1
|
Manring HR, Fleming JL, Meng W, Gamez ME, Blakaj DM, Chakravarti A. FLASH Radiotherapy: From In Vivo Data to Clinical Translation. Hematol Oncol Clin North Am 2025; 39:237-255. [PMID: 39828472 DOI: 10.1016/j.hoc.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Delivery of radiotherapy (RT) at ultra-high dose rates or FLASH radiotherapy (FLASH-RT) is an emerging treatment option for patients with cancer that could increase survival outcomes and quality of life. In vivo data across a multitude of normal tissues and associated tumors have been published demonstrating the FLASH effect while bringing attention to the need for additional research. Combination of FLASH-RT with other treatment options including spatially fractionated RT, immunotherapy, and usage in the setting of reirradiation could also provide additional benefit. Phase I clinical trials have shown promising results, yet research is warranted before routine clinical use of FLASH-RT.
Collapse
Affiliation(s)
- Heather R Manring
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Jessica L Fleming
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Wei Meng
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Mauricio E Gamez
- Department of Radiation Oncology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA
| | - Dukagjin M Blakaj
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Arnab Chakravarti
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
2
|
Klaver YLB, Hoogeman MS, Lu QR, Bradley JD, Choi JI, Ferris MJ, Grau C, Guha C, Lin H, Lin L, Mascia AE, Moerman AM, Poulsen PR, Shi LZ, Singers Sørensen B, Tian S, Vozenin MC, Willey CD, Zhou S, Amos RA, Hawkins M, Simone CB. Requirements and Study Design for the Next Proton FLASH Clinical Trials: an International Multidisciplinary Delphi Consensus. Int J Radiat Oncol Biol Phys 2025:S0360-3016(25)00306-2. [PMID: 40174648 DOI: 10.1016/j.ijrobp.2025.03.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/20/2025] [Accepted: 03/22/2025] [Indexed: 04/04/2025]
Abstract
PURPOSE The FLASH effect, defined as normal tissue sparing while maintaining tumor control with ultra-high dose-rate irradiation, has been demonstrated preclinically in different tumors and tissues. Although the biological mechanisms are unclear, there is a need for clinical trials investigating the value of proton FLASH irradiation (pFLASH). The purpose of this study was to establish an expert consensus regarding prerequisites, study design, and endpoints for the next clinical trials exploring the clinical potentials of pFLASH. METHODS AND MATERIALS Delphi methodology was used to develop a systematic expert consensus. An international expert panel was composed of 21 clinicians, physicists, and biologists, well-balanced in expertise and geography, using predefined inclusion criteria. Statements were scored on a 5-point Likert scale in 2 rounds of online questionnaire voting. The definition of consensus was set a priori. RESULTS The response rate was 100% in both rounds. Preclinical in vivo demonstration of the FLASH effect in normal tissue while maintaining tumor response was deemed essential before starting a clinical trial in a specific tumor site. The next clinical pFLASH trials are advised to include adult patients only, with a minimal expected overall survival of 1 year for palliative settings or, preferably, oligometastatic disease in the ablative setting. The pFLASH effect should be studied in a single treatment modality setting with toxicity reduction as the primary endpoint. Recommendations were formulated on the use of clinical targets and organs at risk constraints, requirements for evaluation and reporting, and accuracy levels and pretreatment verification of dose rates. No consensus was reached on the use of multiple beams, multiple fractions, and fraction dose. CONCLUSIONS There is a need for additional data regarding the influence of fractionation and multiple beam planning. The results of this study can be used to develop roadmaps to guide future clinical trial design.
Collapse
Affiliation(s)
- Yvonne L B Klaver
- HollandPTC, Delft, The Netherlands; Department of Radiotherapy, Leiden University Medical Center, Leiden, The Netherlands.
