1
|
Ageitos L, Boaro A, Cesaro A, Torres MDT, Broset E, de la Fuente-Nunez C. Frog-derived synthetic peptides display anti-infective activity against Gram-negative pathogens. Trends Biotechnol 2025:S0167-7799(25)00044-7. [PMID: 40140310 DOI: 10.1016/j.tibtech.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 03/28/2025]
Abstract
Novel antibiotics are urgently needed since bacteria are becoming increasingly resistant to existing antimicrobial drugs. Furthermore, available antibiotics are broad spectrum, often causing off-target effects on host cells and the beneficial microbiome. To overcome these limitations, we used structure-guided design to generate synthetic peptides derived from Andersonin-D1, an antimicrobial peptide (AMP) produced by the odorous frog Odorrana andersonii. We found that both hydrophobicity and net charge were critical for its bioactivity, enabling the design of novel, optimized synthetic peptides. These peptides selectively targeted Gram-negative pathogens in single cultures and complex microbial consortia, showed no off-target effects on human cells or beneficial gut microbes, and did not select for bacterial resistance. Notably, they also exhibited in vivo activity in two preclinical murine models. Overall, we present synthetic peptides that selectively target pathogenic infections and offer promising preclinical antibiotic candidates.
Collapse
Affiliation(s)
- Lucía Ageitos
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Andreia Boaro
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Angela Cesaro
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Marcelo D T Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Esther Broset
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Molewa MC, Ogonowski-Bizos A, Els M, Birtles CM, Kolojane MC. The microbiological profile of necrotising fasciitis at a secondary level hospital in Gauteng. S Afr J Infect Dis 2024; 39:542. [PMID: 38726018 PMCID: PMC11079368 DOI: 10.4102/sajid.v39i1.542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 01/22/2024] [Indexed: 05/12/2024] Open
Abstract
Background Necrotising fasciitis (NF) is a fulminant soft tissue infection that requires timely diagnosis, urgent surgical debridement, and appropriate antimicrobial therapy. The choice of empiric antimicrobial therapy depends on the microorganisms cultured and the antimicrobial resistance profile of the institution. Necrotising fasciitis has not been studied in our setting. Objectives The aim of the study was to audit the microbiological profile of NF and antimicrobial susceptibility profile. Method This was a retrospective study in a secondary level hospital from the period of 2014-2020. The patients' demographic data, clinical features, location of infection, comorbidities, laboratory and microbiological profiles were analysed. Results There were 53 patients during 2014-2020 with median age of 45.5 (38.5-56.0) years. The majority of the patients were males (35 [66.04%]), had no comorbidities (25 [47.17%]), and the lower limb was the most common anatomic site (17 [32.08%]). Type II (monomicrobial) NF was the predominant type (31 [58.49%]). Staphylococcus aureus was the most prevalent Gram-positive bacteria (18 [38%]) and Escherichia coli, the main species isolated in the Gram-negative bacteria (14 [36%]) with susceptibility to cloxacillin (94%) and amoxicillin and/or clavulanic acid (92%), respectively. Conclusion Staphylococcus aureus and Escherichia coli were the most common bacteria with low rate of antimicrobial resistance. Amoxicillin and/or clavulanic acid and an adjunctive clindamycin are appropriate antimicrobial therapy for empiric treatment for NF in our setting. Contribution Amoxicillin and/or clavulanic acid and an adjunctive clindamycin can be used as an empiric treatment for NF.
Collapse
Affiliation(s)
- Mbavhalelo C Molewa
- Department of Surgery, Edenvale Regional Hospital, Johannesburg, South Africa
- Department of Surgery, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Mariska Els
- Department of Surgery, Edenvale Regional Hospital, Johannesburg, South Africa
| | - Cheryl M Birtles
- Department of Surgery, Edenvale Regional Hospital, Johannesburg, South Africa
| | - Molebogeng C Kolojane
- Infection Control Services Laboratory, National Health Laboratory Services, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa
- Department of Clinical Microbiology and Infectious Disease, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
3
|
Mukhopadhyay S, To KKW, Liu Y, Bai C, Leung SSY. A thermosensitive hydrogel formulation of phage and colistin combination for the management of multidrug-resistant Acinetobacter baumannii wound infections. Biomater Sci 2023; 12:151-163. [PMID: 37937608 DOI: 10.1039/d3bm01383a] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Chronic skin wounds are often associated with multidrug-resistant bacteria, impeding the healing process. Bacteriophage (phage) therapy has been revitalized as a promising strategy to counter the growing concerns of antibiotic resistance. However, phage monotherapy also faces several application drawbacks, such as a narrow host spectrum, the advent of resistant phenotypes and poor stability of phage preparations. Phage-antibiotic synergistic (PAS) combination therapy has recently been suggested as a possible approach to overcome these shortcomings. In the present study, we employed a model PAS combination containing a vB_AbaM-IME-AB2 phage and colistin to develop stable wound dressings of PAS to mitigate infections associated with Acinetobacter baumannii. A set of thermosensitive hydrogels were synthesized with varying amounts of Pluronic® F-127 (PF-127 at 15, 17.5 and 20 w/w%) modified with/without 3 w/w% hydroxypropyl methylcellulose (HPMC). Most hydrogel formulations had a gelation temperature around skin temperature, suitable for topical application. The solidified gels were capable of releasing the encapsulated phage and colistin in a sustained manner to kill bacteria. The highest bactericidal effect was achieved with the formulation containing 17.5% PF-127 and 3% HPMC (F5), which effectively killed bacteria in both planktonic (by 5.66 log) and biofilm (by 3 log) states and inhibited bacterial regrowth. Good storage stability of F5 was also noted with negligible activity loss after 9 months of storage at 4 °C. The ex vivo antibacterial efficacy of the F5 hydrogel formulation was also investigated in a pork skin wound infection model, where it significantly reduced the bacterial burden by 4.65 log. These positive outcomes warrant its further development as a topical PAS-wound dressing.
