1
|
Cristovão-Silva AC, Brelaz-de-Castro MCA, Dionisio da Silva E, Leite ACL, Santiago LBAA, Conceição JMD, da Silva Tiburcio R, de Santana DP, Bedor DCG, de Carvalho BÍV, Ferreira LFGR, de Freitas E Silva R, Alves Pereira VR, Hernandes MZ. Trypanosoma cruzi killing and immune response boosting by novel phenoxyhydrazine-thiazole against Chagas disease. Exp Parasitol 2024; 261:108749. [PMID: 38593864 DOI: 10.1016/j.exppara.2024.108749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/23/2024] [Accepted: 04/06/2024] [Indexed: 04/11/2024]
Abstract
Trypanosoma cruzi (T. cruzi) causes Chagas, which is a neglected tropical disease (NTD). WHO estimates that 6 to 7 million people are infected worldwide. Current treatment is done with benznidazole (BZN), which is very toxic and effective only in the acute phase of the disease. In this work, we designed, synthesized, and characterized thirteen new phenoxyhydrazine-thiazole compounds and applied molecular docking and in vitro methods to investigate cell cytotoxicity, trypanocide activity, nitric oxide (NO) production, cell death, and immunomodulation. We observed a higher predicted affinity of the compounds for the squalene synthase and 14-alpha demethylase enzymes of T. cruzi. Moreover, the compounds displayed a higher predicted affinity for human TLR2 and TLR4, were mildly toxic in vitro for most mammalian cell types tested, and LIZ531 (IC50 2.8 μM) was highly toxic for epimastigotes, LIZ311 (IC50 8.6 μM) for trypomastigotes, and LIZ331 (IC50 1.9 μM) for amastigotes. We observed that LIZ311 (IC50 2.5 μM), LIZ431 (IC50 4.1 μM) and LIZ531 (IC50 5 μM) induced 200 μg/mL of NO and JM14 induced NO production in three different concentrations tested. The compound LIZ331 induced the production of TNF and IL-6. LIZ311 induced the secretion of TNF, IFNγ, IL-2, IL-4, IL-10, and IL-17, cell death by apoptosis, decreased acidic compartment formation, and induced changes in the mitochondrial membrane potential. Taken together, LIZ311 is a promising anti-T. cruzi compound is not toxic to mammalian cells and has increased antiparasitic activity and immunomodulatory properties.
Collapse
Affiliation(s)
- Ana Catarina Cristovão-Silva
- Laboratory of Immunopathology and Molecular Biology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, 50670-42, Recife, Pernambuco, Brazil
| | - Maria Carolina Accioly Brelaz-de-Castro
- Laboratory of Immunopathology and Molecular Biology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, 50670-42, Recife, Pernambuco, Brazil; Laboratory of Parasitology, Vitória Academic Center, Federal University of Pernambuco, 55608-680, Vitória de Santo Antão, Pernambuco, Brazil
| | - Elis Dionisio da Silva
- Laboratory of Immunopathology and Molecular Biology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, 50670-42, Recife, Pernambuco, Brazil
| | - Ana Cristina Lima Leite
- Laboratory of Planning and Synthesis in Medicinal Chemistry, Pharmaceutical Sciences Department, Federal University of Pernambuco, 50740-520, Recife, Pernambuco, Brazil
| | - Lizandra Beatriz Amorim Alves Santiago
- Laboratory of Planning and Synthesis in Medicinal Chemistry, Pharmaceutical Sciences Department, Federal University of Pernambuco, 50740-520, Recife, Pernambuco, Brazil
