1
|
de Oliveira CGN, Perez EC, Alvares-Saraiva AM, Lallo MA. CD8 T lymphocytes from B-1 cell-deficient mice down-regulates fungicidal activity of macrophages challenged with E. Cuniculi. Immunobiology 2024; 229:152827. [PMID: 38878483 DOI: 10.1016/j.imbio.2024.152827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Encephalitozoon cuniculi is an opportunistic intracellular pathogen that establishes a balanced relationship with immunocompetent individuals depending on the activity of their CD8+ T cells lymphocytes. However, lower resistance to experimental infection with E. cuniculi was found in B-1 deficient mice (Xid), besides increased the number of CD8 T lymphocytes. Here, we evaluated the profile of CD8+ T lymphocytes from Balb/c wild-type (WT) or Balb/c Xid mice (with B-1 cell deficiency) on the microbicidal activity of macrophages challenged with E. cuniculi. METHODS Naïve CD8 T lymphocytes from WT or Xid mice uninfected and primed CD8 T lymphocytes from WT or Xid mice infected with E cuniculi were co-cultured with macrophages previously challenged with E. cuniculi. We evaluated macrophages viability and microbicidal activity, and CD8 T lymphocytes viability and presence of activating molecules (CD62L, CD69, and CD107a). RESULTS Macrophages co-cultured with naïve CD8 T lymphocytes from WT demonstrated high microbicidal activity. Naïve CD8 T lymphocytes obtained from WT mice had a higher expression of CD69 and LAMP-1-activating molecules compared to Xid CD8+ T lymphocytes. Primed CD8 T lymphocytes from Xid mice proliferated more than those from WT mice, however, when the expression of the activating molecule CD69 associated with the expression of CD62L was kept low. In conclusion, naïve CD8+ T lymphocytes from Xid mice, deficient in B-1 cells, they had reduced expression of activation molecules and cytotoxic activity.
Collapse
Affiliation(s)
| | - Elizabeth Cristina Perez
- Programa de Pós-Graduação em Patologia Ambiental e Experimental, Universidade Paulista - Unip, Rua Dr Bacelar 1212, CEP 04026002 São Paulo, SP, Brazil
| | - Anuska Marcelino Alvares-Saraiva
- Programa de Pós-Graduação em Patologia Ambiental e Experimental, Universidade Paulista - Unip, Rua Dr Bacelar 1212, CEP 04026002 São Paulo, SP, Brazil
| | - Maria Anete Lallo
- Programa de Pós-Graduação em Patologia Ambiental e Experimental, Universidade Paulista - Unip, Rua Dr Bacelar 1212, CEP 04026002 São Paulo, SP, Brazil.
| |
Collapse
|
2
|
Hidifira AM, Alvares-Saraiva AM, Perez EC, Spadacci-Morena DD, de Araujo RS, Lallo MA. Increased susceptibility to encephalitozoonosis associated with mixed Th1/Th2 profile and M1/M2 profile in mice immunosuppressed with cyclophosphamide. Exp Parasitol 2023; 254:108606. [PMID: 37666408 DOI: 10.1016/j.exppara.2023.108606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
Encephalitozoon cuniculi is a unicellular, spore-forming, obligate intracellular eukaryote belonging to the phylum Microsporidia. It is known to infect mainly immunocompromised and immunocompetent mammals, including humans. The parasite-host relationship has been evaluated using both in vitro cell culturing and animal models. For example, Balb/c and C57BL/6 mouse strains have been used interchangeably, although the latter has been considered more susceptible due to the higher fungal load observed after infection. In the present study, we identified the characteristics of the immune response of C57BL/6 mice treated or not with the immunosuppressant cyclophosphamide (Cy) and challenged with E. cuniculi by intraperitoneal route. After 14 days of infection, serum was collected to analyze Th1, Th2, and Th17 cytokine levels. In addition, peritoneal washes were performed, and the spleen sample was collected for immune cell phenotyping, whereas liver, spleen, kidney, lung, intestine, and central nervous system (CNS) samples were collected for histopathological analysis. Although infected mice displayed a reduced absolute number of macrophages, they showed an M1 profile, an elevated number of CD4+T, CD8+T, B-1, and B-2 lymphocytes, with a predominance of Th1 inflammatory cytokines (interferon [IFN]-γ, tumor necrosis factor [TNF]-α, and interleukin [IL]-2) and Th17. Furthermore, Cy-Infected mice showed a reduced absolute number of macrophages with an M1 profile but a reduced number of CD4+T, CD8+T, B-1, and B-2 lymphocytes, with a predominance of Th1 inflammatory cytokines (IFN-γ, TNF-α, and IL-2) and Th2 (IL-4). This group displayed a higher fungal burden as well and developed more severe encephalitozoonosis, which was associated with a reduced number of T and B lymphocytes and a mixed profile of Th1 and Th2 cytokines.