Collapse
Affiliation(s)
- Subhankar Mukhopadhyay
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Kenneth K W To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Yannan Liu
- Emergency Medicine Clinical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Changqing Bai
- Department of Respiratory Medicine, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Guangdong, 518055, China
| | - Sharon S Y Leung
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| |
Collapse
|
4
|
Penicillin Binding Protein 7/8 Is a Potential Drug Target in Carbapenem-Resistant Acinetobacter baumannii. Antimicrob Agents Chemother 2023; 67:e0103322. [PMID: 36475717 PMCID: PMC9872597 DOI: 10.1128/aac.01033-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Limited therapeutic options dictate the need for new classes of antimicrobials active against carbapenem-resistant Acinetobacter baumannii. Presented data confirm and extend penicillin binding protein 7/8 (PBP 7/8) as a high-value target in the CR A. baumannii strain HUMC1. PBP 7/8 was essential for optimal growth/survival of HUMC1 in ex vivo human ascites and in a rat subcutaneous abscess model; in a mouse pneumonia model, the absence of PBP 7/8 decreased lethality 11-fold. The loss of PBP 7/8 resulted in increased permeability, sensitivity to complement, and lysozyme-mediated bactericidal activity. These changes did not appear to be due to alterations in the cellular fatty acid composition or capsule production. However, a decrease in lipid A and an increase in coccoidal cells and cell aggregation were noted. The compromise of the stringent permeability barrier in the PBP 7/8 mutant was reflected by an increased susceptibility to several antimicrobials. Importantly, expression of ampC was not significantly affected by the loss of PBP 7/8 and serial passage of the mutant strain in human ascites over 7 days did not yield revertants possessing a wild-type phenotype. In summary, these data and other features support PBP 7/8 as a high-value drug target for extensively drug-resistant and CR A. baumannii. Our results guide next-stage studies; the determination that the inactivation of PBP 7/8 results in an increased sensitivity to lysozyme enables the design of a high-throughput screening assay to identify small molecule compounds that can specifically inhibit PBP 7/8 activity.
Collapse
|
5
|
Alamneh YA, Antonic V, Garry B, Pucci MJ, Abu-Taleb R, Shearer JP, Demons ST, Getnet D, Swierczewski BE, Lister T, Zurawski DV. Minocycline and the SPR741 Adjuvant Are an Efficacious Antibacterial Combination for Acinetobacter baumannii Infections. Antibiotics (Basel) 2022; 11:antibiotics11091251. [PMID: 36140032 PMCID: PMC9495173 DOI: 10.3390/antibiotics11091251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/01/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Antibiotic resistance, when it comes to bacterial infections, is not a problem that is going to disappear anytime soon. With the lack of larger investment in novel antibiotic research and the ever-growing increase of resistant isolates amongst the ESKAPEE pathogens (Enterobacter cloacae, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterococcus sp., and Escherichia coli), it is inevitable that more and more infections caused by extensively drug-resistant (XDR) and pandrug-resistant (PDR) strains will arise. One strategy to counteract the growing threat is to use antibiotic adjuvants, a drug class that on its own lacks significant antibiotic activity, but when mixed with another antibiotic, can potentiate increased killing of bacteria. Antibiotic adjuvants have various mechanisms of action, but polymyxins and polymyxin-like molecules can disrupt the Gram-negative outer membrane and allow other drugs better penetration into the bacterial periplasm and cytoplasm. Previously, we showed that SPR741 had this adjuvant effect with regard to rifampin; however, rifampin is often not used clinically because of easily acquired resistance. To find additional, appropriate clinical partners for SPR741 with respect to pulmonary and wound infections, we investigated tetracyclines and found a previously undocumented synergy with minocycline in vitro and in vivo in murine models of infection.
Collapse
Affiliation(s)
- Yonas A. Alamneh
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Vlado Antonic
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Brittany Garry
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | | | - Rania Abu-Taleb
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Jonathan P. Shearer
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Samandra T. Demons
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Derese Getnet
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Brett E. Swierczewski
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Troy Lister
- Spero Therapeutics, Inc., Cambridge, MA 02139, USA
| | - Daniel V. Zurawski
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Correspondence: ; Tel.: +1-301-319-3110; Fax: +1-301-319-9801
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Acute bacterial skin and skin structure infections (ABSSSI) are a leading cause of morbidity, with a considerable variety of clinical presentation and a wide range of etiological pathogens. Of importance, the spread of multidrug-resistant (MDR) strains (i.e. methicillin-resistant Staphylococcus aureus or Gram-negative bacteria) is increasingly reported in some regions. in this review, we summarize the current clinical approach to patients with ABSSSI. RECENT FINDINGS Accurate diagnosis and identification of risk factors for MDR pathogens are key determinants for administering appropriate therapy in patients with ABSSSI. In daily clinical practice, this can be critical as there are many features defining the 'high risk patient' including both disease and host-associated risk factors. SUMMARY Antibiotic therapy should be based according to the different clinical spectrum of disease belonging to the ABSSSI, on the pathogens most likely to be involved and local resistance. Careful evaluation of antibiotic therapy after 48-72 h of initial therapy could help clinicians to early identify patients with treatment failure and to consider an alternative approach. Close monitoring of patients with multiple comorbidities, drug-drug interaction or adverse host factors are also necessary.
