1
|
Shang HS, Chen CJ, Shih YL, Peng SF, Chen YL, Liu KC, Huang HC, Hsueh SC, Chen KW, Lu HF, Lee MH, Lee MZ, Lu KW. Mangiferin induces immune responses and evaluates the survival rate in WEHI-3 cell generated mouse leukemia in vivo. ENVIRONMENTAL TOXICOLOGY 2021; 36:77-85. [PMID: 32889744 DOI: 10.1002/tox.23013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/23/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
Mangiferin is a naturally occurring polyphenol, widely distributed in Thymeraceae families, and presents pharmacological activity, including anti-cancer activities in many human cancer cell lines. Mangiferin has also been reported to affect immune responses; however, no available information concerning the effects of mangiferin on immune reactions in leukemia mice in vivo. In the present study, we investigated the effects of mangiferin on leukemia WEHI-3 cell generated leukemia BLAB/c mice. Overall, the experiments were divided into two parts, one part was immune responses experiment and the other was the survival rate experiment. The immune responses and survival rate study, 40 mice for each part, were randomly separated into five groups (N = 8): Group I was normal animals and groups II-V WEHI-3 cell generated leukemia mice. Group II mice were fed normal diet as a positive control; group III, IV, and V mice received mangiferin at 40, 80, and 120 mg/kg, respectively, by intraperitoneal injection every 2 days for 20 days. Leukocytes cell population, macrophage phagocytosis, and NK cell activities were analyzed by flow cytometry. Isolated splenocytes stimulated with lipopolysaccharide (LPS) and concanavalin A (Con A) were used to determine the proliferation of B and T cells, respectively, and subsequently were analyzed by flow cytometry. Results indicated that mangiferin significantly increased body weight, decreased the liver and spleen weights of leukemia mice. Mangiferin also increased CD3 T-cell and CD19 B cell population but decreased Mac-3 macrophage and CD11b monocyte. Furthermore, mangiferin decreased phagocytosis of macrophages from PBMC and peritoneal cavity at 40, 80, and 120 mg/kg treatment. However, it also increased NK cell activity at 40 and 120 mg/kg treatment. There were no effects on T and B cell proliferation at three examined doses. In survival rate studies, mangiferin significantly elevated survival rate at 40 and 120 mg/kg treatment of leukemia mice in vivo.
Collapse
Affiliation(s)
- Hung-Sheng Shang
- Graduate Institute of Clinical of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chiung-Ju Chen
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
- Department of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Yung-Luen Shih
- Department of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Shu-Fen Peng
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Yung-Liang Chen
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University, Hsinchu, Taiwan
| | - Kuo-Ching Liu
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Hsieh-Chou Huang
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan
- Department of Anesthesiology and Pain Medicine, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Shu-Ching Hsueh
- Division of Hematology and Oncology, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Kuo-Wei Chen
- Division of Hematology and Oncology, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Hsu-Feng Lu
- Department of Clinical Pathology, Cheng Hsin General Hospital, Taipei, Taiwan
- Department of Restaurant, Hotel and Institutional Management, Fu-Jen Catholic University, New Taipei, Taiwan
| | - Mei-Hui Lee
- Department of Genetic Counseling Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Ming-Zhe Lee
- Department of Clinical Pathology, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Kung-Wen Lu
- College of Chinese Medicine, School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
2
|
El-Barbry H, Capitao M, Barrin S, Amziani S, Pierre Paul P, Borreill S, Guilbert T, Donnadieu E, Niedergang F, Ouaaz F. Extracellular Release of Antigen by Dendritic Cell Regurgitation Promotes B Cell Activation through NF-κB/cRel. THE JOURNAL OF IMMUNOLOGY 2020; 205:608-618. [PMID: 32580933 DOI: 10.4049/jimmunol.1900394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/03/2020] [Indexed: 11/19/2022]
Abstract
Dendritic cells (DCs) are professional APCs, which sample Ags in the periphery and migrate to the lymph node where they activate T cells. DCs can also present native Ag to B cells through interactions observed both in vitro and in vivo. However, the mechanisms of Ag transfer and B cell activation by DCs remain incompletely understood. In this study, we report that murine DCs are an important cell transporter of Ag from the periphery to the lymph node B cell zone and also potent inducers of B cell activation both in vivo and in vitro. Importantly, we highlight a novel extracellular mechanism of B cell activation by DCs. In this study, we demonstrate that Ag released upon DC regurgitation is sufficient to efficiently induce early B cell activation, which is BCR driven and mechanistically dependent on the nuclear accumulation of the transcription factor NF-κB/cRel. Thus, our study provides new mechanistic insights into Ag delivery and B cell activation modalities by DCs and a promising approach for targeting NF-κB/cRel pathway to modulate the DC-elicited B cell responses.