Collapse
Affiliation(s)
- Amanda Miyuki Hidifira
- Programa de Patologia Ambiental e Experimental, Universidade Paulista (UNIP), São Paulo, Brazil
| | | | | | | | | | - Maria Anete Lallo
- Programa de Patologia Ambiental e Experimental, Universidade Paulista (UNIP), São Paulo, Brazil.
| |
Collapse
|
3
|
Halperin ST, ’t Hart BA, Luchicchi A, Schenk GJ. The Forgotten Brother: The Innate-like B1 Cell in Multiple Sclerosis. Biomedicines 2022; 10:606. [PMID: 35327408 PMCID: PMC8945227 DOI: 10.3390/biomedicines10030606] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
Multiple sclerosis (MS) is a neurodegenerative disease of the central nervous system (CNS), traditionally considered a chronic autoimmune attack against the insulating myelin sheaths around axons. However, the exact etiology has not been identified and is likely multi-factorial. Recently, evidence has been accumulating that implies that autoimmune processes underlying MS may, in fact, be triggered by pathological processes initiated within the CNS. This review focuses on a relatively unexplored immune cell-the "innate-like" B1 lymphocyte. The B1 cell is a primary-natural-antibody- and anti-inflammatory-cytokine-producing cell present in the healthy brain. It has been recently shown that its frequency and function may differ between MS patients and healthy controls, but its exact involvement in the MS pathogenic process remains obscure. In this review, we propose that this enigmatic cell may play a more prominent role in MS pathology than ever imagined. We aim to shed light on the human B1 cell in health and disease, and how dysregulation in its delicate homeostatic role could impact MS. Furthermore, novel therapeutic avenues to restore B1 cells' beneficial functions will be proposed.
Collapse
Affiliation(s)
| | | | - Antonio Luchicchi
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HZ Amsterdam, The Netherlands; (S.T.H.); (B.A.’t.H.)
| | - Geert J. Schenk
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HZ Amsterdam, The Netherlands; (S.T.H.); (B.A.’t.H.)
| |
Collapse
|
4
|
Figuerêdo Moreira I, Marcelino Alvares-Saraiva A, Cristin Pérez E, Guilherme Xavier J, Denelle Spadacci-Morena D, Silva de Araújo R, Ricardo Dell'Armelina Rocha P, Anete Lallo M. Opportunistic pneumonia caused by E. cuniculi in mice immunosuppressed with cyclophosphamide. Immunobiology 2022; 227:152194. [DOI: 10.1016/j.imbio.2022.152194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/15/2022] [Accepted: 02/27/2022] [Indexed: 12/01/2022]
|
5
|
Moysés CRS, Alvares-Saraiva AM, Perez EC, Spadacci-Morena DD, Vidôto da Costa LF, Xavier JG, Lallo MA. Mice with genetic and induced B-cell deficiency as a model for disseminated encephalitozoonosis. Comp Immunol Microbiol Infect Dis 2022; 81:101742. [PMID: 35074660 DOI: 10.1016/j.cimid.2021.101742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/19/2022]
Abstract
Encephalitozoon cuniculi, an intracellular pathogen, lives in a balanced relationship with immunocompetent individuals based on the activity of T lymphocytes. We previously highlighted the greater susceptibility of B-1 cell-deficient mice (XID mice) to encephalitozoonosis. This study aimed to develop a model of disseminated and severe encephalitozoonosis in mice with combined immunodeficiency to elucidate the role of B cells. To address this objective, cyclophosphamide (Cy)-treated BALB/c and XID mice were inoculated with E. cuniculi, followed by the evaluation of the immune response and histopathological lesions. Immunosuppressed BALB/c mice manifested no clinical signs with an increase in the populations of T lymphocytes and macrophages in the spleen. Immunosuppressed and infected XID mice revealed elevated T cells, macrophages populations, and pro-inflammatory cytokines levels (IFN-γ, TNF-α, and IL-6) with the presence of abdominal effusion and lesions in multiple organs. These clinical characteristics are associated with extensive and severe encephalitozoonosis. The symptoms and lesion size were reduced, whereas B-2 and CD4+ T cells populations were increased in the spleen by transferring B-2 cells adoptive to XID mice. Moreover, B-1 cells adoptive transfer upregulated the peritoneal populations of B-2 cells and macrophages but not T lymphocytes and decreased the symptoms. Herein, we speculated the consistency in the development of severe and disseminated encephalitozoonosis in mice with genetic deficiency of Bruton's tyrosine kinase (Btk) associated with Cy immunosuppression develop with that of the models with T cell deficiency. Taken together, these data emphasized the crucial role of B cells in the protective immune response against encephalitozoonosis.
