1
|
Mitchell CB, Neal SJ, Simmons JH, Chitta S, Cooper DKC, Cleveland DC, Cleveland JD. Treatment of Presumptive Rejection After Orthotopic Pig-to-Baboon Cardiac Xenotransplantation. Xenotransplantation 2025; 32:e70044. [PMID: 40254929 DOI: 10.1111/xen.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
BACKGROUND Significant progress has been made in the long-term survival of non-human primates after orthotopic gene-edited pig cardiac xenotransplantation. However, to our knowledge, there are no reports of the successful reversal of an acute rejection episode in such an experiment. We present evidence suggesting that rejection can be reversed with corticosteroids and complement inhibition. METHODS Orthotopic transplantation of a pig heart (with 69 gene-edits) was carried out in a baboon. The immunosuppressive regimen was based on CD40/CD154 T cell co-stimulation pathway blockade and rapamycin. Cardiac function remained excellent until Day 162, when there were increases in heart rate, ventricular septal wall thickness, left ventricular end-diastolic pressures (LVEDP), and troponin level, which were associated with a low serum level of rapamycin (<4 ng/mL). Anti-rejection treatment was begun with an increase in rapamycin dosage, steroid bolus therapy, two doses of a C1-esterase inhibitor, and an extra dose of the anti-CD154mAb. RESULTS There was a rapid correction of all hemodynamic parameters, and the troponin T level (which had risen to 139 ng/L) returned to pre-rejection levels. Ventricular septal thickness and LVEDP returned to pre-rejection levels after treatment. The baboon remains well with normal graft function. Baseline heart rate remains faster than before the rejection episode. CONCLUSIONS As we transition to the clinical application of gene-edited pig cardiac xenotransplantation, the ability to treat rejection is of vital importance. The optimal treatment for rejection remains uncertain but we suggest that systemic complement inhibition is important.
Collapse
Affiliation(s)
- Chace B Mitchell
- Division of Cardiothoracic Surgery, Department of Surgery, Heart Institute, Children's Hospital of Los Angeles (CHLA), University of Southern California (USC), Los Angeles, California, USA
| | - Sarah J Neal
- Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Michale E. Keeling Center for Comparative Medicine and Research, Bastrop, Texas, USA
| | - Joe H Simmons
- Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Michale E. Keeling Center for Comparative Medicine and Research, Bastrop, Texas, USA
| | - Sriram Chitta
- Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Michale E. Keeling Center for Comparative Medicine and Research, Bastrop, Texas, USA
| | - David K C Cooper
- Center for Transplantation Sciences, Massachusetts General Hospital / Harvard Medical School, Boston, Massachusetts, USA
| | - David C Cleveland
- Division of Cardiothoracic Surgery, Department of Surgery, Heart Institute, Children's Hospital of Los Angeles (CHLA), University of Southern California (USC), Los Angeles, California, USA
| | - John D Cleveland
- Division of Cardiothoracic Surgery, Department of Surgery, Heart Institute, Children's Hospital of Los Angeles (CHLA), University of Southern California (USC), Los Angeles, California, USA
| |
Collapse
|
2
|
Zhang G, Iwase H, Li Q, Yamamoto T, Jagdale A, Ezzelarab MB, Ayares D, Cooper DKC, Hara H, Wang G. The Role of Interleukin-6 (IL-6) in the Systemic Inflammatory Response in Xenograft Recipients and in Pig Kidney Xenograft Failure. Front Immunol 2021; 12:788949. [PMID: 34956220 PMCID: PMC8692283 DOI: 10.3389/fimmu.2021.788949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/18/2021] [Indexed: 11/20/2022] Open
Abstract
Background In pig-to-baboon transplantation models, there is increasing evidence of systemic inflammation in xenograft recipients (SIXR) associated with pig xenograft failure. We evaluated the relationship between systemic inflammatory factors and pig kidney xenograft failure. Methods Baboons received kidney transplants from genetically engineered pigs (n=9), and received an anti-CD40mAb-based (n=4) or conventional (n=5) immunosuppressive regimen. The pig kidney grafts were monitored by measurements of serum creatinine, serum amyloid A (SAA), white blood cell (WBC) and platelet counts, plasma fibrinogen, and pro-inflammatory cytokines (baboon and pig IL-6, TNF-α, IL-1β). Results Six baboons were euthanized or died from rejection, and 3 were euthanized for infection. Changes in serum creatinine correlated with those of SAA (r=0.56, p<0.01). Serum baboon IL-6 was increased significantly on day 1 after transplantation and at euthanasia (both p<0.05) and correlated with serum creatinine and SAA (r=0.59, p<0.001, r=0.58, p<0.01; respectively). but no difference was observed between rejection and infection. Levels of serum pig IL-6, TNF-α, IL-1β were also significantly increased on day 1 and at euthanasia, and serum pig IL-6 and IL-1β correlated with serum creatinine and SAA. The level of serum baboon IL-6 correlated with the expression of IL-6 and amyloid A in the baboon liver (r=0.93, p<0.01, r=0.79, p<0.05; respectively). Conclusion Early upregulation of SAA and serum IL-6 may indicate the development of rejection or infection, and are associated with impaired kidney graft function. Detection and prevention of systemic inflammation may be required to prevent pig kidney xenograft failure after xenotransplantation.