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Skin and soft tissue infections (SSTIs) are a leading cause of morbidity, emergency department visits and hospitalization. In recent years, the spread of carbapenem-resistant gram-negative bacteria (GNB) is also increasing in SSTIs. However, the armamentarium of available drugs is recently expanding as well. In this review, we reported the most recent data and about management and treatment of SSTIs caused by GNB, mainly for the treatment of carbapenem-resistant Enterobacterales (CRE), Pseudomonas spp and Acinetobacter spp. RECENT FINDINGS The increasing incidence of carbapenem-resistant GNB is challenging for management and treatment, considering the high rate of inappropriate empiric and targeted antimicrobial treatments. The role of new antibiotics, mainly licensed for the treatment of other infections, is an object of continuous debate. As a matter of fact, no specific clinical trials on SSTIs have been performed for new drugs; however, recent data about the use in real life of new compounds in clinical practice are available. SUMMARY Some recently approved drugs are actually considered the backbone of targeted therapy in patients with severe infections caused by susceptible carbapenem-resistant GNB strains. Prompt diagnosis of cSSTIs is crucial and, when necessary, surgical debridement for source control of infection is the milestone of the treatment. The physicians should be confident to identify patients at high risk for multidrug-resistant pathogens to minimize inappropriate empiric therapy.
Collapse
|
8
|
Roy S, Chowdhury G, Mukhopadhyay AK, Dutta S, Basu S. Convergence of Biofilm Formation and Antibiotic Resistance in Acinetobacter baumannii Infection. Front Med (Lausanne) 2022; 9:793615. [PMID: 35402433 PMCID: PMC8987773 DOI: 10.3389/fmed.2022.793615] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/31/2022] [Indexed: 07/30/2023] Open
Abstract
Acinetobacter baumannii (A. baumannii) is a leading cause of nosocomial infections as this pathogen has certain attributes that facilitate the subversion of natural defenses of the human body. A. baumannii acquires antibiotic resistance determinants easily and can thrive on both biotic and abiotic surfaces. Different resistance mechanisms or determinants, both transmissible and non-transmissible, have aided in this victory over antibiotics. In addition, the propensity to form biofilms (communities of organism attached to a surface) allows the organism to persist in hospitals on various medical surfaces (cardiac valves, artificial joints, catheters, endotracheal tubes, and ventilators) and also evade antibiotics simply by shielding the bacteria and increasing its ability to acquire foreign genetic material through lateral gene transfer. The biofilm formation rate in A. baumannii is higher than in other species. Recent research has shown how A. baumannii biofilm-forming capacity exerts its effect on resistance phenotypes, development of resistome, and dissemination of resistance genes within biofilms by conjugation or transformation, thereby making biofilm a hotspot for genetic exchange. Various genes control the formation of A. baumannii biofilms and a beneficial relationship between biofilm formation and "antimicrobial resistance" (AMR) exists in the organism. This review discusses these various attributes of the organism that act independently or synergistically to cause hospital infections. Evolution of AMR in A. baumannii, resistance mechanisms including both transmissible (hydrolyzing enzymes) and non-transmissible (efflux pumps and chromosomal mutations) are presented. Intrinsic factors [biofilm-associated protein, outer membrane protein A, chaperon-usher pilus, iron uptake mechanism, poly-β-(1, 6)-N-acetyl glucosamine, BfmS/BfmR two-component system, PER-1, quorum sensing] involved in biofilm production, extrinsic factors (surface property, growth temperature, growth medium) associated with the process, the impact of biofilms on high antimicrobial tolerance and regulation of the process, gene transfer within the biofilm, are elaborated. The infections associated with colonization of A. baumannii on medical devices are discussed. Each important device-related infection is dealt with and both adult and pediatric studies are separately mentioned. Furthermore, the strategies of preventing A. baumannii biofilms with antibiotic combinations, quorum sensing quenchers, natural products, efflux pump inhibitors, antimicrobial peptides, nanoparticles, and phage therapy are enumerated.