Collapse
Affiliation(s)
- Carla Renata Serantoni Moysés
- Programa de Pós-Graduação em Patologia Ambiental e Experimental, Universidade Paulista - Unip, Rua José Maria Whitaker 290, CEP 05622-001 São Paulo, SP, Brazil
| | - Anuska Marcelino Alvares-Saraiva
- Programa de Pós-Graduação em Patologia Ambiental e Experimental, Universidade Paulista - Unip, Rua José Maria Whitaker 290, CEP 05622-001 São Paulo, SP, Brazil; Laboratório de Fisiopatologia, Instituto Butantan, Av. Vital Brasil 1500, CEP 05503-900 São Paulo, SP, Brazil; Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, Rua Galvão Bueno, 868, CEP 01506-000 São Paulo, SP, Brazil
| | - Elizabeth Cristina Perez
- Programa de Pós-Graduação em Patologia Ambiental e Experimental, Universidade Paulista - Unip, Rua José Maria Whitaker 290, CEP 05622-001 São Paulo, SP, Brazil
| | | | - Lidiana Flora Vidôto da Costa
- Programa de Pós-Graduação em Patologia Ambiental e Experimental, Universidade Paulista - Unip, Rua José Maria Whitaker 290, CEP 05622-001 São Paulo, SP, Brazil
| | - José Guilherme Xavier
- Programa de Pós-Graduação em Patologia Ambiental e Experimental, Universidade Paulista - Unip, Rua José Maria Whitaker 290, CEP 05622-001 São Paulo, SP, Brazil
| | - Maria Anete Lallo
- Programa de Pós-Graduação em Patologia Ambiental e Experimental, Universidade Paulista - Unip, Rua José Maria Whitaker 290, CEP 05622-001 São Paulo, SP, Brazil.
| |
Collapse
|
6
|
Aseeja P, Shaikh Y, Bajpai A, Sirsikar P, Kalra SK. Advancement in our understanding of immune response against Encephalitozoon infection. Parasite Immunol 2021; 43:e12828. [PMID: 33682117 DOI: 10.1111/pim.12828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 01/15/2023]
Abstract
Microsporidia are a group of obligate, intracellular, spore-forming eukaryotic pathogens, which predominantly infects immunocompromised individuals worldwide. Encephalitozoon spp. is one of the most prevalent microsporidia known to infect humans. Host immune system plays a major role in combating pathogens including Encephalitozoon spp. infecting humans. Both innate and adaptive arms of host immune system work together in combating Encephalitozoon infection. Researchers are conducting studies to elucidate the role of both arms of immune system against Encephalitozoon infection. In addition to cell-mediated adaptive immunity, role of innate immunity is also being highlighted in clearance of Encephalitozoon spp. from host body. Therefore, the current review will give a clear and consolidated update on the role of innate as well as adaptive immunity in protection against Encephalitozoon spp.