| | - Juliana Maria da Conceição
- Laboratory of Planning and Synthesis in Medicinal Chemistry, Pharmaceutical Sciences Department, Federal University of Pernambuco, 50740-520, Recife, Pernambuco, Brazil
| | - Robert da Silva Tiburcio
- Laboratory of Planning and Synthesis in Medicinal Chemistry, Pharmaceutical Sciences Department, Federal University of Pernambuco, 50740-520, Recife, Pernambuco, Brazil
| | - Davi Pereira de Santana
- Pharmaceutical and Cosmetic Development Center (NUDFAC), Department of Pharmaceutical Science, Federal University of Pernambuco, Recife, PE, Brazil
| | - Danilo Cesar Galindo Bedor
- Pharmaceutical and Cosmetic Development Center (NUDFAC), Department of Pharmaceutical Science, Federal University of Pernambuco, Recife, PE, Brazil
| | - Breno Ítalo Valença de Carvalho
- Pharmaceutical and Cosmetic Development Center (NUDFAC), Department of Pharmaceutical Science, Federal University of Pernambuco, Recife, PE, Brazil
| | - Luiz Felipe Gomes Rebello Ferreira
- Laboratory of Theoretical and Medicinal Chemistry, Pharmaceutical Sciences Department, Federal University of Pernambuco, 50740-520, Recife, Pernambuco, Brazil
| | - Rafael de Freitas E Silva
- Laboratory of Immunopathology and Molecular Biology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, 50670-42, Recife, Pernambuco, Brazil.
| | - Valéria Rêgo Alves Pereira
- Laboratory of Immunopathology and Molecular Biology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, 50670-42, Recife, Pernambuco, Brazil.
| | - Marcelo Zaldini Hernandes
- Laboratory of Theoretical and Medicinal Chemistry, Pharmaceutical Sciences Department, Federal University of Pernambuco, 50740-520, Recife, Pernambuco, Brazil.
| |
Collapse
|
2
|
Ribeiro Franco PI, do Carmo Neto JR, Guerra RO, Ferreira da Silva PE, Braga YLL, Nunes Celes MR, de Menezes LB, Miguel MP, Machado JR. Melatonin: A look at protozoal and helminths. Biochimie 2024; 219:96-109. [PMID: 37541568 DOI: 10.1016/j.biochi.2023.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/24/2023] [Accepted: 07/29/2023] [Indexed: 08/06/2023]
Abstract
Melatonin is a pleiotropic neurohormone found in different animal, plant, and microorganism species. It is a product resulting from tryptophan metabolism in the pineal gland and is widely known for its ability to synchronize the circadian rhythm to antitumor functions in different types of cancers. The molecular mechanisms responsible for its immunomodulatory, antioxidant and cytoprotective effects involve binding to high-affinity G protein-coupled receptors and interactions with intracellular targets that modulate signal transduction pathways. In vitro and in vivo studies have reported the therapeutic potential of melatonin in different infectious and parasitic diseases. In this review, the protective and pathophysiological roles of melatonin in fighting protozoan and helminth infections and the possible mechanisms involved against these stressors will be discussed.
Collapse
Affiliation(s)
- Pablo Igor Ribeiro Franco
- Instituto de Patologia Tropical e Saúde Pública, Programa de Pós-Graduação em Medicina Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil.
