1
|
Dong L, Qiu X, Gao F, Wang K, Xu X. Protein induced by vitamin K absence or antagonist II: Experience to date and future directions. Biochim Biophys Acta Rev Cancer 2023; 1878:189016. [PMID: 37944832 DOI: 10.1016/j.bbcan.2023.189016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer with high mortality. The realization of precision medicine in HCC relies upon efficient biomarkers. Protein induced by vitamin K absence or antagonist II (PIVKA-II) is an immature prothrombin with insufficient coagulation activity, overexpressing in HCC cells. Previous evidence confirmed the role of PIVKA-II in screening and diagnosing HCC. However, the increased PIVKA-II was observed not only in HCC, but also in non-HCC individuals such as vitamin K deficiency. The joint detection of PIVKA-II and other biomarkers could significantly improve diagnostic accuracy in HCC. Furthermore, PIVKA-II serves as a valuable prognostic predictor, transplantation eligibility, resectability, tumor recurrence, therapeutic efficacy, and malignant tumor behaviors. Additionally, PIVKA-II represents a potential target for agent development to establish new therapeutic strategies. Besides HCC, PIVKA-II also serves as a biomarker of vitamin K status. In this review, we assess the role of PIVKA-II in diagnosis, prediction, and treatment. Over the past decades, substantial progress has been achieved in the application of PIVKA-II. Exploration and innovation are required for further advances in the field of PIVKA-II investigation.
Collapse
Affiliation(s)
- Libin Dong
- Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Xun Qiu
- Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Fengqiang Gao
- Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Kai Wang
- Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Xiao Xu
- Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; Institute of Organ Transplantation, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
2
|
Miyauchi M, Akashi T, Furukawa A, Uchida K, Tamura T, Ando N, Kirimura S, Shintaku H, Yamamoto K, Ito T, Miura K, Kayamori K, Ariizumi Y, Asakage T, Kudo A, Tanabe M, Fujii Y, Ishibashi H, Okubo K, Murakami M, Yamada T, Takemoto A, Bae Y, Eishi Y, Ohashi K. PHOX2B is a Sensitive and Specific Marker for the Histopathological Diagnosis of Pheochromocytoma and Paraganglioma. Endocr Pathol 2022; 33:506-518. [PMID: 36029394 DOI: 10.1007/s12022-022-09730-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/19/2022] [Indexed: 11/28/2022]
Abstract
Pheochromocytomas (PCCs) and paragangliomas (PGLs) are non-epithelial neuroendocrine neoplasms originating from the adrenal medulla and paraganglion of the sympathetic and parasympathetic nervous system, respectively. PCCs and PGLs show histological similarities with other epithelial neuroendocrine neoplasms and olfactory neuroblastomas (ONBs), and the differential diagnosis of PGLs is particularly difficult. Therefore, we compared the sensitivity of PHOX2A, PHOX2B, and tyrosine hydroxylase (TH) in the histopathological diagnosis of PCCs and PGLs immunohistochemically using the tissue microarrays of 297 neoplasms including PCCs, PGLs, neuroblastomas, ganglioneuromas, epithelial neuroendocrine neoplasms, and ONBs. Using cutoff values of 25%, 5%, and 5% of tumor cells expressing PHOX2A, PHOX2B, and TH, respectively, as positive, 40 of 51 PCCs, 32 of 33 parasympathetic/head and neck PGLs (HNPGLs), 17 of 19 sympathetic/thoracoabdominal PGLs (TAPGLs), and 12 of 152 epithelial neuroendocrine neoplasms, including 123 well-differentiated and 29 poorly differentiated neuroendocrine neoplasms, were PHOX2A-positive. All 51 PCCs, 33 HNPGLs, and 19 TAPGLs were PHOX2B-positive, while all 152 epithelial neuroendocrine neoplasms were PHOX2B-negative. Moreover, 50 of 51 PCCs, 13 of 33 HNPGLs, all TAPGLs, and 12 of 152 epithelial neuroendocrine neoplasms were TH-positive. All ONBs were negative for PHOX2A, PHOX2B, and TH. PHOX2B was the most sensitive and specific diagnostic marker for PCCs and PGLs among PHOX2A, PHOX2B, and TH. PHOX2B can facilitate identification of PCCs and PGLs from epithelial neuroendocrine neoplasms and ONBs, especially in the case of HNPGLs, in which TH is often negative.
Collapse
Affiliation(s)
- Minami Miyauchi
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takumi Akashi
- Department of Diagnostic Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.
- Division of Surgical Pathology, Tokyo Medical and Dental University Hospital, Tokyo, Japan.