| | - Mischa S Hoogeman
- HollandPTC, Delft, The Netherlands; Department of Radiotherapy, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Q Richard Lu
- Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jeffrey D Bradley
- Department of Radiation Oncology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - J Isabelle Choi
- Department of Radiation Oncology, New York Proton Center, New York, New York; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Matthew J Ferris
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland; Maryland Proton Treatment Center, Baltimore, Maryland
| | - Cai Grau
- Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Chandan Guha
- Department of Radiation Oncology, Montefiore University Hospital, Bronx, New York
| | - Haibo Lin
- Department of Radiation Oncology, New York Proton Center, New York, New York; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Radiation Oncology, Montefiore University Hospital, Bronx, New York
| | - Liyong Lin
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Anthony E Mascia
- Cincinnati Children's Hospital Medical Center, Cancer and Blood Disease Institute, Division of Oncology, Cincinnati, Ohio
| | | | - Per R Poulsen
- Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lewis Z Shi
- Departments of Microbiology, Pharmacology & Toxicology; The Immunology Institute; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama; Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Brita Singers Sørensen
- Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Experimental Clinical Oncology, Aarhus University, Denmark
| | - Sibo Tian
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Marie-Catherine Vozenin
- Radiotherapy and Radiobiology Sector, Radiation Therapy Service, University Hospital of Geneva, Geneva, Switzerland
| | - Christopher D Willey
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sumin Zhou
- Radiation Oncology Department, University of Nebraska Medical Center, Omaha, Nebraska
| | - Richard A Amos
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Maria Hawkins
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom; Clinical Oncology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Charles B Simone
- Department of Radiation Oncology, New York Proton Center, New York, New York; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
3
|
Spruijt KH, Godart J, Rovituso M, Wang Y, van der Wal E, Habraken SJM, Hoogeman M. Development of patient-specific pre-treatment verification procedure for FLASH proton therapy based on time resolved film dosimetry. Med Phys 2025; 52:1268-1280. [PMID: 39601486 PMCID: PMC11788253 DOI: 10.1002/mp.17534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Pre-clinical studies demonstrate that delivering a high dose at a high dose rate result in less toxicity while maintaining tumor control, known as the FLASH effect. In proton therapy, clinical trials have started using 250 MeV transmission beams and more trials are foreseen. A novel aspect of FLASH treatments, compared to conventional radiotherapy, is the importance of dose rate next to dose and geometry. Therefore, to ensure the safety and quality of FLASH treatments, patient-specific dose-rate verification before treatment is an important additional prerequisite. Various definitions of dose rate have been reported, however, the scanning proton beam (PBS) dose rate definition of Folkerts 2020 is currently the most used. It is the ratio between delta dose (ΔD) and delta time (Δt), subject to a predefined threshold, for a given position. Gafchromic film is a widely available detector used to perform relative and absolute integrated dose measurements. Since the response time of film is in the order of micro seconds it could also be suitable for pre-treatment verification of FLASH proton therapy. PURPOSE Development of a patient-specific pre-treatment verification procedure for FLASH proton therapy based on time resolved film dosimetry. The detector design is presented and validated using three tests. METHODS A dedicated setup was built that holds a Gafchromic film and a high-speed camera to record the film during the irradiations. The red color channel of the camera's readings was converted into optical density (OD) and an OD-to-dose calibration curve was applied to determine the relative dose accumulation over time. To undo the film measurement (film response) of the post-irradiation coloration process, it is assumed that each dose deposit (pulse) results in a similar film response function. The convolution of the film response function over the pulse provides the film response. First the film response function was obtained by fitting this parameter onto a known film response and corresponding pulse. Post-irradiation coloration correction was performed by deconvoluting all film measurement by the obtained film response function. From the integral of each measured pulse, the Δt was obtained. Several validation tests were conducted: compare the Δt film measurement to a reference detector, exclude that revisiting spots result in an unwanted artefact on the dose accumulation measurement and thereby Δt, and compare Δt distributions of film measurement and simulation (local gamma evaluation, criteria 10%/2 mm) for nine QA fields (dose values; 12, 15, and 20 Gy, and, nozzle currents; 25, 120, and 215 nA). A similar analysis was performed for three dose optimized treatment beams, with and without scan patterns optimized on local dose rate. RESULTS Good agreement was found for Δt comparing film to the reference detector, but for Δt values smaller than ∼20 ms the error becomes larger (≥15%). Dose accumulation measured with film over time from a single spot is independent of whether the dose is delivered at once, twice or thrice. All gamma evaluations resulted in a gamma pass rate of ≥90%. CONCLUSIONS Time resolved film dosimetry to perform patient-specific pre-treatment verification in FLASH proton therapy is feasible.
Collapse
Affiliation(s)
- K. H. Spruijt
- HollandPTCDelftThe Netherlands
- Department of RadiotherapyErasmus MC Cancer InstituteUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - J. Godart
- HollandPTCDelftThe Netherlands
- Department of RadiotherapyErasmus MC Cancer InstituteUniversity Medical Center RotterdamRotterdamThe Netherlands
| | | | - Y. Wang
- HollandPTCDelftThe Netherlands
| | | | - S. J. M. Habraken
- HollandPTCDelftThe Netherlands
- Department of Radiation OncologyLeiden University Medical CenterLeidenThe Netherlands
| | - M. Hoogeman
- HollandPTCDelftThe Netherlands
- Department of RadiotherapyErasmus MC Cancer InstituteUniversity Medical Center RotterdamRotterdamThe Netherlands
| |
Collapse
|
4
|
Wase V, Widenfalk O, Nilsson R, Fälth C, Fredriksson A. Fast spot order optimization to increase dose rates in scanned particle therapy FLASH treatments. Phys Med Biol 2025; 70:025017. [PMID: 39774312 DOI: 10.1088/1361-6560/ada715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/07/2025] [Indexed: 01/11/2025]
Abstract
The advent of ultra-high dose rate irradiation, known as FLASH radiation therapy, has shown promising potential in reducing toxicity while maintaining tumor control. However, the clinical translation of these benefits necessitates efficient treatment planning strategies. This study introduces a novel approach to optimize proton therapy for FLASH effects using traveling salesperson problem (TSP) heuristics. We applied these heuristics to optimize the arrangement of proton spots in treatment plans for 26 prostate cancer patients, comparing the performance against conventional sorting methods and global optimization techniques. Our results demonstrate that TSP-based heuristics significantly enhance FLASH coverage to the same extent as the global optimization technique, but with computation times reduced from hours to a few seconds. This approach offers a practical and scalable solution for enhancing the effectiveness of FLASH therapy, paving the way for more effective and personalized cancer treatments. Future work will focus on further optimizing run times and validating these methods in clinical settings.