| | - José Rodrigues do Carmo Neto
- Instituto de Patologia Tropical e Saúde Pública, Programa de Pós-Graduação em Medicina Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Rhanoica Oliveira Guerra
- Departamento de Biologia Celular, Escola de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Priscilla Elias Ferreira da Silva
- Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| | - Yarlla Loyane Lira Braga
- Instituto de Patologia Tropical e Saúde Pública, Programa de Pós-Graduação em Medicina Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Mara Rúbia Nunes Celes
- Instituto de Patologia Tropical e Saúde Pública, Programa de Pós-Graduação em Medicina Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Liliana Borges de Menezes
- Escola de Veterinária e Zootecnia, Programa de Pós-Graduação em Ciência Animal, Universidade Federal de Goiás, Goiânia, GO, Brazil; Setor de Patologia Geral, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Marina Pacheco Miguel
- Escola de Veterinária e Zootecnia, Programa de Pós-Graduação em Ciência Animal, Universidade Federal de Goiás, Goiânia, GO, Brazil; Setor de Patologia Geral, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Juliana Reis Machado
- Departamento de Patologia, Genética e Evolução, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| |
Collapse
|
3
|
Mohtashamian A, Soleimani A, Gilasi HR, Kheiripour N, Moeini Taba SM, Sharifi N. Association of Zinc Status with Matrix Metalloproteinases, Advanced Glycation End-Products, and Blood Pressure in Patients with Chronic Kidney Disease. Biol Trace Elem Res 2023; 201:4275-4285. [PMID: 36515817 DOI: 10.1007/s12011-022-03524-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Inflammation, oxidative stress, and hypertension trigger the development of chronic kidney disease (CKD). Zinc is known to have antioxidant and anti-inflammatory properties and a possible role in regulating blood pressure. The aim of this study was to investigate the correlation of serum zinc with matrix metalloproteinase-2 and-9 (MMP-2, MMP-9), advanced glycation end products (AGEs), and blood pressure in patients with CKD. This cross-sectional study included 90 patients with CKD. Serum zinc and the levels of MMP-2, MMP-9, AGEs, and creatinine were measured using validated biochemical methods. Three 24-h food recalls were completed to evaluate dietary zinc intake. Systolic and diastolic blood pressure (SBP, DBP) were measured using a digital sphygmomanometer. Participants' mean age was 60.68 ± 8.81 years. The prevalence of zinc deficiency in our participants was 10%. Serum zinc was negatively correlated with MMP-9 (r = - 0.231, p = 0.032) and creatinine (r = - 0.304, p = 0.004). However, after adjusting for confounding variables, the association between serum zinc and MMP-9 was near the significance level (β = - 0.174, p = 0.09) and zinc remained in the model as one of the predictors. Serum zinc was positively correlated with the dietary intake of zinc (r = 0.241, p = 0.025) and estimated glomerular filtration rate (eGFR) (r = 0.259, p = 0.015). In conclusion, our results showed that serum zinc might be one of the predictors of serum MMP-9 in patients with CKD. In addition, serum zinc was positively associated with its dietary intake and eGFR. Future longitudinal studies or clinical trials are required to reveal any causal association between zinc status and profibrotic or inflammatory biomarkers among patients with CKD.
Collapse
Affiliation(s)
- Abbas Mohtashamian
- Student Research Committee, Department of Nutrition, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Soleimani
- Department of Internal Medicine, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamid Reza Gilasi
- Department of Epidemiology and Biostatistics, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Nejat Kheiripour
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Basic Science Research Institute, Kashan University of Medical Sciences, Kashan, 87159-734741, Iran
| | - Seyed Masoud Moeini Taba
- Department of Internal Medicine, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Nasrin Sharifi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Basic Science Research Institute, Kashan University of Medical Sciences, Kashan, 87159-734741, Iran.