Collapse
Affiliation(s)
- Houssam El-Barbry
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR 8104, F-75014 Paris, France
| | - Marisa Capitao
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR 8104, F-75014 Paris, France
| | - Sarah Barrin
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR 8104, F-75014 Paris, France
| | - Samir Amziani
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR 8104, F-75014 Paris, France
| | - Pascal Pierre Paul
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR 8104, F-75014 Paris, France
| | - Susanna Borreill
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR 8104, F-75014 Paris, France
| | - Thomas Guilbert
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR 8104, F-75014 Paris, France
| | - Emmanuel Donnadieu
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR 8104, F-75014 Paris, France
| | - Florence Niedergang
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR 8104, F-75014 Paris, France
| | - Fatah Ouaaz
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR 8104, F-75014 Paris, France
| |
Collapse
|
3
|
Lakhrif Z, Moreau A, Hérault B, Di-Tommaso A, Juste M, Moiré N, Dimier-Poisson I, Mévélec MN, Aubrey N. Targeted Delivery of Toxoplasma gondii Antigens to Dendritic Cells Promote Immunogenicity and Protective Efficiency against Toxoplasmosis. Front Immunol 2018. [PMID: 29515595 PMCID: PMC5826183 DOI: 10.3389/fimmu.2018.00317] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Toxoplasmosis is a major public health problem and the development of a human vaccine is of high priority. Efficient vaccination against Toxoplasma gondii requires both a mucosal and systemic Th1 immune response. Moreover, dendritic cells play a critical role in orchestrating the innate immune functions and driving specific adaptive immunity to T. gondii. In this study, we explore an original vaccination strategy that combines administration via mucosal and systemic routes of fusion proteins able to target the major T. gondii surface antigen SAG1 to DCs using an antibody fragment single-chain fragment variable (scFv) directed against DEC205 endocytic receptor. Our results show that SAG1 targeting to DCs by scFv via intranasal and subcutaneous administration improved protection against chronic T. gondii infection. A marked reduction in brain parasite burden is observed when compared with the intranasal or the subcutaneous route alone. DC targeting improved both local and systemic humoral and cellular immune responses and potentiated more specifically the Th1 response profile by more efficient production of IFN-γ, interleukin-2, IgG2a, and nasal IgA. This study provides evidence of the potential of DC targeting for the development of new vaccines against a range of Apicomplexa parasites.
Collapse
|
4
|
Dunn JD, Bosmani C, Barisch C, Raykov L, Lefrançois LH, Cardenal-Muñoz E, López-Jiménez AT, Soldati T. Eat Prey, Live: Dictyostelium discoideum As a Model for Cell-Autonomous Defenses. Front Immunol 2018; 8:1906. [PMID: 29354124 PMCID: PMC5758549 DOI: 10.3389/fimmu.2017.01906] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/13/2017] [Indexed: 12/11/2022] Open
Abstract
The soil-dwelling social amoeba Dictyostelium discoideum feeds on bacteria. Each meal is a potential infection because some bacteria have evolved mechanisms to resist predation. To survive such a hostile environment, D. discoideum has in turn evolved efficient antimicrobial responses that are intertwined with phagocytosis and autophagy, its nutrient acquisition pathways. The core machinery and antimicrobial functions of these pathways are conserved in the mononuclear phagocytes of mammals, which mediate the initial, innate-immune response to infection. In this review, we discuss the advantages and relevance of D. discoideum as a model phagocyte to study cell-autonomous defenses. We cover the antimicrobial functions of phagocytosis and autophagy and describe the processes that create a microbicidal phagosome: acidification and delivery of lytic enzymes, generation of reactive oxygen species, and the regulation of Zn2+, Cu2+, and Fe2+ availability. High concentrations of metals poison microbes while metal sequestration inhibits their metabolic activity. We also describe microbial interference with these defenses and highlight observations made first in D. discoideum. Finally, we discuss galectins, TNF receptor-associated factors, tripartite motif-containing proteins, and signal transducers and activators of transcription, microbial restriction factors initially characterized in mammalian phagocytes that have either homologs or functional analogs in D. discoideum.