Collapse
Affiliation(s)
- Guoqiang Zhang
- Department of General Surgery, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.,Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Hayato Iwase
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Qi Li
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Takayuki Yamamoto
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Abhijit Jagdale
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mohamed B Ezzelarab
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - David K C Cooper
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA, United States
| | - Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Gangcheng Wang
- Department of General Surgery, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
3
|
Connolly MR, Kuravi K, Burdorf L, Sorrells L, Morrill B, Cimeno A, Vaught T, Dandro A, Sendil S, Habibabady ZA, Monahan J, Li T, LaMattina J, Eyestone W, Ayares D, Phelps C, Azimzadeh AM, Pierson RN. Humanized von Willebrand factor reduces platelet sequestration in ex vivo and in vivo xenotransplant models. Xenotransplantation 2021; 28:e12712. [PMID: 34657336 PMCID: PMC10266522 DOI: 10.1111/xen.12712] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/05/2021] [Accepted: 09/07/2021] [Indexed: 01/14/2023]
Abstract
The transplantation of organs across species offers the potential to solve the shortage of human organs. While activation of human platelets by human von Willebrand factor (vWF) requires vWF activation by shear stress, contact between human platelets and porcine vWF (pvWF) leads to spontaneous platelet adhesion and activation. This non-physiologic interaction may contribute to the thrombocytopenia and coagulation pathway dysregulation often associated with xenotransplantation of pig organs in nonhuman primates. Pigs genetically modified to decrease antibody and complement-dependent rejection (GTKO.hCD46) were engineered to express humanized pvWF (h*pvWF) by replacing a pvWF gene region that encodes the glycoprotein Ib-binding site with human cDNA orthologs. This modification corrected for non-physiologic human platelet aggregation on exposure to pig plasma, while preserving in vitro platelet activation by collagen. Organs from pigs with h*pvWF demonstrated reduced platelet sequestration during lung (p ≤ .01) and liver (p ≤ .038 within 4 h) perfusion ex vivo with human blood and after pig-to-baboon lung transplantation (p ≤ .007). Residual platelet sequestration and activation were not prevented by the blockade of canonical platelet adhesion pathways. The h*pvWF modification prevents physiologically inappropriate activation of human or baboon platelets by porcine vWF, addressing one cause of the thrombocytopenia and platelet activation observed with xenotransplantation.
Collapse
Affiliation(s)
- Margaret R Connolly
- Massachusetts General Hospital, Center for Transplantation Sciences, Boston, Massachusetts, USA
| | | | - Lars Burdorf
- Massachusetts General Hospital, Center for Transplantation Sciences, Boston, Massachusetts, USA
- University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | - Arielle Cimeno
- University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | - Selin Sendil
- University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Zahra A Habibabady
- Massachusetts General Hospital, Center for Transplantation Sciences, Boston, Massachusetts, USA
- University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | - Tiezheng Li
- University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - John LaMattina
- University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | | | - Agnes M Azimzadeh
- Massachusetts General Hospital, Center for Transplantation Sciences, Boston, Massachusetts, USA
- University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Richard N Pierson
- Massachusetts General Hospital, Center for Transplantation Sciences, Boston, Massachusetts, USA
- University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Iwase H, Jagdale A, Yamamoto T, Bikhet MH, Nguyen HQ, Ezzelarab M, Ayares D, Anderson DJ, Eckhoff DE, Foote JB, Fatima H, Schuurman HJ, Hara H, Cooper DKC. Evidence suggesting that deletion of expression of N-glycolylneuraminic acid (Neu5Gc) in the organ-source pig is associated with increased antibody-mediated rejection of kidney transplants in baboons. Xenotransplantation 2021; 28:e12700. [PMID: 34036638 DOI: 10.1111/xen.12700] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/16/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022]
Abstract
Pigs deficient in three glycosyltransferase enzymes (triple-knockout [TKO] pigs) and expressing "protective" human transgenes are likely sources of organs for transplantation into human recipients. Testing of human sera against red blood cells (RBCs) and peripheral blood mononuclear cells (PBMCs) from TKO pigs has revealed minimal evidence of natural antibody binding. However, unlike humans, baboons exhibit natural antibody binding to TKO pig cells. The xenoantigen specificities of these natural antibodies are postulated to be one or more carbohydrate moieties exposed when N-glycolylneuraminic acid (Neu5Gc) is deleted. The aim of this study was to compare the survival of renal grafts in baboons from pigs that either expressed Neu5Gc (GTKO pigs; Group1, n = 5) or did not express Neu5Gc (GTKO/CMAHKO [DKO] or TKO pigs; Group2, n = 5). An anti-CD40mAb-based immunosuppressive regimen was administered in both groups. Group1 kidneys functioned for 90-260 days (median 237, mean 196 days), with histopathological features of antibody-mediated rejection in two kidneys. Group2 kidneys functioned for 0-183 days (median 35, mean 57), with all of the grafts exhibiting histologic features of antibody-mediated rejection. These findings suggest that the absence of expression of Neu5Gc on pig kidneys impacts graft survival in baboon recipients.