| |
Collapse
|
4
|
Brazão V, Colato RP, Santello FH, Duarte A, Goulart A, Sampaio PA, Pacheco Silva CB, Tirapelli CR, Costa RM, Tostes RC, do Prado JC. Melatonin regulates antioxidant defense and inflammatory response by activating Nrf2-dependent mechanisms and inhibiting NFkappaB expression in middle-aged T. cruzi infected rats. Exp Gerontol 2022; 167:111895. [PMID: 35843349 DOI: 10.1016/j.exger.2022.111895] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 12/29/2022]
Abstract
Oxidative stress with higher levels of leptin and inflammatory response are key processes related to pathogenesis of both T. cruzi infection and aging. Nuclear factor erythroid 2-related factor 2 (Nrf2) controls the expression of several genes implicated in the oxidative stress response in many pathological conditions. Melatonin is a pleiotropic hormone with, antioxidant, anti-inflammatory and anti-aging actions. Then, we hypothesized that Nrf2 response is impaired during the acute T. cruzi (9 days) infection and that melatonin rescues Nrf2 responses. Young (5 weeks-old) and middle-aged (18 months-old) male Wistar rats were infected with T. cruzi. Nrf2 translocation and markers of inflammation and oxidative stress were analyzed in blood and spleen. Increased apoptosis levels and oxidative stress indicators were observed in the rat spleen during T. cruzi infection. These responses were accompanied by decreased Nrf2 expression and increased expression of nuclear factor kappa B (NFκB). Melatonin (5 mg/kg/day; p.o. gavage) attenuated the superoxide anion (O2-) and hydrogen peroxide (H2O2) production induced by T. cruzi infection. Increased expressions of catalase and superoxide dismutase (SOD) were detected in the spleen of melatonin-treated rats infected with T. cruzi. Melatonin treatment inhibited the spleen NF-κB activation and downregulates the levels of circulating interleukin (IL)-4, IL-10 and tumor necrosis factor (TNF)-α in T. cruzi middle-aged infected rats. Increased levels of the chemokine CXCL1 in middle-aged control rats was observed, confirming that aging alters the production of this chemokine. In T. cruzi infected young animals, CXCL1 was up-regulated when compared to non-infected young ones. For young or middle-aged animals, melatonin treatment had no significant effect on CXCL1 levels. Our findings demonstrate an important role for Nrf2/NF-kB regulation as a possible mechanism by which melatonin attenuates oxidative stress, and provide new insights for further studies of this indoleamine as a therapeutic co-adjuvant agent against T. cruzi infection.
Collapse
Affiliation(s)
- Vânia Brazão
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Rafaela Pravato Colato
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Fabricia Helena Santello
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Andressa Duarte
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Amanda Goulart
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Pedro Alexandre Sampaio
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Carla B Pacheco Silva
- Department of Psychiatric Nursing and Human Sciences, Laboratory of Pharmacology, College of Nursing of Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Carlos Renato Tirapelli
- Department of Psychiatric Nursing and Human Sciences, Laboratory of Pharmacology, College of Nursing of Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Rafael M Costa
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto, SP, Brazil; Special Academic Unit of Health Sciences, Federal University of Jatai, Jatai, GO, Brazil
| | - Rita C Tostes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto, SP, Brazil
| | - José Clóvis do Prado
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
5
|
Baarz BR, Rink L. Rebalancing the unbalanced aged immune system - A special focus on zinc. Ageing Res Rev 2022; 74:101541. [PMID: 34915196 DOI: 10.1016/j.arr.2021.101541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/18/2021] [Accepted: 12/09/2021] [Indexed: 02/08/2023]
Abstract
Nowadays, aging is understood as a dynamic and multifaceted dysregulation process that spares almost no human organ or cell. The immune system being among the most affected, it has been shown predominantly that its integrity determines the tightrope walk between the difference of escaping or suffering from age-related diseases. Next to drug-based anti-aging strategies, micronutrient intervention may represent an emerging but less radical way to slow immune aging. While a sufficient supply of a variety of micronutrients is undeniably important, adequate intake of the trace element zinc appears to tower over others in terms of reaching old age. Inconveniently, zinc deficiency prevalence among the elderly is high, which in turn contributes to increased susceptibility to infection, decreased anti-tumor immunity as well as attenuated response to vaccination. Driven by this research, this review aims to provide a comprehensive and up-to-date overview of the various rebalancing capabilities of zinc in the unbalanced immune system of the elderly. This includes an in-depth and cell type-centered discussion on the role of zinc in immunosenescence and inflammaging. We further address upcoming translational aspects e.g. how zinc deficiency promotes the flourishing of certain pathogenic taxa of the gut microbiome and how zinc supply counteracts such alterations in a manner that may contribute to longevity. In the light of the ongoing COVID-19 pandemic, we also briefly review current knowledge on the interdependency between age, zinc status, and respiratory infections. Based on two concrete examples and considering the latest findings in the field we conclude our remarks by outlining tremendous parallels between suboptimal zinc status and accelerated aging on the one hand and an optimized zinc status and successful aging on the other hand.