Collapse
Affiliation(s)
- Joe Dan Dunn
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Cristina Bosmani
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Caroline Barisch
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Lyudmil Raykov
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Louise H Lefrançois
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Elena Cardenal-Muñoz
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | | | - Thierry Soldati
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
5
|
Bernardi DS, Bitencourt C, da Silveira DSC, da Cruz ELCM, Pereira-da-Silva MA, Faccioli LH, Lopez RFV. Effective transcutaneous immunization using a combination of iontophoresis and nanoparticles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:2439-2448. [PMID: 27431054 DOI: 10.1016/j.nano.2016.07.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 06/04/2016] [Accepted: 07/03/2016] [Indexed: 10/21/2022]
Abstract
Needle-free immunization strategies have been sought for years. Transcutaneous immunization using electroporation has been studied, but the high electrical voltage that must be applied may be painful and cause irreversible cell damage. The application of a weak electric field, such as in iontophoresis, has never been attempted. The aim of this work was to verify the potential of employing iontophoresis for transcutaneous immunization using ovalbumin (OVA) as a model antigen. To target the antigen presenting cells that are located in the viable epidermis, a vaccine formulation composed of OVA-loaded liposomes and silver nanoparticles (NPAg) was developed. In vitro cathodal iontophoresis of the OVA-liposomes associated with NPAg increased OVA penetration into the viable epidermis by 92-fold in comparison to passive delivery. In vivo, transcutaneous immunization with a suitable combination of liposome and iontophoresis induced the production of antibodies, differentiation of immune-competent cells and appeared to present an alternative strategy for needle-free vaccination.
Collapse
Affiliation(s)
- Daniela S Bernardi
- University of São Paulo, School of Pharmaceutical Sciences of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Claudia Bitencourt
- University of São Paulo, School of Pharmaceutical Sciences of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Denise S C da Silveira
- University of São Paulo, School of Pharmaceutical Sciences of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Estael L C M da Cruz
- University of São Paulo, School of Pharmaceutical Sciences of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Marcelo A Pereira-da-Silva
- Physics Institute of Sao Carlos-USP, Sao Carlos, SP, Brazil; Paulista Central University Center-UNICEP, Sao Carlos, SP, Brazil
| | - Lúcia Helena Faccioli
- University of São Paulo, School of Pharmaceutical Sciences of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Renata F V Lopez
- University of São Paulo, School of Pharmaceutical Sciences of Ribeirão Preto, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
6
|
Plzakova L, Kubelkova K, Krocova Z, Zarybnicka L, Sinkorova Z, Macela A. B cell subsets are activated and produce cytokines during early phases of Francisella tularensis LVS infection. Microb Pathog 2014; 75:49-58. [PMID: 25200734 DOI: 10.1016/j.micpath.2014.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 08/25/2014] [Accepted: 08/27/2014] [Indexed: 11/29/2022]
Abstract
Francisella tularensis, a facultative intracellular Gram-negative bacterium, causes the illness tularemia. The infection of mice with live vaccine strain is considered to be a model of human tularemia. F. tularensis infects predominantly such phagocytic cells as macrophages or neutrophils, but it also infects non-phagocytic hepatocytes, epithelial cells, and murine and human B cell lines. Based on work with the murine tularemia model, we report here that F. tularensis LVS infects peritoneal CD19(+) cells - exclusively B-1a cells - early after intraperitoneal infection in vivo. The peritoneal and consequently spleen CD19(+) cells are activated by the F. tularensis LVS infection to express the activation markers from MHC class II, CD25, CD54, CD69, and the co-stimulatory molecules CD80 and CD86. As early as 12 h post-infection, the peritoneal CD19(+) cells produce IFN-γ, IL-1β, IL-4, IL-6, IL-12, IL-17, IL-23, and TNF-α. The spleen CD19(+) cells respond to infection with some delay. Moreover, the F. tularensis infected A20 B cell line activates CD3(+) spleen cells isolated from naïve mice. Thus, the data presented here suggest that B cells have all the attributes to actively participate in the induction and regulation of the adaptive immune response during early stages of F. tularensis infection.
Collapse
Affiliation(s)
- Lenka Plzakova
- Institute of Molecular Pathology, Faculty of Military Health Sciences (FMHS), University of Defense (UO), Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Klara Kubelkova
- Centre of Advanced Studies, FMHS, UO, Hradec Kralove, Czech Republic
| | - Zuzana Krocova
- Institute of Molecular Pathology, Faculty of Military Health Sciences (FMHS), University of Defense (UO), Trebesska 1575, 500 01 Hradec Kralove, Czech Republic.
| | - Lenka Zarybnicka
- Department of Radiobiology, FMHS, UO, Hradec Kralove, Czech Republic
| | - Zuzana Sinkorova
- Department of Radiobiology, FMHS, UO, Hradec Kralove, Czech Republic
| | - Ales Macela
- Institute of Molecular Pathology, Faculty of Military Health Sciences (FMHS), University of Defense (UO), Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| |
Collapse
|