Collapse
Affiliation(s)
- Viktor Wase
- Research, RaySearch Laboratories, Stockholm, Sweden
| | | | | | - Claes Fälth
- Research, RaySearch Laboratories, Stockholm, Sweden
| | | |
Collapse
|
5
|
Sitarz M, Ronga MG, Gesualdi F, Bonfrate A, Wahl N, De Marzi L. Implementation and validation of a very-high-energy electron model in the matRad treatment planning system. Med Phys 2025; 52:518-529. [PMID: 39419015 PMCID: PMC11699996 DOI: 10.1002/mp.17392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/05/2024] [Accepted: 08/22/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND While electron beams of up to 20 MeV are commonly used in radiotherapy, the use of very-high-energy electrons (VHEEs) in the range of 100-200 MeV is now becoming a realistic option thanks to the recent advancements in accelerator technology. Indeed, VHEE offers several clinically attractive features and can be delivered using various conformation methods (including scanning, collimation, and focussing) at ultra-high dose rates. To date, there is a lack of research tools for fast simulation of treatment plans using VHEE beams. PURPOSE This work aims to implement and validate a simple and fast dose calculation algorithm based on the Fermi-Eyges theory of multiple Coulomb scattering for VHEE radiation therapy, with energies up to 200 MeV. A treatment planning system (TPS) toolkit with VHEE modality would indeed allow for further preclinical investigations, including treatment plan optimization and evaluation, and thus contribute to the gradual introduction of VHEE radiotherapy in clinical practice. METHODS A VHEE pencil beam scanning double Gaussian model was introduced into the open-source TPS matRad environment along with new functions and options dedicated to VHEE dose calculations. Various geometries and field configurations were then calculated in matRad (up to 200 MeV and 15 × 15 cm2, with complex bone or lung heterogeneities) and the results were compared to Monte Carlo simulations in the TOPAS/Geant4 toolkit. Two types of beam model (divergent or focused) were also tested. Examples of clinical treatment plans were computed, and the results were compared between the two codes. RESULTS VHEE modality was fully implemented in matRad with GUI capabilities while preserving all original TPS features. New relevant options such as the importation of specific spot-lists or adjustment of the lateral dose calculation cutoff to optimize the calculation speed were validated. Single spot and square field dose distributions were validated in water alone as well as in clinically relevant inhomogeneities. Dose maps from the VHEE model in matRad were in good agreement with TOPAS (2D gamma index [2%/1 mm] with passing rates superior to 90%, <6% mean dose differences), except for large interface heterogeneities. CONCLUSIONS This work describes the implementation of a simple but efficient VHEE simulation model in matRad. A few configurations were studied in order to validate the model against accurate Monte Carlo simulations, demonstrating its usefulness for carrying out preliminary studies involving VHEE radiotherapy.
Collapse
Affiliation(s)
- Mateusz Sitarz
- Radiation Oncology DepartmentInstitut Curie, PSL Research UniversityOrsayFrance
- Institut CuriePSL Research University, University Paris Saclay, INSERM LITO U1288OrsayFrance
| | - Maria Grazia Ronga
- Radiation Oncology DepartmentInstitut Curie, PSL Research UniversityOrsayFrance
- Institut CuriePSL Research University, University Paris Saclay, INSERM LITO U1288OrsayFrance
- Thales AvionicsVélizy‐VillacoublayFrance
| | - Flavia Gesualdi
- Radiation Oncology DepartmentInstitut Curie, PSL Research UniversityOrsayFrance
| | - Anthony Bonfrate
- Radiation Oncology DepartmentInstitut Curie, PSL Research UniversityOrsayFrance
- Institut CuriePSL Research University, University Paris Saclay, INSERM LITO U1288OrsayFrance
| | - Niklas Wahl
- Department of Medical Physics in Radiation OncologyGerman Cancer Research Center‐DKFZHeidelbergGermany
| | - Ludovic De Marzi
- Radiation Oncology DepartmentInstitut Curie, PSL Research UniversityOrsayFrance
- Institut CuriePSL Research University, University Paris Saclay, INSERM LITO U1288OrsayFrance
| |
Collapse
|
6
|
Ma C, Yang X, Setianegara J, Wang Y, Gao Y, Yu D, Patel P, Zhou J. Feasibility study of modularized pin ridge filter implementation in proton FLASH planning for liver stereotactic ablative body radiotherapy. Phys Med Biol 2024; 69:245001. [PMID: 39571283 DOI: 10.1088/1361-6560/ad95d6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/21/2024] [Indexed: 11/27/2024]
Abstract