Collapse
|
6
|
Providello MV, Portapilla GB, Oliveira PAS, da Silva CBP, Anchieta NF, Tirapelli CR, de Albuquerque S. Melatonin decreases circulating Trypanosoma cruzi load with no effect on tissue parasite replication. Can J Physiol Pharmacol 2021; 99:795-802. [PMID: 33296274 DOI: 10.1139/cjpp-2020-0473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac damage during the acute phase of Chagas disease (CD) is associated with an increase in pro-inflammatory markers and oxidative stress. Melatonin (MEL) has emerged as a promising therapy for CD due to its antioxidant and immunomodulatory properties; however, the protective action of MEL in the cardiac tissue, as well as its direct action on the parasite cycle, is not fully understood. We investigated the effects of MEL on heart parasitism in mice infected with Trypanosoma cruzi and also its effects on the parasitic proliferation in vitro. Our in vivo study showed that MEL reduced circulating parasitemia load, but did not control tissue (heart, liver, and spleen) parasitism in mice. MEL did not prevent the redox imbalance in the left ventricle of infected mice. Our in vitro findings showed that MEL did not inhibit parasites replication within cells, but rather increased their release from cells. MEL did not control parasitism load in the heart or prevent the cardiac redox imbalance induced by acute T. cruzi infection. The hormone controlled the circulating parasitic load, but within cells MEL accelerated parasitic release, a response that can be harmful.
Collapse
Affiliation(s)
- Maiara Voltarelli Providello
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, DACTB, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Gisele Bulhões Portapilla
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, DACTB, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Pedro Alexandre Sampaio Oliveira
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, DACTB, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Carla Brigagão Pacheco da Silva
- Laboratório de Farmacologia, DEPCH, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Naira Ferreira Anchieta
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, DACTB, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Carlos Renato Tirapelli
- Laboratório de Farmacologia, DEPCH, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Sérgio de Albuquerque
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, DACTB, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
7
|
Zinc enhances carnosine inhibitory effect against structural and functional age-related protein alterations in an albumin glycoxidation model. Biometals 2020; 33:353-364. [PMID: 32997290 DOI: 10.1007/s10534-020-00254-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/25/2020] [Indexed: 12/20/2022]
Abstract
Age-related complications including protein alterations seen in diabetes and Alzheimer's disease are a major issue due to their accumulation and deleterious effects. This report aims to investigate the effect of zinc supplementation on the anti-glycoxidation activity of carnosine on the in vitro model of albumin-based protein modification. Besides, the therapeutic effect of this combination was tested through the addition of the molecules in tandem (co-treatment) or post initiation (post-treatment) of the protein modification process. Glycation was induced via the addition of glucose to which carnosine (5 mM) alone or with various zinc concentrations (125, 250, and 500 μM) were added either at 0 h or 24 h post-glycation induction. On the other hand, protein oxidation was induced using chloramine T (20 mM) and treated in the same way with carnosine and zinc. The different markers of glycation (advanced glycation end products (AGEs), dityrosine, and beta-sheet formation (aggregation)) and oxidation (AOPP, advanced oxidation protein products) were estimated via fluorescence and colorimetric assays. Zinc addition induced a significant enhancement of carnosine activity by reducing albumin modification that outperformed aminoguanidine both in the co- and post-treatment protocols. Zinc demonstrated a supplementary effect in combination with carnosine highlighting its potential in the protection against age-related protein modifications processes such as the ones found in diabetes.