| | - Asuka Furukawa
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keisuke Uchida
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Division of Surgical Pathology, Tokyo Medical and Dental University Hospital, Tokyo, Japan
| | - Tomoki Tamura
- Division of Surgical Pathology, Tokyo Medical and Dental University Hospital, Tokyo, Japan
| | - Noboru Ando
- Division of Surgical Pathology, Tokyo Medical and Dental University Hospital, Tokyo, Japan
| | - Susumu Kirimura
- Division of Surgical Pathology, Tokyo Medical and Dental University Hospital, Tokyo, Japan
| | - Hiroshi Shintaku
- Division of Surgical Pathology, Tokyo Medical and Dental University Hospital, Tokyo, Japan
| | - Kurara Yamamoto
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takashi Ito
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keiko Miura
- Division of Surgical Pathology, Tokyo Medical and Dental University Hospital, Tokyo, Japan
| | - Kou Kayamori
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yosuke Ariizumi
- Department of Head and Neck Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takahiro Asakage
- Department of Head and Neck Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Atsushi Kudo
- Department of Hepatobiliary and Pancreatic Surgery, Tokyo Medical and Dental University Hospital, Tokyo, Japan
| | - Minoru Tanabe
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasuhisa Fujii
- Department of Thoracic Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hironori Ishibashi
- Department of Urology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kenichi Okubo
- Department of Urology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masanori Murakami
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsuya Yamada
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akira Takemoto
- Division of Surgical Pathology, Tokyo Medical and Dental University Hospital, Tokyo, Japan
- Bioresource Research Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuan Bae
- Department of Pathology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Yoshinobu Eishi
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kenichi Ohashi
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
3
|
Kaemmer CA, Umesalma S, Maharjan CK, Moose DL, Narla G, Mott SL, Zamba GKD, Breheny P, Darbro BW, Bellizzi AM, Henry MD, Quelle DE. Development and comparison of novel bioluminescent mouse models of pancreatic neuroendocrine neoplasm metastasis. Sci Rep 2021; 11:10252. [PMID: 33986468 PMCID: PMC8119958 DOI: 10.1038/s41598-021-89866-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic neuroendocrine neoplasms (pNENs) are slow growing cancers of increasing incidence that lack effective treatments once they become metastatic. Unfortunately, nearly half of pNEN patients present with metastatic liver tumors at diagnosis and current therapies fail to improve overall survival. Pre-clinical models of pNEN metastasis are needed to advance our understanding of the mechanisms driving the metastatic process and for the development of novel, targeted therapeutic interventions. To model metastatic dissemination of tumor cells, human pNEN cell lines (BON1 and Qgp1) stably expressing firefly luciferase (luc) were generated and introduced into NSG immunodeficient mice by intracardiac (IC) or intravenous (IV) injection. The efficiency, kinetics and distribution of tumor growth was evaluated weekly by non-invasive bioluminescent imaging (BLI). Tumors formed in all animals in both the IC and IV models. Bioluminescent Qgp1.luc cells preferentially metastasized to the liver regardless of delivery route, mimicking the predominant site of pNEN metastasis in patients. By comparison, BON1.luc cells most commonly formed lung tumors following either IV or IC administration and colonized a wider variety of tissues than Qgp1.luc cells. These models provide a unique platform for testing candidate metastasis genes and anti-metastatic therapies for pNENs.
Collapse
Affiliation(s)
- Courtney A Kaemmer
- Department of Neuroscience and Pharmacology, University of Iowa, 2-570 Bowen Science Building, 51 Newton Road, Iowa City, IA, 52242, USA
| | - Shaikamjad Umesalma
- Department of Neuroscience and Pharmacology, University of Iowa, 2-570 Bowen Science Building, 51 Newton Road, Iowa City, IA, 52242, USA
| | - Chandra K Maharjan
- Department of Neuroscience and Pharmacology, University of Iowa, 2-570 Bowen Science Building, 51 Newton Road, Iowa City, IA, 52242, USA
| | - Devon L Moose
- Cancer Biology Graduate Program, University of Iowa, Iowa City, IA, USA
| | - Goutham Narla
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Sarah L Mott
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Gideon K D Zamba
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA.,Department of Biostatistics, University of Iowa, Iowa City, IA, USA
| | - Patrick Breheny
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA.,Department of Biostatistics, University of Iowa, Iowa City, IA, USA
| | - Benjamin W Darbro
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA.,Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Andrew M Bellizzi
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA.,Department of Pathology, University of Iowa, Iowa City, IA, USA
| | - Michael D Henry
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA.,Department of Pathology, University of Iowa, Iowa City, IA, USA.,Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA.,Department of Urology, University of Iowa, Iowa City, IA, USA
| | - Dawn E Quelle
- Department of Neuroscience and Pharmacology, University of Iowa, 2-570 Bowen Science Building, 51 Newton Road, Iowa City, IA, 52242, USA. .,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA. .,Department of Pathology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
4
|
Amano Y, Tsuji K, Kihara A, Matsubara D, Fukushima N, Nishino H, Niki T. Solitary adrenal metastasis from salivary duct carcinoma of the parotid gland successfully treated by surgery: A case report. Medicine (Baltimore) 2021; 100:e24011. [PMID: 33466142 PMCID: PMC7808511 DOI: 10.1097/md.0000000000024011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 12/03/2020] [Indexed: 01/05/2023] Open
Abstract
RATIONALE Salivary duct carcinoma (SDC) is a rare and highly aggressive cancer with a poor prognosis. SDC demonstrates a potential for invasive growth with early regional and distant metastasis to organs, such as bone, lung, liver, and brain. Because, adrenal gland metastasis from SDC is rare, its treatment options are not well established. Herein, we report a case of SDC metastasis from the parotid gland to the adrenal gland, which was successfully treated by surgery. PATIENT CONCERNS The patient had an abnormal but painless lump on the right parotid gland. The size of the mass had increased over a period of 3 years. The patient underwent complete removal of the right parotid gland and radical neck dissection followed by adjuvant radiotherapy and chemotherapy. Two years later, a mass was identified in the left adrenal gland by computed tomography. As no local recurrence or metastasis to other organs was observed, the patient underwent adrenalectomy. DIAGNOSES Metastasis of SDC in the adrenal gland was confirmed by histopathological examination of the adrenalectomized specimen. INTERVENTIONS After adrenalectomy, the patient was followed-up without adjuvant therapy. OUTCOMES The patient was well and alive during the 13-month postoperative follow-up period without any complications. LESSONS Surgical resection of solitary metastatic lesion may show a survival benefit with metastatic SDC.
Collapse
Affiliation(s)
| | | | | | | | | | - Hiroshi Nishino
- Department of Otolaryngology, Jichi Medical University, Yakushiji, Shimotsuke, Tochigi, Japan
| | | |
Collapse
|