Objective.We previously developed a FLASH planning framework for streamlined pin-ridge-filter (pin-RF) design, demonstrating its feasibility for single-energy proton FLASH planning. In this study, we refined the pin-RF design for easy assembly using reusable modules, focusing on its application in liver stereotactic ablative body radiotherapy (SABR).Approach.This framework generates an intermediate intensity-modulated proton therapy (IMPT) plan and translates it into step widths and thicknesses of pin-RFs for a single-energy FLASH plan. Parameters like energy spacing, monitor unit limit, and spot quantity were adjusted during IMPT planning, resulting in pin-RFs assembled using predefined modules with widths from 1 to 6 mm, each with a water-equivalent-thickness of 5 mm. This approach was validated on three liver SABR cases. FLASH doses, quantified using the FLASH effectiveness model at 1-5 Gy thresholds, were compared to conventional IMPT (IMPT-CONV) doses to assess clinical benefits.Main results.The highest demand for 6 mm width modules, moderate for 2-4 mm, and minimal for 1- and 5-mm modules were shown across all cases. At lower dose thresholds, the two-beam case reduced indicators including liverV21Gyand skinDmaxby >19.4%, while the three-beam cases showed reductions⩽11.4%, indicating the need for higher fractional beam doses for an enhanced FLASH effect. Positive clinical benefits were seen only in the two-beam case at the 5 Gy threshold. At the 1 Gy threshold, the two-beam FLASH plan outperformed the IMPT-CONV plan, reducing dose indicators for all relevant normal tissues by up to 31.2%. In contrast, the three-beam cases showed negative clinical benefits, with skinDmaxand liverV21Gyincreasing by up to 17.4% due to lower fractional beam doses and closer beam arrangements.Significance.This study evaluated the feasibility of modularizing streamlined pin-RFs in single-energy proton FLASH planning for liver SABR, offering guidance on optimal module composition and strategies to enhance FLASH planning.
Collapse
Affiliation(s)
- Chaoqiong Ma
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160, United States of America
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| | - Jufri Setianegara
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160, United States of America
| | - Yinan Wang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| | - Yuan Gao
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| | - David Yu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| | - Pretesh Patel
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| | - Jun Zhou
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| |
Collapse
|
7
|
Zhao X, Huang S, Lin H, Choi JI, Zhu K, Simone CB, Yan X, Kang M. A Novel Dose Rate Optimization Method to Maximize Ultrahigh-Dose-Rate Coverage of Critical Organs at Risk Without Compromising Dosimetry Metrics in Proton Pencil Beam Scanning FLASH Radiation Therapy. Int J Radiat Oncol Biol Phys 2024; 120:1181-1191. [PMID: 38879087 DOI: 10.1016/j.ijrobp.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/12/2024] [Accepted: 06/09/2024] [Indexed: 07/10/2024]
Abstract
PURPOSE This study aimed to investigate a dose rate optimization framework based on the spot-scanning patterns to improve ultrahigh-dose-rate coverage of critical organs at risk (OARs) for proton pencil beam scanning (PBS) FLASH radiation therapy (ultrahigh dose-rate (often referred to as >40 Gy per second) delivery) and present implementation of a genetic algorithm (GA) method for spot sequence optimization to achieve PBS FLASH dose rate optimization under relatively low nozzle beam currents. METHODS AND MATERIALS First, a multifield FLASH plan was developed to meet all the dosimetric goals and optimal FLASH dose rate coverage by considering the deliverable minimum monitor unit constraint. Then, a GA method was implemented into the in-house treatment platform to maximize the dose rate by exploring the best spot delivery sequence. A phantom study was performed to evaluate the effectiveness of the dose rate optimization. Then, 10 consecutive plans for patients with lung cancer previously treated using PBS intensity-modulated proton therapy were optimized using 45 GyRBE in 3 fractions for both transmission and Bragg peak FLASH radiation therapy for further validation. The spot delivery sequence of each treatment field was optimized using this GA. The ultrahigh-dose-rate-volume histogram and dose rate coverage V40GyRBE/s were investigated to assess the efficacy of dose rate optimization quantitatively. RESULTS Using a relatively low monitor unit/spot of 150, corresponding to a nozzle beam current of 65 nA, the FLASH dose rate ratio V40GyRBE/s of the OAR contour of the core was increased from 0% to ∼60% in the phantom study. In the patients with lung cancer, the ultrahigh-dose-rate coverage V40GyRBE/s was improved from 15.2%, 15.5%, 17.6%, and 16.0% before the delivery sequence optimization to 31.8%, 43.5%, 47.6%, and 30.5% after delivery sequence optimization in the lungs-GTV (gross tumor volume), spinal cord, esophagus, and heart (for all, P < .001). When the beam current increased to 130 nA, V40GyRBE/s was improved from 45.1%, 47.1%, 51.2%, and 51.4% to 65.3%, 83.5%, 88.1%, and 69.4% (P < .05). The averaged V40GyRBE/s for the target and OARs increased from 12.9% to 41.6% and 46.3% to 77.5% for 65 and 130 nA, respectively, showing significant improvements based on a clinical proton system. After optimizing the dose rate for the Bragg peak FLASH technique with a beam current of 340 nA, the V40GyRBE/s values for the lung GTV, spinal cord, esophagus, and heart were increased by 8.9%, 15.8%, 22%, and 20.8%, respectively. CONCLUSIONS An optimal plan quality can be maintained as the spot delivery sequence optimization is a separate independent process after the plan optimization. Both the phantom and patient results demonstrated that novel spot delivery sequence optimization can effectively improve the ultrahigh-dose-rate coverage for critical OARs, which can potentially be applied in clinical practice for better OARs-sparing efficacy.