Collapse
|
8
|
Clinical Application of Melatonin in the Treatment of Cardiovascular Diseases: Current Evidence and New Insights into the Cardioprotective and Cardiotherapeutic Properties. Cardiovasc Drugs Ther 2020; 36:131-155. [PMID: 32926271 DOI: 10.1007/s10557-020-07052-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/04/2020] [Indexed: 12/17/2022]
Abstract
Cardiovascular diseases (CVDs) are the leading global cause of mortality and disability, tending to happen in younger individuals in developed countries. Despite improvements in medical treatments, the therapy and long-term prognosis of CVDs such as myocardial ischemia-reperfusion, atherosclerosis, heart failure, cardiac hypertrophy and remodeling, cardiomyopathy, coronary artery disease, myocardial infarction, and other CVDs threatening human life are not satisfactory enough. Therefore, many researchers are attempting to identify novel potential therapeutic methods for the treatment of CVDs. Melatonin is an anti-inflammatory and antioxidant agent with a wide range of therapeutic properties. Recently, several investigations have been carried out to evaluate its effectiveness and efficiency in CVDs therapy, focusing on mechanistic pathways. Herein, this review aims to summarize current findings of melatonin treatment for CVDs.
Collapse
|
9
|
Brazão V, Santello FH, Colato RP, Duarte A, Goulart A, Sampaio PA, Nardini V, Sorgi CA, Faccioli LH, do Prado JC. Melatonin down-regulates steroidal hormones, thymocyte apoptosis and inflammatory cytokines in middle-aged T. cruzi infected rats. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165914. [PMID: 32768678 PMCID: PMC7406476 DOI: 10.1016/j.bbadis.2020.165914] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/19/2020] [Accepted: 08/03/2020] [Indexed: 01/16/2023]
Abstract
Chagas disease, triggered by the flagellate protozoan Trypanosoma cruzi (T. cruzi) plays a potentially threat to historically non-endemic areas. Considerable evidence established that the immuno-endocrine balance could deeply influence the experimental T. cruzi progression inside the host's body. A high-resolution multiple reaction monitoring approach (MRMHR) was used to study the influence of melatonin on adrenal and plasma steroidal hormones profile of T. cruzi infected Wistar rats. Young (5 weeks) and middle-aged (18 months) male Wistar rats received melatonin (5 mg/Kg, orally) during the acute Chagas disease. Corticosterone, 11-dehydrocorticosterone (11-DHC), cortisol, cortisone, aldosterone, progesterone and melatonin concentration were evaluated. Interleukin-1 alpha and β (IL-1α and β), IL-6 and transforming growth factor beta (TGF-β) were also analyzed. Our results revealed an increased production of corticosterone, cortisone, cortisol and aldosterone in middle-aged control animals, thus confirming the aging effects on the steroidal hormone profile. Serum melatonin levels were reduced with age and predominantly higher in young and middle-aged infected rats. Melatonin treatment reduced the corticosterone, 11-DHC, cortisol, cortisone, aldosterone and progesterone in response to T. cruzi infection. Decreased IL-1 α and β concentrations were also found in melatonin treated middle-aged infected animals. Melatonin treated middle-aged control rats displayed reduced concentrations of TGF-β. Melatonin levels were significantly higher in all middle-aged rats treated animals. Reduced percentages of early and late thymocyte apoptosis was found for young and middle-aged melatonin supplemented rats. Finally, our results show a link between the therapeutic and biological effects of melatonin controlling steroidal hormones pathways as well as inflammatory mediators. Melatonin acts on the regulation of steroid hormones, apoptosis and cytokine signaling during acute T. cruzi infection; Middle-aged control rats have higher production of corticosterone, cortisone, cortisol and aldosterone; Melatonin treated middle-aged infected rats displayed reduced concentrations of IL-1 α and β; Melatonin levels were significantly higher in all middle-aged rats treated animals; Reduced percentages of early and late thymocyte apoptosis was found for young and middle-aged melatonin supplemented rats.