Collapse
Affiliation(s)
- Subhasree Roy
- Division of Bacteriology, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Goutam Chowdhury
- Division of Molecular Microbiology, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Asish K. Mukhopadhyay
- Division of Molecular Microbiology, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shanta Dutta
- Division of Bacteriology, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Sulagna Basu
- Division of Bacteriology, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
9
|
Wintachai P, Voravuthikunchai SP. Characterization of Novel Lytic Myoviridae Phage Infecting Multidrug-Resistant Acinetobacter baumannii and Synergistic Antimicrobial Efficacy between Phage and Sacha Inchi Oil. Pharmaceuticals (Basel) 2022; 15:291. [PMID: 35337089 PMCID: PMC8949666 DOI: 10.3390/ph15030291] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/19/2022] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
Multidrug-resistant (MDR) strains of Acinetobacter baumannii have become a major cause of hospital-acquired infections, resulting in an increase in morbidity and mortality worldwide. Many alternative treatments, including phage therapy, are attractive approaches for overcoming problems posed by antibiotic resistance. A newly isolated phage, vWUPSU-specific MDR A. baumannii, showed a narrow host range against MDR A. baumannii. This research was conducted to isolate, characterize, and apply the phage with sacha inchi oil as an alternative antimicrobial agent. Genome analysis suggested that phage vWUPSU is a novel phage belonging to the family Myoviridae, order Caudoviridae. This phage prevented biofilm formation and eradicated preformed biofilms in a dose-dependent manner. In addition, a synergistic antimicrobial effect of the interaction between phage vWUPSU and sacha inchi oil on planktonic cells was observed. The combination of phage and sacha inchi oil significantly inhibited and removed biofilms, compared with the effects of either single treatment. The results of this work indicate that phage vWUPSU could potentially be applied to control MDR A. baumannii. The antibacterial and antibiofilm activities of the combination of phage vWUPSU and sacha inchi oil have attracted significant interests in the development of antibacterial phage products as beneficial treatment options.
Collapse
Affiliation(s)
| | - Supayang Piyawan Voravuthikunchai
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia and Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand;
| |
Collapse
|
10
|
Isolation and Characterization of a Novel Autographiviridae Phage and Its Combined Effect with Tigecycline in Controlling Multidrug-Resistant Acinetobacter baumannii-Associated Skin and Soft Tissue Infections. Viruses 2022; 14:v14020194. [PMID: 35215788 PMCID: PMC8878389 DOI: 10.3390/v14020194] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/24/2022] Open
Abstract
Multidrug-resistant Acinetobacter baumannii (MDR A. baumannii) is one of the ESKAPE pathogens that restricts available treatment options. MDR A. baumannii is responsible for a dramatic increase in case numbers of a wide variety of infections, including skin and soft tissue infections (SSTIs), resulting in pyoderma, surgical debridement, and necrotizing fasciitis. To investigate an alternative medical treatment for SSTIs, a broad range lytic Acinetobacter phage, vB _AbP_ABWU2101 (phage vABWU2101), for lysing MDR A. baumannii in associated SSTIs was isolated and the biological aspects of this phage were investigated. Morphological characterization and genomic analysis revealed that phage vABWU2101 was a new species in the Friunavirus, Beijerinckvirinae, family Autographiviridae, and order Caudovirales. Antibiofilm activity of phage vABWU2101 demonstrated good activity against both preformed biofilms and biofilm formation. The combination of phage vABWU2101 and tigecycline showed synergistic antimicrobial activities against planktonic and biofilm cells. Scanning electron microscopy confirmed that the antibacterial efficacy of the combination of phage vABWU2101 and tigecycline was more effective than the phage or antibiotic alone. Hence, our findings could potentially be used to develop a therapeutic option for the treatment of SSTIs caused by MDR A. baumannii.
Collapse
|
11
|
Interplay between ESKAPE Pathogens and Immunity in Skin Infections: An Overview of the Major Determinants of Virulence and Antibiotic Resistance. Pathogens 2021; 10:pathogens10020148. [PMID: 33540588 PMCID: PMC7912840 DOI: 10.3390/pathogens10020148] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/16/2022] Open
Abstract
The skin is the largest organ in the human body, acting as a physical and immunological barrier against pathogenic microorganisms. The cutaneous lesions constitute a gateway for microbial contamination that can lead to chronic wounds and other invasive infections. Chronic wounds are considered as serious public health problems due the related social, psychological and economic consequences. The group of bacteria known as ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter sp.) are among the most prevalent bacteria in cutaneous infections. These pathogens have a high level of incidence in hospital environments and several strains present phenotypes of multidrug resistance. In this review, we discuss some important aspects of skin immunology and the involvement of ESKAPE in wound infections. First, we introduce some fundamental aspects of skin physiology and immunology related to cutaneous infections. Following this, the major virulence factors involved in colonization and tissue damage are highlighted, as well as the most frequently detected antimicrobial resistance genes. ESKAPE pathogens express several virulence determinants that overcome the skin's physical and immunological barriers, enabling them to cause severe wound infections. The high ability these bacteria to acquire resistance is alarming, particularly in the hospital settings where immunocompromised individuals are exposed to these pathogens. Knowledge about the virulence and resistance markers of these species is important in order to develop new strategies to detect and treat their associated infections.
Collapse
|
12
|
Abstract
Skin and soft tissue infections (SSTIs) frequently are encountered in clinical practice, and gram-negative bacilli (GNB) constitute an underrated portion of their etiology. The rate of GNB-causing SSTIs is increasing, especially with the rise in antimicrobial resistance. Although the diagnosis of SSTIs mostly is clinical, rapid diagnostic modalities can shorten the time to initiating proper therapy and improving outcomes. Novel antibiotics are active against GNB SSTIs and can be of great value in the management. This review provides an overview of the role of GNB in SSTIs and summarizes their epidemiology, risk factors, outcome, and clinical management.