Collapse
Affiliation(s)
- Praisy Aseeja
- Faculty of Applied Sciences & Biotechnology, Shoolini university of Biotechnology & Management Sciences, Solan, India
| | - Yasmin Shaikh
- Faculty of Applied Sciences & Biotechnology, Shoolini university of Biotechnology & Management Sciences, Solan, India
| | - Anamika Bajpai
- Centre for Translational Medicine, Lewis Katz School of Medicine, Medicine Education & Research Building, Temple University, Philadelphia, PA, USA
| | - Prachitee Sirsikar
- Faculty of Applied Sciences & Biotechnology, Shoolini university of Biotechnology & Management Sciences, Solan, India
| | - Sonali K Kalra
- Faculty of Applied Sciences & Biotechnology, Shoolini university of Biotechnology & Management Sciences, Solan, India
| |
Collapse
|
7
|
Han Y, Gao H, Xu J, Luo J, Han B, Bao J, Pan G, Li T, Zhou Z. Innate and Adaptive Immune Responses Against Microsporidia Infection in Mammals. Front Microbiol 2020; 11:1468. [PMID: 32670257 PMCID: PMC7332555 DOI: 10.3389/fmicb.2020.01468] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 06/04/2020] [Indexed: 12/22/2022] Open
Abstract
Microsporidia are obligate intracellular and eukaryotic pathogens that can infect immunocompromised and immunocompetent mammals, including humans. Both innate and adaptive immune systems play important roles against microsporidian infection. The innate immune system can partially eliminate the infection by immune cells, such as gamma delta T cell, natural killer cells (NKs), macrophages and dendritic cells (DCs), and present the pathogens to lymphocytes. The innate immune cells can also prime and enhance the adaptive immune response via surface molecules and secreted cytokines. The adaptive immune system is critical to eliminate microsporidian infection by activating cytotoxic T lymphocyte (CTL) and humoral immune responses, and feedback regulation of the innate immune mechanism. In this review, we will discuss the cellular and molecular responses and functions of innate and adaptive immune systems against microsporidian infection.
Collapse
Affiliation(s)
- Yinze Han
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Hailong Gao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Jinzhi Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Jian Luo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Bing Han
- Department of Pathology, Albert Einstein College of Medicine, The Bronx, NY, United States
| | - Jialing Bao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Guoqing Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Tian Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China.,College of Life Sciences, Chongqing Normal University, Chongqing, China
| |
Collapse
|
8
|
Jeklova E, Leva L, Matiasovic J, Ondrackova P, Kummer V, Faldyna M. Characterization of humoral and cell-mediated immunity in rabbits orally infected with Encephalitozoon cuniculi. Vet Res 2020; 51:79. [PMID: 32539803 PMCID: PMC7296746 DOI: 10.1186/s13567-020-00806-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 06/02/2020] [Indexed: 05/30/2023] Open
Abstract
Encephalitozoonosis is a common infectious disease widely spread among rabbits. Encephalitozoon cuniculi, is considered as a zoonotic and emerging pathogen capable of infecting both immunocompetent and immunocompromised hosts. The aim of the study was to describe in detail the spread of the E. cuniculi in a rabbit organism after experimental infection and the host humoral and cellular immune response including cytokine production. For that purpose, healthy immunocompetent rabbits were infected orally in order to simulate the natural route of infection and euthanised at 2, 4, 6 and 8-weeks post-infection. Dissemination of E. cuniculi in the body of the rabbit was more rapid than previously reported. As early as 2 weeks post-infection, E. cuniculi was detected using immunohistochemistry not only in the intestine, mesenteric lymph nodes, spleen, liver, kidneys, lungs and heart, but also in nervous tissues, especially in medulla oblongata, cerebellum, and leptomeninges. Based on flow cytometry, no conspicuous changes in lymphocyte subpopulations were detected in the examined lymphoid organs of infected rabbits. Cell-mediated immunity was characterized by ability of both CD4+ and CD8+ T cells to proliferate after stimulation with specific antigens. Th1 polarization of immune response with a predominance of IFN-γ expression was detected in spleen, mesenteric lymph nodes and Peyer’s patches. The increased expression of IL-4 and IL-10 mRNA in mixed samples from the small intestine is indicative of balanced control of IFN-γ, which prevents tissue damage. On the other hand, it can enable E. cuniculi to survive and persist in the host organism in a balanced host-parasite relationship. The Th17 immunity lineage seems to play only a minor role in E. cuniculi infection in rabbits.
Collapse
Affiliation(s)
- Edita Jeklova
- Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic
| | - Lenka Leva
- Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic
| | - Jan Matiasovic
- Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic
| | - Petra Ondrackova
- Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic
| | - Vladimir Kummer
- Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic
| | - Martin Faldyna
- Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic.
