1
|
Lauwens L, Ribeiro MF, Zegers CML, Høyer M, Alapetite C, Blomstrand M, Calugaru V, Perri DD, Iannalfi A, Lütgendorf-Caucig C, Paulsen F, Postma AA, Romero AM, Timmermann B, Troost EGC, van der Weide HL, Whitfield GA, Harrabi S, Lambrecht M, Eekers DBP. Systematic review of MRI alterations in the brain following proton and photon radiation therapy: Towards a uniform European Particle Therapy Network (EPTN) definition. Radiother Oncol 2025; 208:110936. [PMID: 40360047 DOI: 10.1016/j.radonc.2025.110936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/30/2025] [Accepted: 05/01/2025] [Indexed: 05/15/2025]
Abstract
Magnetic resonance imaging (MRI) often demonstrates alterations following cranial radiotherapy (RT), which may result in clinical symptoms and diagnostic uncertainty, and thus potentially impact treatment decisions. The potential differences in MRI alterations after proton and photon RT, has raised concerns regarding the relative biological effectiveness of proton therapy. To provide an overview of MRI alterations in the brain post-RT and to explore differences between photon and proton RT, a systematic review adhering to the PRISMA guidelines was conducted, focusing on the assessment methods and definitions across studies. A systematic search of three electronic databases was performed using the concepts 'normo-fractionated radiotherapy ', 'MRI alterations' and 'brain, skull base or head and neck tumours in adult and paediatric populations'. Data extraction and quality assessment was performed on articles meeting the predefined criteria by two independent reviewers. Out of 5887 screened studies, 94 met the inclusion criteria. These studies were categorized based on confinement of the MRI alterations to temporal lobe, brainstem, or across the entire brain. Additional subclassification was performed based on MRI sequences evaluated or by the nature of the alterations, with pseudoprogression generally reserved for glioma patients. While many papers exist on MRI alterations in the brain after RT, this review highlights significant inconsistencies in the terminology and definitions, limiting the comparability of findings across studies. Our results highlight the need for and facilitate the development of a standardized framework for describing MRI alterations after RT.
Collapse
Affiliation(s)
- Lieselotte Lauwens
- KU Leuven, University of Leuven, Department of Oncology, Laboratory of Experimental Radiotherapy, Leuven, Belgium; University Hospitals Leuven, Department of Radiation Oncology, Leuven, Belgium.
| | - Marvin F Ribeiro
- Department of Radiation Oncology (Maastro), GROW Research Institute for Oncology and Reproduction, Maastricht. University Medical Centre+, Maastricht, the Netherlands; Mental Health and Neuroscience research institute (Mhens) Faculty of Health Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Catharina M L Zegers
- Department of Radiation Oncology (Maastro), GROW Research Institute for Oncology and Reproduction, Maastricht. University Medical Centre+, Maastricht, the Netherlands
| | - Morton Høyer
- Danish Centre for Particle Therapy, Aarhus University Hospital, Denmark
| | - Claire Alapetite
- Institut Curie, Radiation Oncology Department, Paris & Proton Center, Orsay, France
| | - Malin Blomstrand
- Department of Oncology, Sahlgrenska University Hospital Gothenburg and the Skandion Clinic, Sweden
| | - Valentin Calugaru
- Institut Curie, Radiation Oncology Department, Paris & Proton Center, Orsay, France
| | - Dario Di Perri
- Department of Radiation Oncology, Cliniques universitaires Saint-Luc, Brussels, Belgium; Particle Therapy Interuniversitary Center Leuven (PartICLe), Belgium
| | - Alberto Iannalfi
- Clinical Department, Radiotherapy Unit, National Center for Oncological Hadrontherapy (C.N.A.O.), Italy
| | - Carola Lütgendorf-Caucig
- MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria; Radioonkologie, Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Frank Paulsen
- Clinic for Radiation Oncology, Eberhard-Karls-University, Tuebingen, Germany
| | - Alida A Postma
- Mental Health and Neuroscience research institute (Mhens) Faculty of Health Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Alejandra Méndèz Romero
- Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Beate Timmermann
- Department of Particle Therapy, West German Proton Therapy Centre Essen (WPE), University Hospital Essen, Germany
| | - Esther G C Troost
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Hiska L van der Weide
- University of Groningen, University Medical Center Groningen, Department of Radiation Oncology, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Gillian A Whitfield
- The Christie Proton Beam Therapy Centre, The Christie NHS Foundation Trust, Manchester, United Kingdom; University of Manchester, Royal Manchester Children's Hospital, The Children's Brain Tumour Research Network, Manchester, United Kingdom
| | - Semi Harrabi
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Maarten Lambrecht