Collapse
Affiliation(s)
- Vânia Brazão
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Fabricia Helena Santello
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Rafaela Pravato Colato
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Andressa Duarte
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Amanda Goulart
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Pedro Alexandre Sampaio
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Viviani Nardini
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Carlos Arterio Sorgi
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Lúcia Helena Faccioli
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - José Clóvis do Prado
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
10
|
Machado NI, Dos Santos TAT, de Souza W, DaMatta RA, Seabra SH. Treatment with melatonin induces a reduction of Toxoplasma gondii development in LLC-MK2 cells. Parasitol Res 2020; 119:2703-2711. [PMID: 32537718 DOI: 10.1007/s00436-020-06766-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/08/2020] [Indexed: 11/25/2022]
Abstract
It is known that the current treatment for toxoplasmosis causes side effects. Thus, it is essential to develop new therapies with reduced adverse effects while concurrently maintaining broad coverage and prophylactic therapy. Melatonin is a hormone that participates in the circadian cycle in vertebrates and has antioxidant, immunomodulatory, and antitumoral functions. In addition, it has been shown that melatonin can modulate immune responses and parasitic development during infection by Trypanosoma cruzi and Leishmania spp. Furthermore, studies indicate that melatonin increases the number of lymphocytes in rats infected by Toxoplasma gondii. However, there is no information on the possible effects of melatonin in T. gondii-infected host cells in vitro. This study analyzed the effects of melatonin treatment in the monkey kidney cell epithelial cell line, LLC-MK2, after infection with T. gondii. LLC-MK2 cells were infected and treated/not treated with melatonin, and the infection index was then quantified. Melatonin treatment did not alter host cell viability and was able to reduce parasite proliferation in LLC-MK2 cells at 24 and 48 h and at 6 days. Analysis by scanning electron microscopy confirmed reduction of parasite proliferation and alterations of tachyzoite shapes. Transmission electron microscopy images showed parasites with ruptured plasma membranes and cytoplasmic leakage. After treatment, parasites showed positive staining for apoptotic-like cell death. These results suggest that the use of melatonin as the lead compound for the synthesis of new compounds may constitute an alternative treatment for toxoplasmosis.
Collapse
Affiliation(s)
- Nayara Inocencio Machado
- Laboratório de Tecnologia em Cultura de Células, Centro Universitário Estadual da Zona Oeste, Av. Manuel Caldeira de Alvarenga, 1203, Campo Grande, Rio de Janeiro, RJ, CEP: 23070-200, Brazil
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, CEP: 28013-602, Brazil
| | - Thiago Alves Teixeira Dos Santos
- Laboratório de Tecnologia em Cultura de Células, Centro Universitário Estadual da Zona Oeste, Av. Manuel Caldeira de Alvarenga, 1203, Campo Grande, Rio de Janeiro, RJ, CEP: 23070-200, Brazil
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, CEP: 28013-602, Brazil
- Centro Universitário IBMR, Avenida das Américas, 2603, Rio de Janeiro, RJ, CEP: 22631-002, Brazil
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem and Centro Nacional de Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, CEP: 21941-170, Brazil
| | - Renato Augusto DaMatta
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, CEP: 28013-602, Brazil.
| | - Sergio Henrique Seabra
- Laboratório de Tecnologia em Cultura de Células, Centro Universitário Estadual da Zona Oeste, Av. Manuel Caldeira de Alvarenga, 1203, Campo Grande, Rio de Janeiro, RJ, CEP: 23070-200, Brazil.