| |
Collapse
|
9
|
de Moura MLC, Alvares-Saraiva AM, Pérez EC, Xavier JG, Spadacci-Morena DD, Moysés CRS, Rocha PRD, Lallo MA. Cyclophosphamide Treatment Mimics Sub-Lethal Infections With Encephalitozoon intestinalis in Immunocompromised Individuals. Front Microbiol 2019; 10:2205. [PMID: 31608035 PMCID: PMC6773878 DOI: 10.3389/fmicb.2019.02205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/09/2019] [Indexed: 01/31/2023] Open
Abstract
Microsporidia, including Encephalitozoon intestinalis, are emerging pathogens which cause opportunistic infections in immunocompromised patients, such as those with AIDS, cancer, the elderly and people on immunosuppressive drugs. Intestinal mucosa (IM) is crucial for developing an efficient adaptive immune response against pathogenic micro-organisms, thereby preventing their colonization and subsequent infection. As immunosuppressive drugs affect the intestinal immune response is little known. In the present study, we investigated the immune response to E. intestinalis infection in the IM and gut-associated lymphoid tissue (GALT) in cyclophosphamide (Cy) immunosuppressed mice, to mimic an immunocompromised condition. Histopathology revealed lymphoplasmacytic enteritis at 7 and 14 days-post-infection (dpi) in all infected groups, however, inflammation diminished at 21 and 28 dpi. Cy treatment also led to a higher number of E. intestinalis spores and lesions, which reduced at 28 dpi. In addition, flow cytometry analysis demonstrated CD4+ and CD8+ T cells to be predominant immune cells, with up-regulation in both Th1 and Th2 cytokines at 7 and 14 dpi, as demonstrated by histopathology. In conclusion, Cy treatment reduced GALT (Peyer’s plaques and mesenteric lymph nodes) and peritoneum populations but increased the T-cell population in the intestinal mucosa and the production of pro-and anti-inflammatory cytokines, which were able to eliminate this opportunistic fungus and reduced the E. intestinalis infection.
Collapse
Affiliation(s)
- Maria Lucia Costa de Moura
- Programa de Pós-Graduação em Patologia Ambiental e Experimental, Universidade Paulista (UNIP), São Paulo, Brazil
| | | | - Elizabeth Cristina Pérez
- Programa de Pós-Graduação em Patologia Ambiental e Experimental, Universidade Paulista (UNIP), São Paulo, Brazil
| | - José Guilherme Xavier
- Programa de Pós-Graduação em Patologia Ambiental e Experimental, Universidade Paulista (UNIP), São Paulo, Brazil
| | | | | | | | - Maria Anete Lallo
- Programa de Pós-Graduação em Patologia Ambiental e Experimental, Universidade Paulista (UNIP), São Paulo, Brazil
| |
Collapse
|
10
|
Pereira A, Alvares-Saraiva AM, Konno FTDC, Spadacci-Morena DD, Perez EC, Mariano M, Lallo MA. B-1 cell-mediated modulation of M1 macrophage profile ameliorates microbicidal functions and disrupt the evasion mechanisms of Encephalitozoon cuniculi. PLoS Negl Trop Dis 2019; 13:e0007674. [PMID: 31536488 PMCID: PMC6779274 DOI: 10.1371/journal.pntd.0007674] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 10/07/2019] [Accepted: 07/30/2019] [Indexed: 12/26/2022] Open
Abstract
Here, we have investigated the possible effect of B-1 cells on the activity of peritoneal macrophages in E. cuniculi infection. In the presence of B-1 cells, peritoneal macrophages had an M1 profile with showed increased phagocytic capacity and index, associated with the intense microbicidal activity and a higher percentage of apoptotic death. The absence of B-1 cells was associated with a predominance of the M2 macrophages, reduced phagocytic capacity and index and microbicidal activity, increased pro-inflammatory and anti-inflammatory cytokines production, and higher percentual of necrosis death. In addition, in the M2 macrophages, spore of phagocytic E. cuniculi with polar tubular extrusion was observed, which is an important mechanism of evasion of the immune response. The results showed the importance of B-1 cells in the modulation of macrophage function against E. cuniculi infection, increasing microbicidal activity, and reducing the fungal mechanisms involved in the evasion of the immune response. The adaptive immune response plays a key role against Encephalitozoon cuniculi, an opportunistic fungus for T cells immunodeficient patients. The role of B cells and antibody play in natural resistance to Encephalitozoon cuniculi remains unknown. Previously, we demonstrated that B-1 deficient mice (XID), an important component of innate immunity, were more susceptible to encephalitozoonosis, despite the increase in the number of CD4+ and CD8+ T lymphocytes. Here we observed that the absence of B-1 cells was associated with a larger population of M2 macrophages, a balance between anti-inflammatory and pro-inflammatory cytokines profile, which had lower microbicidal activity against E. cuniculi infection. However, in the presence of B-1 cells, peritoneal macrophages had a M1 profile with showed increased microbicidal activity and a higher percentage of apoptotic death.