Collapse
Affiliation(s)
- Jean-Francois Jabbour
- Division of Infectious Diseases, Department of Internal Medicine, American University of Beirut Medical Center, PO Box 11-0236, Riad El Solh, Beirut 1107 2020, Lebanon
| | - Souha S Kanj
- Division of Infectious Diseases, Department of Internal Medicine, American University of Beirut Medical Center, PO Box 11-0236, Riad El Solh, Beirut 1107 2020, Lebanon.
| |
Collapse
|
13
|
Ramampisendrahova JB, Razafimahatratra R, Solofomalala GD. [Monomicrobian necrotizing fasciitis of the leg due to multidrug-resistant Acinetobacter baumannii in a healthy adult: about a case]. Pan Afr Med J 2020; 36:344. [PMID: 33224410 PMCID: PMC7664150 DOI: 10.11604/pamj.2020.36.344.24614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 07/02/2020] [Indexed: 11/11/2022] Open
Abstract
La fasciite nécrosante est une infection des tissus mous qui se propage rapidement et se caractérise par une nécrose étendue du fascia profond et superficiel. Il s’agit d’une infection polymicrobienne dans environ 70% des cas. L’infection monomicrobienne est généralement due aux streptocoques β-hémolytiques du groupe A. La fasciite nécrosante monomicrobienne due à l’Acinetobacter baumannii multirésistante est rare et survient généralement chez les patients immunodéprimés, ayant des antécédents médicaux, chez ces sujets l’infection est grave et mortelle à cause de la décompensation des tares sous-jacentes et le choc septique. La survenue de cette entité clinique chez le sujet sain est rare. Nous rapportons l’observation d’un homme âgé de 54 ans en bonne santé atteint d’une fasciite nécrosante monomicrobienne de la jambe gauche due à l’Acinetobacter baumannii multirésistante dont l’évolution était favorable après un débridement chirurgical étendu.
Collapse
Affiliation(s)
| | - Rado Razafimahatratra
- Service de Chirurgie Orthopédique et Traumatologie, CHU Anosiala, Antananarivo, Madagascar
| | | |
Collapse
|
14
|
Campos WF, Silva EC, Oliveira TJ, Oliveira JM, Tubino M, Pereira C, Vila MM, Balcão VM. Transdermal permeation of bacteriophage particles by choline oleate: potential for treatment of soft-tissue infections. Future Microbiol 2020; 15:881-896. [PMID: 32716215 DOI: 10.2217/fmb-2019-0290] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: A sodium alginate-based biohydrogel was prepared integrating choline oleate deep euthetic solvent as facilitator of transdermal delivery and a cocktail of lytic bacteriophages for Acinetobacter baumannii, aiming at treating soft-tissue infections by the aforementioned pathogen. Materials & methods: Two bacteriophages were isolated from a hospital sewage and a wastewater treatment plant sewage in Sorocaba (Brazil), and characterized via SDS-PAGE electrophoresis, transmission electron microscope and evaluation of lytic spectra of the bacteriophage cocktail. The biohydrogel was prepared and characterized by DSC, FTIR, XRD, DESEM, XRT and transdermal permeation of the bacteriophage cocktail. Results & conclusion: The physico-chemical characterization of the biohydrogel produce indicated adequate structural characteristics and ability to promote/facilitate transdermal delivery of bacteriophage particles, thus showing potential for biopharmaceutical applications.
Collapse
Affiliation(s)
- Welida F Campos
- PhageLab - Laboratory of Biofilms & Bacteriophages, University of Sorocaba, 18023-000 Sorocaba/SP, Brazil
| | - Erica C Silva
- PhageLab - Laboratory of Biofilms & Bacteriophages, University of Sorocaba, 18023-000 Sorocaba/SP, Brazil
| | - Thais J Oliveira
- PhageLab - Laboratory of Biofilms & Bacteriophages, University of Sorocaba, 18023-000 Sorocaba/SP, Brazil
| | - José M Oliveira
- PhageLab - Laboratory of Biofilms & Bacteriophages, University of Sorocaba, 18023-000 Sorocaba/SP, Brazil
| | - Matthieu Tubino
- Institute of Chemistry, University of Campinas, Campinas/SP, Brazil
| | - Carla Pereira
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, P-3810-193 Aveiro, Portugal
| | - Marta Mdc Vila
- PhageLab - Laboratory of Biofilms & Bacteriophages, University of Sorocaba, 18023-000 Sorocaba/SP, Brazil
| | - Victor M Balcão
- PhageLab - Laboratory of Biofilms & Bacteriophages, University of Sorocaba, 18023-000 Sorocaba/SP, Brazil.,Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, P-3810-193 Aveiro, Portugal
| |
Collapse
|
15
|
Yamamuro R, Hosokawa N, Katayama M. Patient with liver cirrhosis presenting with necrotizing fasciitis due to Acinetobacter junii: A case report and literature review. J Infect Chemother 2019; 26:308-311. [PMID: 31680035 DOI: 10.1016/j.jiac.2019.09.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/26/2019] [Accepted: 09/26/2019] [Indexed: 01/05/2023]
Abstract
Acinetobacter spp. are known to be a cause of nosocomial infections and to have diverse mechanisms of resistance to antimicrobials. Here, we report the case of a patient who presented to our emergency department with necrotizing fasciitis due to Acinetobacter junii as confirmed by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight mass spectrometry (MALDI-TOF MS). Patients with liver cirrhosis are susceptible to gram-negative infection. Moreover, although Acinetobacter spp. infection is best known to be a cause of combat-related-skin and soft-tissue infections, we propose that medical professionals need to consider the presence of these potentially multi-drug-resistant, gram-negative pathogens when treating patients with liver cirrhosis who present with severe soft-tissue infections. To our knowledge, this is the first case report of severe-skin and soft-tissue infections caused by A. junii.