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, CEP: 28013-602, Brazil.
| |
Collapse
|
11
|
T. cruzi infection among aged rats: Melatonin as a promising therapeutic molecule. Exp Gerontol 2020; 135:110922. [PMID: 32151734 DOI: 10.1016/j.exger.2020.110922] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 02/12/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022]
Abstract
Although T. cruzi was identified as the cause of Chagas disease more than 100 years ago, satisfactory treatments still do not exist, especially for chronic disease. Here we review work suggesting that melatonin could have promise as a Chagas therapeutic. Melatonin has remarkably diverse actions. It is an immunomodulator, an anti-inflammatory, an antioxidant, a free radical scavenger, and has antiapoptotic and anti-aging effects. The elderly (aged 60 years or more) as a group are growing faster than any other age group. Here we discuss the major effects and the mechanisms of action of melatonin on aged T. cruzi-infected rats. Melatonin's protective effects may be consequences of its cooperative antioxidant and immunomodulatory actions. Melatonin modulates oxidative damage, inducing an antioxidant response and reversing age-related thymus regression. Its protective actions could be the result of its anti-apoptotic activity, and by its counteracting the excessive production of corticosterone. This review describes our work showing that host age plays an important and variable influence on the progression of systemic T. cruzi infection and supporting the hypothesis that melatonin should be considered as a powerful therapeutic compound with multiple activities that can improve host homeostasis during experimental T. cruzi infection.
Collapse
|
12
|
Zhao CN, Wang P, Mao YM, Dan YL, Wu Q, Li XM, Wang DG, Davis C, Hu W, Pan HF. Potential role of melatonin in autoimmune diseases. Cytokine Growth Factor Rev 2019; 48:1-10. [DOI: 10.1016/j.cytogfr.2019.07.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/11/2019] [Accepted: 07/11/2019] [Indexed: 12/28/2022]
|
13
|
Kheirouri S, Alizadeh M, Maleki V. Zinc against advanced glycation end products. Clin Exp Pharmacol Physiol 2018; 45:491-498. [DOI: 10.1111/1440-1681.12904] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/08/2017] [Accepted: 11/20/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Sorayya Kheirouri
- Department of Nutrition; Tabriz University of Medical Sciences; Tabriz Iran
| | - Mohammad Alizadeh
- Department of Nutrition; Tabriz University of Medical Sciences; Tabriz Iran
| | - Vahid Maleki
- Department of Nutrition; Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|
14
|
The potential use of melatonin to treat protozoan parasitic infections: A review. Biomed Pharmacother 2017; 97:948-957. [PMID: 29136773 DOI: 10.1016/j.biopha.2017.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/01/2017] [Accepted: 11/03/2017] [Indexed: 01/09/2023] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is a circadian hormone produced in vertebrates by the pineal gland and other organs. Melatonin is believed to influence immune cells leading to modulation of the proliferative response of stimulated lymphocytes as well as cytokine production. Due to the antioxidant and immunomodulatory effects of melatonin, it is suggested that this molecule could be a therapeutic alternative agent to fight bacterial, viral, and parasitic infections by a variety of mechanisms. Herein, we review the effects of melatonin on the cell biology of protozoan parasites and host's immune response. In toxoplasmosis, African trypanosomiasis and Chagas' disease, melatonin enhances host's immune response against the parasite via regulating the secretion of inflammatory mediators. In amoebiasis, melatonin reduces the amoebic lesions as well as increasing the leukophagocytosis and the number of dead amoebae. In giardiasis, serum melatonin levels are elevated in these patients; this suggests a positive correlation between the level of melatonin and phagocytic activity in the G. duodenalis infected patients, possibly related to melatonin's immunomodulatory effect. In leishmaniasis, melatonin arrests parasite replication accompanied by releasing mitochondrial Ca2+ into the cytosol, increasing the level of mitochondrial nitrites as well as reducing superoxide dismutase (SOD) activity. In malaria, melatonin synchronizes the Plasmodium cell cycle via modulating cAMP-PKA and IP3-Ca2+ pathways. Thus, simultaneous administration of melatonin agonists or giving pharmacological doses of melatonin may be considered a novel approach for treatment of malarial infection.
Collapse
|
15
|
Smajdor J, Piech R, Pięk M, Paczosa-Bator B. Carbon black as a glassy carbon electrode modifier for high sensitive melatonin determination. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.06.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|