Collapse
Affiliation(s)
- Adriano Pereira
- Programa de Patologia Ambiental e Experimental, Universidade Paulista, Rua José Maria Whitaker, São Paulo, SP, Brasil.,Curso de Biomedicina, Centro Universitário São Camilo, São Paulo, SP, Brazil
| | - Anuska Marcelino Alvares-Saraiva
- Programa de Patologia Ambiental e Experimental, Universidade Paulista, Rua José Maria Whitaker, São Paulo, SP, Brasil.,Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, Rua Galvão Bueno, São Paulo, SP, Brazil.,Laboratório de Fisiopatologia, Instituto Butantan, São Paulo, SP, Brasil
| | | | | | - Elizabeth Cristina Perez
- Programa de Patologia Ambiental e Experimental, Universidade Paulista, Rua José Maria Whitaker, São Paulo, SP, Brasil
| | - Mario Mariano
- Programa de Patologia Ambiental e Experimental, Universidade Paulista, Rua José Maria Whitaker, São Paulo, SP, Brasil
| | - Maria Anete Lallo
- Programa de Patologia Ambiental e Experimental, Universidade Paulista, Rua José Maria Whitaker, São Paulo, SP, Brasil.,Curso de Biomedicina, Centro Universitário São Camilo, São Paulo, SP, Brazil
| |
Collapse
|
11
|
Langanke dos Santos D, Alvares-Saraiva AM, Xavier JG, Spadacci-Morena DD, Peres GB, Dell'Armelina Rocha PR, Perez EC, Lallo MA. B-1 cells upregulate CD8 T lymphocytes and increase proinflammatory cytokines serum levels in oral encephalitozoonosis. Microbes Infect 2018; 20:196-204. [DOI: 10.1016/j.micinf.2017.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/08/2017] [Accepted: 11/14/2017] [Indexed: 11/28/2022]
|
12
|
Francisco Neto A, Dell’Armelina Rocha PR, Perez EC, Xavier JG, Peres GB, Spadacci-Morena DD, Alvares-Saraiva AM, Lallo MA. Diabetes mellitus increases the susceptibility to encephalitozoonosis in mice. PLoS One 2017; 12:e0186954. [PMID: 29091912 PMCID: PMC5665527 DOI: 10.1371/journal.pone.0186954] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/10/2017] [Indexed: 12/31/2022] Open
Abstract
Microsporidiosis are diseases caused by opportunistic intracellular fungi in immunosuppressed individuals, as well as in transplanted patients, the elderly and children, among others. Diabetes mellitus (DM) is a metabolic disease characterized by hyperglycemia and decreased T cell response, neutrophil function, humoral immunity failure, increasing the susceptibility to infections. Here, we investigated the susceptibility of streptozotocin (STZ)-induced type I diabetic and/or immunosuppressed mice to encephalitozoonosis by Encephalitozoon cuniculi. Microscopically, granulomatous hepatitis, interstitial pneumonia and pielonephritis were observed in all infected groups. STZ treatment induced an immunossupressor effect in the populations of B (B-1 and B2) and CD4+ T lymphocytes. Moreover, infection decreased CD4+ and CD8+ T lymphocytes and macrophages of DM mice. Furthermore, infection induced a significant increase of IL-6 and TNF-α cytokine serum levels in DM mice. IFN-γ, the most important cytokine for the resolution of encephalitozoonosis, increased only in infected mice. In addition to the decreased immune response, DM mice were more susceptible to encephalitozoonosis, associated with increased fungal burden, and symptoms. Additionally, cyclophosphamide immunosuppression in DM mice further increased the susceptibility to encephalitozoonosis. Thus, microsporidiosis should be considered in the differential diagnosis of comorbidities in diabetics.
Collapse
Affiliation(s)
- Aldo Francisco Neto
- Programa de Patologia Ambiental e Experimental, Universidade Paulista (UNIP), São Paulo, Brasil
| | | | | | - José Guilherme Xavier
- Programa de Patologia Ambiental e Experimental, Universidade Paulista (UNIP), São Paulo, Brasil
| | - Giovani Bravin Peres
- Programa de Patologia Ambiental e Experimental, Universidade Paulista (UNIP), São Paulo, Brasil
| | | | | | - Maria Anete Lallo
- Programa de Patologia Ambiental e Experimental, Universidade Paulista (UNIP), São Paulo, Brasil
- * E-mail:
| |
Collapse
|