Collapse
Affiliation(s)
- Ryosuke Yamamuro
- Department of Infectious Disease, Kameda Medical Center, 929 Higashi-cho, Kamogawa Chiba, 296-8602, Japan.
| | - Naoto Hosokawa
- Department of Infectious Disease, Kameda Medical Center, 929 Higashi-cho, Kamogawa Chiba, 296-8602, Japan
| | - Mitsuya Katayama
- Department of General Internal Medicine, Kameda Medical Center, 929 Higashi-cho, Kamogawa Chiba, 296-8602, Japan
| |
Collapse
|
16
|
Pereira TDSF, Travassos DV, Silva RCC, Nunes LFM, Santos ME, Lanza CR, Goebel GA, Kakehasi FM, Silva TA. Acinetobacter baumannii orofacial cellulitis: report of 2 cases. Oral Surg Oral Med Oral Pathol Oral Radiol 2019; 127:e118-e122. [PMID: 30954493 DOI: 10.1016/j.oooo.2019.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/18/2019] [Accepted: 02/12/2019] [Indexed: 02/02/2023]
Abstract
Acinetobacter baumannii infection of skin and soft tissues is uncommon and usually associated with trauma. The present report describes 2 pediatric cases of cellulitis in the orofacial region, caused by A. baumannii infection with a fatal outcome. A 12-year-old male patient, diagnosed with acute promyelocytic leukemia, presented with an ulcerated lesion on the lip suggestive of local trauma. The condition progressed to cellulitis, epithelial necrosis, and nonspecific vesicles and blisters. The second case occurred in a 10-year-old male patient with a diagnosis of Burkitt lymphoma. The patient's condition progressed to World Health Organization Grade IV mucositis and cellulitis. In both cases, hemoculture was positive for multidrug-resistant A. baumannii. In conclusion, A. baumannii should be considered a potentially multidrug-resistant pathogen in the presence of skin and soft tissue cellulitis. Ulcerated oral lesions may place hospitalized pediatric patients at risk for A. baumannii infection.
Collapse
Affiliation(s)
| | - Denise Vieira Travassos
- Department of Social and Preventive Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Raissa Cristina Costa Silva
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Laiz Fernandes Mendes Nunes
- Multiprofessional Integrated Residency in Health, Hospital das Clínicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Maria Edileusa Santos
- Multiprofessional Integrated Residency in Health, Hospital das Clínicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Célia Regina Lanza
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Gabriela Assunção Goebel
- Residence in Pediatrics, Hospital das Clínicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Fabiana Maria Kakehasi
- Department of Pediatrics, School of Medicine, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Tarcília Aparecida Silva
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| |
Collapse
|
17
|
Fariba Akrami, Amirmorteza Ebrahimzadeh Namvar. Acinetobacter baumannii as Nosocomial Pathogenic Bacteria. MOLECULAR GENETICS, MICROBIOLOGY AND VIROLOGY 2019. [DOI: 10.3103/s0891416819020046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
The role of carbapenem-resistant pathogens in cSSTI and how to manage them. Curr Opin Infect Dis 2019; 32:113-122. [DOI: 10.1097/qco.0000000000000528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Abstract
Multidrug-resistant A. baumannii are important Gram-negative pathogens causing persistent wound infections in both wounded and burned victims, which often result in secondary complications such as delayed wound healing, skin graft failure, and sometimes more serious outcomes such as sepsis and amputation. The choice of antibiotics to remediate these A. baumannii infections is becoming limited; and therefore, there has been a renewed interest in the research and development of new antibacterials targeting this pathogen. However, the evaluation of safety and efficacy is made more difficult by the lack of well-established in vivo models. This chapter describes established rodent and large animal models that have been used to investigate and develop treatments for A. baumannii skin and soft tissue infections.
Collapse
|
20
|
Schultz J, Schröttner P, Leupold S, Dragu A, Sußmann S, Haase M, Fitze G. Conservative treatment of fingertip injuries in children - first experiences with a novel silicone finger cap that enables woundfluid analysis. GMS INTERDISCIPLINARY PLASTIC AND RECONSTRUCTIVE SURGERY DGPW 2018; 7:Doc05. [PMID: 30430061 PMCID: PMC6218674 DOI: 10.3205/iprs000125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Introduction: Human fingertips are able to regenerate soft tissue and skin after amputation injuries with excellent cosmetic and functional results when treated with semiocclusive dressings. Despite bacterial colonizations, proceeding infections are not reported with this management. The underlying mechanisms for this form of regenerative healing as well as for the resilience to infections are not known. Due to the lack of mechanical protection, the leakage of maloderous woundfluid and the sometimes challenging application, conventional film dressings have their problems, especially in treating young children. We therefore treated selected patients with a novel silicone finger cap with an integrated wound fluid reservoir that enables atraumatic routine wound fluid aspiration. Methods: We report on 34 patients in between 1 and 13 years with traumatic fingertip amputations primarily treated with occlusive dressings. 12 patients were treated with a novel silicone finger cap. We summarized clinical data for each patient. This included photographs and microbiological results from wound fluid analyses, whenever available. Results: The results of both, conventional film dressing and silicone finger cap treatment, were excellent with no hypersensitivity and no restrictions in sensibility and motility. Even larger pulp defects were rearranged in a round shape and good soft tissue coverage of the distal phalanx was achieved. Nail deformities were not observed. We detected a wide spectrum of both aerobic and anaerobic bacteria in the wound fluids but infections were not observed. Epithelialization times did not differ significantly and no severe complications were seen in all primarily conservatively treated patients. Conclusion: This study provides preliminary data demonstrating that the treatment with the silicone finger cap leads to excellent clinical results in wound healing. Interestingly, the wounds were colonized with a wide range of bacteria including species that may cause wound infections. However, we saw no proceeding inflammation and the regeneration was undisturbed. In the future, the efficacy of this new management should be evaluated in randomized, controlled clinical trials to confirm the results under standard conditions and get more insight into the role of the wound microbiome as well as other factors that may promote regeneration. The aspirable Reservoir of the finger cap will enable easy atraumatic sampling of wound fluids both for diagnostic and for research purposes as well as possibly allowing direct administration of pro-regenerative drugs in the future.