Collapse
Affiliation(s)
- Xingyi Zhao
- State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, Center for Applied Physics and Technology, Peking University, Beijing, China; New York Proton Center, New York, New York
| | - Sheng Huang
- Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Haibo Lin
- New York Proton Center, New York, New York; Departments of Radiation Oncology and Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - J Isabelle Choi
- New York Proton Center, New York, New York; Departments of Radiation Oncology and Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kun Zhu
- State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, Center for Applied Physics and Technology, Peking University, Beijing, China
| | - Charles B Simone
- New York Proton Center, New York, New York; Departments of Radiation Oncology and Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Xueqing Yan
- State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, Center for Applied Physics and Technology, Peking University, Beijing, China.
| | - Minglei Kang
- New York Proton Center, New York, New York; Departments of Radiation Oncology and Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
8
|
Gesualdi F, de Marzi L, Dutreix M, Favaudon V, Fouillade C, Heinrich S. A multidisciplinary view of flash irradiation. Cancer Radiother 2024; 28:453-462. [PMID: 39343695 DOI: 10.1016/j.canrad.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 10/01/2024]
Abstract
The delivery of ultra-high dose rates of radiation, called flash irradiation or flash-RT, has emerged as a new modality of radiotherapy shaking up the paradigm of proportionality of effect and dose whatever the method of delivery of the radiation. The hallmark of flash-RT is healthy tissue sparing from the side effects of radiation without decrease of the antitumor efficiency in animal models. In this review we will define its specificities, the molecular mechanisms underlying the flash effect and the ongoing developments to bring this new modality to patient treatment.
Collapse
Affiliation(s)
- Flavia Gesualdi
- Institut Curie, Hospital Division, centre de protonthérapie d'Orsay, université Paris-Saclay, université PSL, centre universitaire, 91948 Orsay cedex, France
| | - Ludovic de Marzi
- Institut Curie, Hospital Division, centre de protonthérapie d'Orsay, université Paris-Saclay, université PSL, centre universitaire, 91948 Orsay cedex, France; Institut Curie, université PSL, université Paris-Saclay, Inserm Lito U1288, centre universitaire, 91898 Orsay, France
| | - Marie Dutreix
- Institut Curie, Research Division, Inserm U 1021-CNRS UMR 3347, université Paris-Saclay, université PSL, centre universitaire, 91401 Orsay cedex, France
| | - Vincent Favaudon
- Institut Curie, Research Division, Inserm U 1021-CNRS UMR 3347, université Paris-Saclay, université PSL, centre universitaire, 91401 Orsay cedex, France
| | - Charles Fouillade
- Institut Curie, Research Division, Inserm U 1021-CNRS UMR 3347, université Paris-Saclay, université PSL, centre universitaire, 91401 Orsay cedex, France
| | - Sophie Heinrich
- Institut Curie, Research Division, Inserm U 1021-CNRS UMR 3347, université Paris-Saclay, université PSL, centre universitaire, 91401 Orsay cedex, France.