- KU Leuven, University of Leuven, Department of Oncology, Laboratory of Experimental Radiotherapy, Leuven, Belgium; University Hospitals Leuven, Department of Radiation Oncology, Leuven, Belgium; Particle Therapy Interuniversitary Center Leuven (PartICLe), Belgium
| | - Daniëlle B P Eekers
- Department of Radiation Oncology (Maastro), GROW Research Institute for Oncology and Reproduction, Maastricht. University Medical Centre+, Maastricht, the Netherlands
| |
Collapse
|
2
|
Roka K, Kersbergen KJ, Schouten-van Meeteren AYN, Avula S, Sehested A, Otth M, Scheinemann K. Towards a Risk-Based Follow-Up Surveillance Imaging Schedule for Children and Adolescents with Low-Grade Glioma. Curr Oncol 2024; 31:7330-7351. [PMID: 39590171 PMCID: PMC11592938 DOI: 10.3390/curroncol31110541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
The frequency and duration of imaging surveillance in children and adolescents with pediatric low-grade gliomas (pLGGs) aims for the early detection of recurrence or progression. Although surveillance of pLGGs is performed routinely, it is not yet standardized. The aim of the current review is to provide a comprehensive synthesis of published studies regarding the optimal frequency, intervals, and duration of surveillance. Several key influencing factors were identified (age, the extent of resection, the tumor location, the histological type, and specific molecular characteristics). However, the lack of consistent definitions of recurrence/progression and the extent of resection meant that it was not possible to perform a meta-analysis of the data from the 18 included articles. This review highlights the need for updating the definition of these terms for uniform and global use both in routine clinical practice as well as in upcoming trials. Thus, future studies on the heterogenous group of pLGGs will allow for the better tailoring of both the frequency and duration of imaging surveillance protocols in relevant settings.
Collapse
Affiliation(s)
- Kleoniki Roka
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece
| | - Karina J. Kersbergen
- Department Neuro-Oncology, Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands;
| | | | - Shivaram Avula
- Department of Radiology, Alder Hey Children’s Hospital NHS Foundation Trust, Liverpool L14 5AB, UK;
| | - Astrid Sehested
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark;
| | - Maria Otth
- Division of Oncology-Haematology, Children’s Hospital of Eastern Switzerland, Claudiusstrasse 6, 9006 St. Gallen, Switzerland; (M.O.); (K.S.)
- Department of Oncology, University Children’s Hospital Zurich, Lenggstrasse 30, 8008 Zurich, Switzerland
- Faculty of Health Sciences and Medicine, University of Lucerne, Alpenquai 4, 6005 Lucerne, Switzerland
| | - Katrin Scheinemann
- Division of Oncology-Haematology, Children’s Hospital of Eastern Switzerland, Claudiusstrasse 6, 9006 St. Gallen, Switzerland; (M.O.); (K.S.)
- Faculty of Health Sciences and Medicine, University of Lucerne, Alpenquai 4, 6005 Lucerne, Switzerland
| |
Collapse
|
3
|
Ghorbani A, Chatanaka MK, Avery LM, Wang M, Brown J, Cohen R, Gorham T, Misaghian S, Padmanabhan N, Romero D, Stengelin M, Mathew A, Sigal G, Wohlstadter J, Horbinski C, McCortney K, Xu W, Zadeh G, Mansouri A, Yousef GM, Diamandis EP, Prassas I. Glial fibrillary acidic protein, neurofilament light, matrix metalloprotease 3 and fatty acid binding protein 4 as non-invasive brain tumor biomarkers. Clin Proteomics 2024; 21:41. [PMID: 38879494 PMCID: PMC11179213 DOI: 10.1186/s12014-024-09492-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/29/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND Gliomas are aggressive malignant tumors, with poor prognosis. There is an unmet need for the discovery of new, non-invasive biomarkers for differential diagnosis, prognosis, and management of brain tumors. Our objective is to validate four plasma biomarkers - glial fibrillary acidic protein (GFAP), neurofilament light (NEFL), matrix metalloprotease 3 (MMP3) and fatty acid binding protein 4 (FABP4) - and compare them with established brain tumor molecular markers and survival. METHODS Our cohort consisted of patients with benign and malignant brain tumors (GBM = 77, Astrocytomas = 26, Oligodendrogliomas = 23, Secondary tumors = 35, Meningiomas = 70, Schwannomas = 15, Pituitary adenomas = 15, Normal individuals = 30). For measurements, we used ultrasensitive electrochemiluminescence multiplexed immunoassays. RESULTS High plasma GFAP concentration was associated with GBM, low GFAP and high FABP4 were associated with meningiomas, and low GFAP and low FABP4 were associated with astrocytomas and oligodendrogliomas. NEFL was associated with progression of disease. Several prognostic genetic alterations were significantly associated with all plasma biomarker levels. We found no independent associations between plasma GFAP, NEFL, FABP4 and MMP3, and overall survival. The candidate biomarkers could not reliably discriminate GBM from primary or secondary CNS lymphomas. CONCLUSIONS GFAP, NEFL, FABP4 and MMP3 are useful for differential diagnosis and prognosis, and are associated with molecular changes in gliomas.