Collapse
Affiliation(s)
- Jurek Schultz
- Pediatric Surgery, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Percy Schröttner
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Susann Leupold
- Pediatric Surgery, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Adrian Dragu
- Department of Plastic and Hand Surgery, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Silvana Sußmann
- Pediatric Surgery, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Michael Haase
- Pediatric Surgery, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Guido Fitze
- Pediatric Surgery, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| |
Collapse
|
21
|
Pletzer D, Mansour SC, Hancock REW. Synergy between conventional antibiotics and anti-biofilm peptides in a murine, sub-cutaneous abscess model caused by recalcitrant ESKAPE pathogens. PLoS Pathog 2018; 14:e1007084. [PMID: 29928049 PMCID: PMC6013096 DOI: 10.1371/journal.ppat.1007084] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/09/2018] [Indexed: 01/04/2023] Open
Abstract
With the antibiotic development pipeline running dry, many fear that we might soon run out of treatment options. High-density infections are particularly difficult to treat due to their adaptive multidrug-resistance and currently there are no therapies that adequately address this important issue. Here, a large-scale in vivo study was performed to enhance the activity of antibiotics to treat high-density infections caused by multidrug-resistant Gram-positive and Gram-negative bacteria. It was shown that synthetic peptides can be used in conjunction with the antibiotics ciprofloxacin, meropenem, erythromycin, gentamicin, and vancomycin to improve the treatment outcome of murine cutaneous abscesses caused by clinical hard-to-treat pathogens including all ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter cloacae) pathogens and Escherichia coli. Promisingly, combination treatment often showed synergistic effects that significantly reduced abscess sizes and/or improved clearance of bacterial isolates from the infection site, regardless of the antibiotic mode of action. In vitro data suggest that the mechanisms of peptide action in vivo include enhancement of antibiotic penetration and potential disruption of the stringent stress response.
Collapse
Affiliation(s)
- Daniel Pletzer
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Sarah C. Mansour
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Robert E. W. Hancock
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
22
|
Yeika EV, Foryoung JB, Efie DT, Nkwetateba EA, Tolefac PN, Ngowe MN. Multidrug resistant Proteus mirabilis and Escherichia coli causing fulminant necrotising fasciitis: a case report. BMC Res Notes 2018; 11:322. [PMID: 29784062 PMCID: PMC5963038 DOI: 10.1186/s13104-018-3413-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 05/07/2018] [Indexed: 11/17/2022] Open
Abstract
Background Necrotizing fasciitis is a rare soft tissue infection characterized by rapid progressive necrosis with relative sparing of underlying muscles. This case is reported to highlight the emergence of multidrug resistant microbes in recent days which limits the use of empiric antibiotic therapy and necessitates early cultures and sensitivity enabling targeted antibiotic therapy. Factors that lead to antimicrobial resistance especially in sub-Saharan Africa have also been discussed. Case presentation We report the case of a 52-year-old black man who was referred to our centre for the management of cellulitis and suppurating ulcers of the right leg which had progressed to a wet gangrene. Following physical examination and work-up, a diagnosis of fulminant necrotizing fasciitis of the right leg caused by multidrug resistant Proteus mirabilis and Escherichia coli was made. Despite the broad-spectrum empiric antibiotic therapy and aggressive multiple surgical debridement, necrosis progressed leading to an above-knee amputation. Conclusion Necrotizing fasciitis is a surgical emergency that requires prompt diagnosis and aggressive surgical debridement in order to reduce morbidity and mortality. The emergence of multidrug resistant organisms in recent days have limited the use of empiric antibiotic therapy, necessitating early culture and sensitivity and the use of susceptibility-guided antibiotic therapy. Timely action to control the use of antibiotics in sub-Saharan Africa will reduce multidrug resistance and delay the arrival of post-antibiotics era.