Collapse
Affiliation(s)
- Hayato Iwase
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Abhijit Jagdale
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Takayuki Yamamoto
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mohamed H Bikhet
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Huy Q Nguyen
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mohamed Ezzelarab
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Douglas J Anderson
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Devin E Eckhoff
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jeremy B Foote
- Department of Microbiology and Animal Resources Program, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Huma Fatima
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
5
|
Lucander ACK, Nguyen H, Foote JB, Cooper DKC, Hara H. Immunological selection and monitoring of patients undergoing pig kidney transplantation. Xenotransplantation 2021; 28:e12686. [PMID: 33880816 DOI: 10.1111/xen.12686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/03/2021] [Accepted: 03/18/2021] [Indexed: 01/04/2023]
Abstract
Pig kidney xenotransplantation has the potential to alleviate the current shortage of deceased and living human organs and provide patients with end-stage renal disease with a greater opportunity for long-term survival and a better quality of life. In recent decades, advances in the genetic engineering of pigs and in immunosuppressive therapy have permitted the resolution of many historical obstacles to the success of pig kidney transplantation in nonhuman primates. Pig kidney xenotransplantation may soon be translated to the clinic. Given the potential risks of kidney xenotransplantation, particularly of immunologic rejection of the graft, potential patients must be carefully screened for inclusion in the initial clinical trials and immunologically monitored diligently post-transplantation. We provide an overview of the immunological methods we believe should be used to (i) screen potential patients for the first clinical trials to exclude those with a higher risk of rejection, and (ii) monitor patients with a pig kidney graft to determine their immunological response to the graft.
Collapse
Affiliation(s)
- Aaron C K Lucander
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Huy Nguyen
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jeremy B Foote
- Department of Microbiology and Animal Resources Program, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
6
|
Meier RPH, Longchamp A, Mohiuddin M, Manuel O, Vrakas G, Maluf DG, Buhler LH, Muller YD, Pascual M. Recent progress and remaining hurdles toward clinical xenotransplantation. Xenotransplantation 2021; 28:e12681. [PMID: 33759229 DOI: 10.1111/xen.12681] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/12/2021] [Accepted: 02/21/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Xenotransplantation has made tremendous progress over the last decade. METHODS We discuss kidney and heart xenotransplantation, which are nearing initial clinical trials. RESULTS Life sustaining genetically modified kidney xenografts can now last for approximately 500 days and orthotopic heart xenografts for 200 days in non-human primates. Anti-swine specific antibody screening, preemptive desensitization protocols, complement inhibition and targeted immunosuppression are currently being adapted to xenotransplantation with the hope to achieve better control of antibody-mediated rejection (AMR) and improve xenograft longevity. These newest advances could probably facilitate future clinical trials, a significant step for the medical community, given that dialysis remains difficult for many patients and can have prohibitive costs. Performing a successful pig-to-human clinical kidney xenograft, that could last for more than a year after transplant, seems feasible but it still has significant potential hurdles to overcome. The risk/benefit balance is progressively reaching an acceptable equilibrium for future human recipients, e.g. those with a life expectancy inferior to two years. The ultimate question at this stage would be to determine if a "proof of concept" in humans is desirable, or whether further experimental/pre-clinical advances are still needed to demonstrate longer xenograft survival in non-human primates. CONCLUSION In this review, we discuss the most recent advances in kidney and heart xenotransplantation, with a focus on the prevention and treatment of AMR and on the recipient's selection, two aspects that will likely be the major points of discussion in the first pig organ xenotransplantation clinical trials.
Collapse
Affiliation(s)
- Raphael P H Meier
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alban Longchamp
- Department of Vascular Surgery, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Muhammad Mohiuddin
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Oriol Manuel
- Transplantation Center, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Georgios Vrakas
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Daniel G Maluf
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Leo H Buhler
- Faculty of Science and Medicine, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Yannick D Muller
- Division of Immunology and Allergy, University Hospital of Lausanne, Lausanne, Switzerland
| | - Manuel Pascual
- Transplantation Center, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
7
|
Kidney Regenerative Medicine: Promises and Limitations. CURRENT TRANSPLANTATION REPORTS 2020. [DOI: 10.1007/s40472-020-00273-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|