Surgery, European Institute of Oncology (IEO) IRCSS, Milan, Italy
| | | | - Barbara Alicja Jereczek-Fossa
- Department of Radiation Oncology, European Institute of Oncology (IEO) IRCSS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
19
|
Taysi S, Algburi FS, Mohammed Z, Ali OA, Taysi ME. Thymoquinone: A Review of Pharmacological Importance, Oxidative Stress, COVID-19, and Radiotherapy. Mini Rev Med Chem 2022; 22:1847-1875. [PMID: 34983346 DOI: 10.2174/1389557522666220104151225] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/01/2021] [Accepted: 11/10/2021] [Indexed: 11/22/2022]
Abstract
Widely consumed worldwide, Nigella sativa (NS) is a medicinal herb commonly used in various alternative medicine systems such as Unani and Tibb, Ayurveda, and Siddha. Recommended for regular use in Tibb-e-Nabwi (Prophetic Medicine), NS is considered one of the most notable forms of healing medicine in Islamic literature. Thymoquinone (TQ), the main component of the essential oil of NS, has been reported to have many properties such as antioxidant, anti-inflammatory, antiviral, and antineoplastic. Its chemical structure indicates antiviral potential against many viruses, including the hepatitis C virus, human immunodeficiency virus, and other coronavirus diseases. Interestingly, molecular docking studies have demonstrated that TQ can potentially inhibit the development of the coronavirus disease 2019 (COVID-19) by binding to the receptor site on the transmembrane serine proteinase 2 (the activator enzyme that attaches the virus to the cell). In addition, TQ has been shown to be effective against cancer cells due to its inhibitory effect by binding to the different regions of MDM2, according to the proposed molecular docking study. Detailed in this review is the origin of TQ, its significance in alternative medicine, pharmacological value, potential as a cancer anti-proliferative agent, use against the coronavirus disease 2019 (COVID-19), and treatment of other diseases.
Collapse
Affiliation(s)
- Seyithan Taysi
- Department of Medical Biochemistry, Medical School, Gaziantep University, Gaziantep
| | - Firas Shawqi Algburi
- Department of Medical Biochemistry, Medical School, Gaziantep University, Gaziantep
- Department of Biology, College of Science, Tikrit University, Iraq
| | - Zaid Mohammed
- Department of Biochemistry and Technology, Gaziantep University, Gaziantep
| | - Omeed Akbar Ali
- Department of Medical Biochemistry, Medical School, Gaziantep University, Gaziantep
| | - Muhammed Enes Taysi
- Department of Emergency Medicine, Medical School, Bolu Izzet Baysal University- Bolu-Turkey
| |
Collapse
|
20
|
Paganetti H. Mechanisms and Review of Clinical Evidence of Variations in Relative Biological Effectiveness in Proton Therapy. Int J Radiat Oncol Biol Phys 2022; 112:222-236. [PMID: 34407443 PMCID: PMC8688199 DOI: 10.1016/j.ijrobp.2021.08.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/14/2021] [Accepted: 08/10/2021] [Indexed: 01/03/2023]
Abstract
Proton therapy is increasingly being used as a radiation therapy modality. There is uncertainty about the biological effectiveness of protons relative to photon therapies as it depends on several physical and biological parameters. Radiation oncology currently applies a constant and generic value for the relative biological effectiveness (RBE) of 1.1, which was chosen conservatively to ensure tumor coverage. The use of a constant value has been challenged particularly when considering normal tissue constraints. Potential variations in RBE have been assessed in several published reviews but have mostly focused on data from clonogenic cell survival experiments with unclear relevance for clinical proton therapy. The goal of this review is to put in vitro findings in relation to clinical observations. Relevant in vivo pathways determining RBE for tumors and normal tissues are outlined, including not only damage to tumor cells and parenchyma but also vascular damage and immune response. Furthermore, the current clinical evidence of varying RBE is reviewed. The assessment can serve as guidance for treatment planning, personalized dose prescriptions, and outcome analysis.