| |
Collapse
|
9
|
Diepeveen MH, Lathouwers D, José Santo R, Hoogeman MS, Habraken SJM. Two-dimensional oxygen-diffusion modelling for FLASH proton therapy with pencil beam scanning-Impact of diffusive tissue properties, dose, dose rate and scan patterns. Phys Med Biol 2024; 69:155020. [PMID: 38959905 DOI: 10.1088/1361-6560/ad5eee] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/03/2024] [Indexed: 07/05/2024]
Abstract
Objective.Oxygen depletion is generally believed to play an important role in the FLASH effect-a differential reduction of the radiosensitivity of healthy tissues, relative to that of the tumour under ultra-high dose-rate (UHDR) irradiation conditions. In proton therapy (PT) with pencil-beam scanning (PBS), the deposition of dose, and, hence, the degree of (radiolytic) oxygen depletion varies both spatially and temporally. Therefore, the resulting oxygen concentration and the healthy-tissue sparing effect through radiation-induced hypoxia varies both spatially and temporally as well.Approach.We propose and numerically solve a physical oxygen diffusion model to study these effects and their dependence on tissue parameters and the scan pattern in pencil-beam delivery. Since current clinical FLASH PT (FLASH-PT) is based on 250 MeV shoot-through (transmission) beams, for which dose and dose rate (DR) hardly vary with depth compared to the variation transverse to the beam axis, we focus on the two-dimensional case. We numerically integrate the model to obtain the oxygen concentration in each voxel as a function of time and extract voxel-based and spatially and temporarily integrated metrics for oxygen (FLASH) enhanced dose. Furthermore, we evaluate the impact on oxygen enhancement of standard pencil-beam delivery patterns and patterns that were optimised on dose-rate. Our model can contribute to the identification of tissue properties and pencil-beam delivery parameters that are critical for FLASH-PT and it may be used for the optimisation of FLASH-PT treatment plans and their delivery.Main results.(i) the diffusive properties of oxygen are critical for the steady state concentration and therefore the FLASH effect, even more so in two dimensions when compared to one dimension. (ii) The FLASH effect through oxygen depletion depends primarily on dose and less on other parameters. (iii) At a fixed fraction dose there is a slight dependence on DR. (iv) Scan patterns optimised on DR slightly increase the oxygen induced FLASH effect.Significance.To our best knowledge, this is the first study assessing the impact of scan-pattern optimization (SPO) in FLASH-PT with PBS on a biological FLASH model. While the observed impact of SPO is relatively small, a larger effect is expected for larger target volumes. A better understanding of the FLASH effect and the role of oxygen (depletion) therein is essential for the further development of FLASH-PT with PBS, and SPO.
Collapse
Affiliation(s)
- Maarten H Diepeveen
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, The Netherlands
- Delft University of Technology, Department of Radiation Science and Technology, Delft, The Netherlands
| | - Danny Lathouwers
- Delft University of Technology, Department of Radiation Science and Technology, Delft, The Netherlands
- Holland Proton Therapy Center, Department of Medical Physics and Informatics, Delft, The Netherlands
| | - Rodrigo José Santo
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, The Netherlands
- Holland Proton Therapy Center, Department of Medical Physics and Informatics, Delft, The Netherlands
| | - Mischa S Hoogeman
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, The Netherlands
- Delft University of Technology, Department of Radiation Science and Technology, Delft, The Netherlands
- Holland Proton Therapy Center, Department of Medical Physics and Informatics, Delft, The Netherlands
| | - Steven J M Habraken
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, The Netherlands
- Holland Proton Therapy Center, Department of Medical Physics and Informatics, Delft, The Netherlands
- Leiden University Medical Center, Department of Radiotherapy,Leiden, The Netherlands
| |
Collapse
|
10
|
Yan O, Wang S, Wang Q, Wang X. FLASH Radiotherapy: Mechanisms of Biological Effects and the Therapeutic Potential in Cancer. Biomolecules 2024; 14:754. [PMID: 39062469 PMCID: PMC11275005 DOI: 10.3390/biom14070754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 07/28/2024] Open
Abstract
Radiotherapy is an important treatment for many unresectable advanced malignant tumors, and radiotherapy-associated inflammatory reactions to radiation and other toxic side effects are significant reasons which reduce the quality of life and survival of patients. FLASH-radiotherapy (FLASH-RT), a prominent topic in recent radiation therapy research, is an ultra-high dose rate treatment known for significantly reducing therapy time while effectively targeting tumors. This approach minimizes radiation side effects on at-risk organs and maximally protects surrounding healthy tissues. Despite decades of preclinical exploration and some notable achievements, the mechanisms behind FLASH effects remain debated. Standardization is still required for the type of FLASH-RT rays and dose patterns. This review addresses the current state of FLASH-RT research, summarizing the biological mechanisms behind the FLASH effect. Additionally, it examines the impact of FLASH-RT on immune cells, cytokines, and the tumor immune microenvironment. Lastly, this review will discuss beam characteristics, potential clinical applications, and the relevance and applicability of FLASH-RT in treating advanced cancers.
Collapse
Affiliation(s)
| | | | | | - Xin Wang
- Division of Abdominal Tumor Multimodality Treatment, Department of Radiation Oncology, Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China; (O.Y.); (S.W.); (Q.W.)
| |
Collapse
|
11
|
Lansonneur P, Magliari A, Rosa L, Perez J, Niemelä P, Folkerts M. Combined optimization of spot positions and weights for better FLASH proton therapy. Phys Med Biol 2024; 69:125010. [PMID: 38749462 DOI: 10.1088/1361-6560/ad4c53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/15/2024] [Indexed: 06/11/2024]
Abstract
Objective.In Intensity Modulated Proton Therapy (IMPT), the weights of individual pencil-beams or spots are optimized to fulfil dosimetric constraints. Theses spots are usually located on a regular lattice and their positions are fixed during optimization. In many cases, the range of spot weights may however be limited, leading sometimes to sub-optimal plan quality. An emblematic use case is the delivery of a plan at ultra-high dose rate (FLASH-RT), for which the spot weights are typically constrained to high values.Approach. To improve further the quality of IMPT FLASH plans, we propose here a novel algorithm to optimize both the spot weights and positions directly based on the objectives defined by the treatment planner.Main results. For all cases considered, optimizing the spot positions lead to an enhanced dosimetric score, while maintaining a high dose rate.Significance. Overall, this approach resulted in a substantial plan quality improvement compared to optimizing only the spot weights, and in a similar execution time.