Collapse
Affiliation(s)
- Atefeh Ghorbani
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Miyo K Chatanaka
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Lisa M Avery
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
- Department of Biostatistics, The Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - Mingyue Wang
- Meso Scale Diagnostics, LLC., Rockville, MD, USA
| | | | - Rachel Cohen
- Meso Scale Diagnostics, LLC., Rockville, MD, USA
| | - Taron Gorham
- Meso Scale Diagnostics, LLC., Rockville, MD, USA
| | | | | | | | | | - Anu Mathew
- Meso Scale Diagnostics, LLC., Rockville, MD, USA
| | - George Sigal
- Meso Scale Diagnostics, LLC., Rockville, MD, USA
| | | | - Craig Horbinski
- Feinberg School of Medicine, Northwestern Medicine, Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Katy McCortney
- Feinberg School of Medicine, Northwestern Medicine, Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Wei Xu
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
- Department of Biostatistics, The Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - Gelareh Zadeh
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Alireza Mansouri
- Department of Neurosurgery, Hershey Medical Center, Hershey, PA, USA
- Penn State Cancer Institute, Hershey Medical Center, Hershey, PA, USA
| | - George M Yousef
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Laboratory Medicine Program, University Health Network, Toronto, Canada
| | - Eleftherios P Diamandis
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada.
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada.
| | - Ioannis Prassas
- Laboratory Medicine Program, University Health Network, Toronto, Canada.
| |
Collapse
|
4
|
Joh-Carnella N, Bauman G, Yock TI, Zelcer S, Youkhanna S, Cacciotti C. Case report: Pediatric low-grade gliomas: a fine balance between treatment options, timing of therapy, symptom management and quality of life. Front Oncol 2024; 14:1366251. [PMID: 38912055 PMCID: PMC11190070 DOI: 10.3389/fonc.2024.1366251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/28/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction Pediatric low-grade gliomas (pLGG) are the most common brain tumor in children and encompass a wide range of histologies. Treatment may pose challenges, especially in those incompletely resected or those with multiple recurrence or progression. Case description We report the clinical course of a girl diagnosed with pilocytic astrocytoma and profound hydrocephalus at age 12 years treated with subtotal resection, vinblastine chemotherapy, and focal proton radiotherapy. After radiotherapy the tumor increased in enhancement temporarily with subsequent resolution consistent with pseudoprogression. Despite improvement in imaging and radiographic local control, the patient continues to have challenges with headaches, visual and auditory concerns, stroke-like symptoms, and poor quality of life. Conclusion pLGG have excellent long-term survival; thus, treatments should focus on maintaining disease control and limiting long-term toxicities. Various treatment options exist including surgery, chemotherapy, targeted agents, and radiation therapy. Given the morbidity associated with pLGG, individualized treatment approaches are necessary, with a multi-disciplinary approach to care focused on minimizing treatment side effects, and promoting optimal quality of life for patients.
Collapse
Affiliation(s)
| | - Glenn Bauman
- Division of Radiation Oncology, Department of Oncology, London Health Sciences Centre & Western University, London, ON, Canada
| | - Torunn I. Yock
- Department of Pediatric Radiation Oncology, Massachusetts General Hospital, Boston, MA, United States
| | - Shayna Zelcer
- Division of Hematology/Oncology, Department of Pediatrics, London Health Sciences Centre & Western University, London, ON, Canada
| | - Sabin Youkhanna
- Department Radiation Oncology, London Regional Cancer Centre, London, ON, Canada
| | - Chantel Cacciotti
- Division of Hematology/Oncology, Department of Pediatrics, London Health Sciences Centre & Western University, London, ON, Canada
| |
Collapse
|
5
|
Frosina G. Advancements in Image-Based Models for High-Grade Gliomas Might Be Accelerated. Cancers (Basel) 2024; 16:1566. [PMID: 38672647 PMCID: PMC11048778 DOI: 10.3390/cancers16081566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
The first half of 2022 saw the publication of several major research advances in image-based models and artificial intelligence applications to optimize treatment strategies for high-grade gliomas, the deadliest brain tumors. We review them and discuss the barriers that delay their entry into clinical practice; particularly, the small sample size and the heterogeneity of the study designs and methodologies used. We will also write about the poor and late palliation that patients suffering from high-grade glioma can count on at the end of life, as well as the current legislative instruments, with particular reference to Italy. We suggest measures to accelerate the gradual progress in image-based models and end of life care for patients with high-grade glioma.
Collapse
Affiliation(s)
- Guido Frosina
- Mutagenesis & Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| |
Collapse
|