Collapse
Affiliation(s)
- Eugene Vernyuy Yeika
- Saint Elizabeth Catholic General Hospital and Cardiac Centre Shisong, PO Box 8, Kumbo, Cameroon. .,Clinical Research Education Networking and Consultancy, Douala, Cameroon. .,Health and Human Development Research Group, Douala, Cameroon.
| | - Joyce Bei Foryoung
- Saint Elizabeth Catholic General Hospital and Cardiac Centre Shisong, PO Box 8, Kumbo, Cameroon.,Health and Human Development Research Group, Douala, Cameroon
| | | | | | | | | |
Collapse
|
23
|
Kikuchi-Ueda T, Kamoshida G, Ubagai T, Nakano R, Nakano A, Akuta T, Hikosaka K, Tansho-Nagakawa S, Kikuchi H, Ono Y. The TNF-α of mast cells induces pro-inflammatory responses during infection with Acinetobacter baumannii. Immunobiology 2017; 222:1025-1034. [PMID: 28595750 DOI: 10.1016/j.imbio.2017.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/18/2017] [Accepted: 05/23/2017] [Indexed: 01/12/2023]
Abstract
Mast cells serve important roles as sentinels against bacterial infection by secreting mediators stored in granules. Much of their effectiveness depends upon recruiting and/or modulating other immune cells. The location of mast cells implies that they recognize pathogens invading tissues or mucosal tissues. Acinetobacter baumannii is a gram-negative bacterium that is considered an emerging nosocomial pathogen and causes a wide range of infections associated with high morbidity and mortality. To date, the interaction of A. baumannii with mast cells remains unclear. In this study, we demonstrated an interaction between human LAD2 mast cells and A. baumannii in vitro. When LAD2 cells were co-cultured with live A. baumannii or Pseudomonas aeruginosa PAO1 in vitro for 4h, TNF-α and IL-8 were produced in the culture supernatant. These inflammatory cytokines were not detected in the supernatant after the cells were treated with live bacteria without serum. Gene expression analysis showed that TNF-α and IL-8 mRNA expression increased in A. baumannii- and P. aeruginosa-infected LAD2 cells. Scanning electron microscopy showed that A. baumannii was tightly attached to the surface of LAD2 cells and suggested that A. baumannii may bind to FcγRII (CD32) on LAD2 cells. TNF-α in the culture supernatant from A. baumannii-infected LAD2 cells, showed that PMN activation and migration increased in Boyden chamber assays. These results suggest that mast cells recognize and initiate immune responses toward A. baumannii by releasing the preformed mediator TNF-α to activate effector neutrophils.
Collapse
Affiliation(s)
- Takane Kikuchi-Ueda
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan.
| | - Go Kamoshida
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan.
| | - Tsuneyuki Ubagai
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan.
| | - Ryuichi Nakano
- Department of Microbiology and Infectious Diseases, Nara Medical University, 840 Shijo-cho, Kashihara-shi, Nara 634-8521, Japan.
| | - Akiyo Nakano
- Department of Microbiology and Infectious Diseases, Nara Medical University, 840 Shijo-cho, Kashihara-shi, Nara 634-8521, Japan.
| | - Teruo Akuta
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan.
| | - Kenji Hikosaka
- Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | - Shigeru Tansho-Nagakawa
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan.
| | - Hirotoshi Kikuchi
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan.
| | - Yasuo Ono
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan.
| |
Collapse
|
24
|
Liu D, Li T, Zheng H, Yin X, Chen M, Liao Z, Hu M, Luo Z, Lu B, Li Y, Liao Q, Xie Z, Wu F. Study on alterations of physiological functions in aged constipation rats with fluid-deficiency based on metabonomic and microbiology analysis. RSC Adv 2017; 7:48136-48150. [DOI: 10.1039/c7ra07651g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2025] Open
Abstract
To clarify how constipation interferes with the normal physiological function of organisms,1H NMR profiles combined with PCR-DGGE and 16s rRNA gene sequencing were used to investigate the relationship among constipation, metabolite and gut microbiota.
Collapse
|
25
|
Karumathil DP, Surendran-Nair M, Venkitanarayanan K. Efficacy of Trans-cinnamaldehyde and Eugenol in Reducing Acinetobacter baumannii Adhesion to and Invasion of Human Keratinocytes and Controlling Wound Infection In Vitro. Phytother Res 2016; 30:2053-2059. [PMID: 27619325 DOI: 10.1002/ptr.5713] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/28/2016] [Accepted: 08/17/2016] [Indexed: 01/31/2023]
Abstract
The study investigated the efficacy of two natural, plant-derived antimicrobials (PDAs), namely trans-cinnamaldehyde (TC), and eugenol (EG) for decreasing Acinetobacter baumannii adhesion to and invasion of human keratinocytes (HEK001). Moreover, the efficacy of two PDAs for inhibiting A. baumannii biofilm formation was determined using an in vitro collagen matrix wound model. Additionally, the effect of TC and EG on A. baumannii biofilm architecture was visualized using confocal scanning microscopy. Further the effect of both PDAs on genes critical for biofilm synthesis was determined using real-time quantitative polymerase chain reaction. Both TC and EG significantly reduced A. baumannii adhesion and invasion to HEK001 by ~2 to 3 log10 CFU/mL (p < 0.05) compared with the controls (p < 0.05). Further, after 24 and 48 h, TC and EG inhibited biofilm formation by ~1.5 to 2 and ~2 to 3.5 log10 CFU/mL, compared with controls (p < 0.05). Confocal microscopy revealed that TC and EG disrupted the biofilm architecture. RT-qPCR results indicated that two phytochemicals significantly down-regulated the transcription of genes associated with A. baumannii biofilm production. The results suggest that both TC and EG could potentially be used to treat A. baumannii wound infections; however, their efficacy in in vivo models needs to be validated. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Deepti P Karumathil
- Department of Animal Science, University of Connecticut, Storrs, CT, 06269, USA
| | | | | |
Collapse
|
26
|
How to stratify patients at risk for resistant bugs in skin and soft tissue infections? Curr Opin Infect Dis 2016; 29:116-23. [DOI: 10.1097/qco.0000000000000244] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|