Collapse
Affiliation(s)
- P Lansonneur
- Varian Medical Systems Inc., 3100 Hansen Way, Palo Alto, CA 94304, United States of America
| | - A Magliari
- Varian Medical Systems Inc., 3100 Hansen Way, Palo Alto, CA 94304, United States of America
| | - L Rosa
- Varian Medical Systems Inc., 3100 Hansen Way, Palo Alto, CA 94304, United States of America
| | - J Perez
- Varian Medical Systems Inc., 3100 Hansen Way, Palo Alto, CA 94304, United States of America
| | - P Niemelä
- Varian Medical Systems Inc., 3100 Hansen Way, Palo Alto, CA 94304, United States of America
| | - M Folkerts
- Varian Medical Systems Inc., 3100 Hansen Way, Palo Alto, CA 94304, United States of America
| |
Collapse
|
12
|
Knäusl B, Belotti G, Bertholet J, Daartz J, Flampouri S, Hoogeman M, Knopf AC, Lin H, Moerman A, Paganelli C, Rucinski A, Schulte R, Shimizu S, Stützer K, Zhang X, Zhang Y, Czerska K. A review of the clinical introduction of 4D particle therapy research concepts. Phys Imaging Radiat Oncol 2024; 29:100535. [PMID: 38298885 PMCID: PMC10828898 DOI: 10.1016/j.phro.2024.100535] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/12/2023] [Accepted: 01/04/2024] [Indexed: 02/02/2024] Open
Abstract
Background and purpose Many 4D particle therapy research concepts have been recently translated into clinics, however, remaining substantial differences depend on the indication and institute-related aspects. This work aims to summarise current state-of-the-art 4D particle therapy technology and outline a roadmap for future research and developments. Material and methods This review focused on the clinical implementation of 4D approaches for imaging, treatment planning, delivery and evaluation based on the 2021 and 2022 4D Treatment Workshops for Particle Therapy as well as a review of the most recent surveys, guidelines and scientific papers dedicated to this topic. Results Available technological capabilities for motion surveillance and compensation determined the course of each 4D particle treatment. 4D motion management, delivery techniques and strategies including imaging were diverse and depended on many factors. These included aspects of motion amplitude, tumour location, as well as accelerator technology driving the necessity of centre-specific dosimetric validation. Novel methodologies for X-ray based image processing and MRI for real-time tumour tracking and motion management were shown to have a large potential for online and offline adaptation schemes compensating for potential anatomical changes over the treatment course. The latest research developments were dominated by particle imaging, artificial intelligence methods and FLASH adding another level of complexity but also opportunities in the context of 4D treatments. Conclusion This review showed that the rapid technological advances in radiation oncology together with the available intrafractional motion management and adaptive strategies paved the way towards clinical implementation.
Collapse
Affiliation(s)
- Barbara Knäusl
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Gabriele Belotti
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Jenny Bertholet
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Juliane Daartz
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Mischa Hoogeman
- Department of Medical Physics & Informatics, HollandPTC, Delft, The Netherlands
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, The Netherlands
| | - Antje C Knopf
- Institut für Medizintechnik und Medizininformatik Hochschule für Life Sciences FHNW, Muttenz, Switzerland
| | - Haibo Lin
- New York Proton Center, New York, NY, USA
| | - Astrid Moerman
- Department of Medical Physics & Informatics, HollandPTC, Delft, The Netherlands
| | - Chiara Paganelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Antoni Rucinski
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Reinhard Schulte
- Division of Biomedical Engineering Sciences, School of Medicine, Loma Linda University
| | - Shing Shimizu
- Department of Carbon Ion Radiotherapy, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kristin Stützer
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden – Rossendorf, Institute of Radiooncology – OncoRay, Dresden, Germany
| | - Xiaodong Zhang
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ye Zhang
- Center for Proton Therapy, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Katarzyna Czerska
- Center for Proton Therapy, Paul Scherrer Institute, Villigen PSI, Switzerland
| |
Collapse
|
13
|
Deffet S, Hamaide V, Sterpin E. Definition of dose rate for FLASH pencil-beam scanning proton therapy: A comparative study. Med Phys 2023; 50:5784-5792. [PMID: 37439504 DOI: 10.1002/mp.16607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/28/2023] [Accepted: 06/20/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND FLASH proton therapy has the potential to reduce side effects of conventional proton therapy by delivering a high dose of radiation in a very short period of time. However, significant progress is needed in the development of FLASH proton therapy. Increasing the dose rate while maintaining dose conformality may involve the use of advanced beam-shaping technologies and specialized equipment such as 3D patient-specific range modulators, to take advantage of the higher transmission efficiency at the highest energy available. The dose rate is an important factor in FLASH proton therapy, but its definition can vary