Collapse
Affiliation(s)
- Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA.
| |
Collapse
|
21
|
Jacobs M, Kerkmeijer L, de Ruysscher D, Brunenberg E, Boersma L, Verheij M. Implementation of MR-linac and proton therapy in two radiotherapy departments in The Netherlands: Recommendations based on lessons learned. Radiother Oncol 2021; 167:14-24. [PMID: 34915064 DOI: 10.1016/j.radonc.2021.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/06/2021] [Indexed: 12/26/2022]
Abstract
Recently, two new treatment techniques, i.e. proton therapy and MR-linac based radiotherapy (RT), have been introduced in Dutch RT centres with major impact on daily practice. The content and context of these techniques are frequently described in scientific literature while little is reported about the implementation phase. This process is complex due to a variety of aspects, such as the involvement of multiple stakeholders, significant unpredictability in the start-up phase, the impact of the learning curve, standard operating procedures under development, new catchment areas, and extensive training programs. Insight about implementation in daily care is utterly important for clinics that are about to introduce these new technologies in order to prevent that every centre needs to reinvent the wheel. This position paper gives an overview of the implementation of proton therapy and MR-linac based RT in two large academic RT centres in the Netherlands, i.e. Maastro and Radboudumc respectively. With this paper we aim to report our lessons learned, in order to facilitate other RT centres that consider introducing these and other new techniques in their departments.
Collapse
Affiliation(s)
- Maria Jacobs
- Tilburg School of Economics and Management, Tilburg University, The Netherlands.
| | - Linda Kerkmeijer
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dirk de Ruysscher
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, The Netherlands
| | - Ellen Brunenberg
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Liesbeth Boersma
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, The Netherlands
| | - Marcel Verheij
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
22
|
Sørensen BS, Pawelke J, Bauer J, Burnet NG, Dasu A, Høyer M, Karger CP, Krause M, Schwarz M, Underwood TSA, Wagenaar D, Whitfield GA, Lühr A. Does the uncertainty in relative biological effectiveness affect patient treatment in proton therapy? Radiother Oncol 2021; 163:177-184. [PMID: 34480959 DOI: 10.1016/j.radonc.2021.08.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/09/2021] [Accepted: 08/22/2021] [Indexed: 10/20/2022]
Abstract
Clinical treatment with protons uses the concept of relative biological effectiveness (RBE) to convert the absorbed dose into an RBE-weighted dose that equals the dose for radiotherapy with photons causing the same biological effect. Currently, in proton therapy a constant RBE of 1.1 is generically used. However, empirical data indicate that the RBE is not constant, but increases at the distal edge of the proton beam. This increase in RBE is of concern, as the clinical impact is still unresolved, and clinical studies demonstrating a clinical effect of an increased RBE are emerging. Within the European Particle Therapy Network (EPTN) work package 6 on radiobiology and RBE, a workshop was held in February 2020 in Manchester with one day of discussion dedicated to the impact of proton RBE in a clinical context. Current data on RBE effects, patient outcome and modelling from experimental as well as clinical studies were presented and discussed. Furthermore, representatives from European clinical proton therapy centres, who were involved in patient treatment, laid out their current clinical practice on how to consider the risk of a variable RBE in their centres. In line with the workshop, this work considers the actual impact of RBE issues on patient care in proton therapy by reviewing preclinical data on the relation between linear energy transfer (LET) and RBE, current clinical data sets on RBE effects in patients, and applied clinical strategies to manage RBE uncertainties. A better understanding of the variability in RBE would allow development of proton treatments which are safer and more effective.
Collapse
Affiliation(s)
- Brita S Sørensen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Experimental Clinical Oncology - Department of Oncology, Aarhus University Hospital, Aarhus, Denmark.
| | - Jörg Pawelke
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Institute of Radiooncology-OncoRay, Dresden, Germany
| | - Julia Bauer
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | | | - Alexandru Dasu
- The Skandion Clinic, Uppsala, Sweden; Medical Radiation Sciences, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Morten Høyer
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Christian P Karger
- Dept. of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Mechthild Krause
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Institute of Radiooncology-OncoRay, Dresden, Germany; German Cancer Consortium Dresden and German Cancer Research Center Heidelberg, Germany; Dept. of Radiation Oncology, University Hospital and Faculty of Medicine C.G. Carus, Dresden, Germany; National Center for Tumor Diseases Dresden, German Cancer Research Center Heidelberg, University Hospital and Faculty of Medicine C.G. Carus Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
| | - Marco Schwarz
- Protontherapy Department -Trento Hospital, and TIFPA-INFN, Trento, Italy
| | - Tracy S A Underwood
- Division of Cancer Sciences, School of Medical Sciences, The University of Manchester, UK
| | - Dirk Wagenaar
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Gillian A Whitfield
- The Christie NHS Foundation Trust, Manchester, UK; University of Manchester, UK
| | - Armin Lühr
- Department of Physics, TU Dortmund University, Dortmund, Germany
| |
Collapse
|