because of the uneven distribution of the dose over time in pencil-beam scanning (PBS). PURPOSE Highlight the distinctions, both in terms of concept and numerical values, of the various definitions that can be established for the dose rate in PBS proton therapy. METHODS In an in silico study, five definitions of the dose rate, namely the PBS dose rate, the percentile dose rate, the maximum percentile dose rate, the average dose rate, and the dose averaged dose rate (DADR) were analyzed first through theoretical comparison, and then applied to a head and neck case. To carry out this study, a treatment plan utilizing a single energy level and requiring the use of a patient-specific range modulator was employed. The dose rate values were compared both locally and by means of dose rate volume histograms (DRVHs). RESULTS The PBS dose rate, the percentile dose rate, and the maximum percentile dose are definitions that are specifically designed to take into account the time structure of the delivery of a PBS treatment plan. Although they may appear similar, our study shows that they can vary locally by up to 10%. On the other hand, the DADR values were approximately twice as high as those of the PBS, percentile, and maximum percentile dose rates, since the DADR disregards the periods when a voxel does not receive any dose. Finally, the average dose rate can be defined in various ways, as discussed in this paper. The average dose rate is found to be lower by a factor of approximately 1/2 than the PBS, percentile, and maximum percentile dose rates. CONCLUSIONS We have shown that using different definitions for the dose rate in FLASH proton therapy can lead to variations in calculated values ranging from a few percent to a factor of two. Since the dose rate is a critical parameter in FLASH radiation therapy, it is essential to carefully consider the choice of definition. However, to make an informed decision, additional biological data and models are needed.
Collapse
Affiliation(s)
- Sylvain Deffet
- Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Louvain-La-Neuve, Belgium
| | | | - Edmond Sterpin
- Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Louvain-La-Neuve, Belgium
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, Leuven, Belgium
- Particle Therapy Interuniversity Center Leuven-PARTICLE, Leuven, Belgium
| |
Collapse
|
14
|
Liang X, Beltran C, Liu C, Shen J, Bues M, Furutani KM. Investigation of the impact of machine operating parameters on beam delivery time and its correlation with treatment plan characteristics for synchrotron-based proton pencil beam spot scanning system. Front Oncol 2022; 12:1036139. [PMID: 36439480 PMCID: PMC9691263 DOI: 10.3389/fonc.2022.1036139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/18/2022] [Indexed: 04/07/2025] Open
Abstract
PURPOSE To investigate the beam delivery time (BDT) reduction due to the improvement of machine parameters for Hitachi synchrotron-based proton PBS system. METHODS BDTs for representative treatment plans were calculated to quantitatively estimate the BDT improvement from our 2015 system at Mayo Clinic in Arizona to our system to be implemented in 2025 at Mayo Clinic in Florida, and to a hypothetical future system. To specifically assess how each incremental improvement in the operating parameters reduced the total BDT, for each plan, we simulated the BDT 10,368 times with various settings of the nine different operating parameters. The effect of each operating parameter on BDT reduction and its correlation with treatment plan characteristics were analyzed. The optimal number of multiple energy extraction (MEE) layers per spill for different systems was also investigated. RESULTS The median (range) decrease in BDT was 60% (56%-70%) from the 2015 to the 2025 system. The following incremental improvement in parameters of the 2015 system for the 2025 system played an important role in this decreased BDT: beam intensity (8 to 20 MU/s), recapture efficiency (50% to 80%), number of MEE layers per spill (4 to 8), scanning magnet preparation and verification time (1.9 to 0.95 msec), and MEE layer switch time (200 to 100 msec). Reducing the total spill change time and scanning magnet preparation and verification time from those of the 2025 system further reduced BDT in the hypothetical future system. 8 MEE layers per spill is optimal for a system with 50% recapture efficiency; 16 MEE layers per spill is optimal for a system with 80% recapture efficiency; and more than 16 MEE layers per spill is beneficial only for a system close to 100% recapture efficiency. CONCLUSIONS We systematically studied the effect of each machine operating parameter on the reduction in total BDT and its correlation with treatment plan characteristics. Our findings will aid new and existing synchrotron-based proton beam therapy centers to make balanced decisions on BDT benefits vs. costs when considering machine upgrade or new system selection.
Collapse
Affiliation(s)
- Xiaoying Liang
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL, United States
| | - Chris Beltran
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL, United States
| | - Chunbo Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiajian Shen
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Martin Bues
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Keith M. Furutani
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL, United States
| |
Collapse
|