1
|
Zheng X, He J, Guo X, Xiao Y, Liao X, Zhu Z, Chen D. Unraveling molecular mechanistic disparities in pathogenic visceral Leishmania resistance between reptiles and mammals through comparative transcriptomic analyses. Acta Trop 2024; 258:107349. [PMID: 39098753 DOI: 10.1016/j.actatropica.2024.107349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Leishmaniasis is one of the most important neglected tropical parasitic diseases, manifesting various clinical forms depending on the parasite species and the genetic background of the host. In order to elucidate the underlying mechanisms of reptilian defense against pathogenic Leishmania species and to delineate the global gene expression profile alterations during host-pathogen interaction, we established experimental animal and cell models using both heterothermic lizards (Phrynocephalus przewalskii) and homothermic mammals (BALB/c mice) infected with pathogenic Leishmania infantum (high virulence HCZ strain) and Leishmania donovani (low virulence 801 strain). Overall, the lizards didn't show any obvious clinical symptoms or immune responses in vivo. Using RNA-seq methodology, differentially expressed genes identified in the HCZ and 801-comparison groups of P. przewalskii were primarily associated with arginine biosynthesis, the MAPK signaling pathway and the PI3K-Akt signaling pathway. In contrast, higher parasite loads, exacerbated hepatic inflammatory lesions and enhanced immune responses were observed in BALB/c mice, with DEGs predominantly associated with immunological diseases, innate and adaptive immune responses. By integrating transcriptional data from reptile and mammalian hosts, we elucidated the pivotal role of amino acid metabolism and lipid metabolism in parasite control. In contrast to findings from animal experiments, Leishmania parasites effectively infected peritoneal macrophages of lizards in vitro, demonstrating a high infection rate. Furthermore, we used RT-qPCR to detect changes in cytokine expression in macrophages and found that Th1-type cytokines were significantly upregulated in lizards, facilitating the clearance of the HCZ strain 24 hours post-infection. Conversely, cytokine expression was generally suppressed in BALB/c mice, allowing immune evasion by the parasites.
Collapse
Affiliation(s)
- Xiaoting Zheng
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Jinlei He
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xianguang Guo
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, China
| | - Yuying Xiao
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xuechun Liao
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Zheying Zhu
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Dali Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Borges-Fernandes LO, de Lima Moreira M, Pereira VHS, Pascoal-Xavier MA, Lopes Ribeiro Á, da Costa-Rocha IA, Lopes LR, Moreira GTC, Araújo MSDS, Teixeira-Carvalho A, Brito-de-Sousa JP, de Carvalho AL, Mourão MVA, Campos FA, Borges M, Carneiro M, Tsuji M, Martins-Filho OA, Coelho-dos-Reis JGA, Peruhype-Magalhães V. MR1 blockade drives differential impact on integrative signatures based on circuits of circulating immune cells and soluble mediators in visceral leishmaniasis. Front Immunol 2024; 15:1373498. [PMID: 39192975 PMCID: PMC11347828 DOI: 10.3389/fimmu.2024.1373498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/15/2024] [Indexed: 08/29/2024] Open
Abstract
Introduction Visceral leishmaniasis (VL) is an important tropical and neglected disease and represents a serious global health problem. The initial interaction between the phagocytes and the parasite is crucial to determine the pathogen's capacity to initiate infection and it shapes the subsequent immune response that will develop. While type-1 T-cells induce IL-6, IL-1β, TNF-α, and IL-12 production by monocytes/macrophages to fight the infection, type-2 T-cells are associated with a regulatory phenotype (IL-10 and TGF-β) and successful infection establishment. Recently, our group demonstrated the role of an important Th1/Th17 T-cell population, the mucosal-associated invariant T (MAIT) cells, in VL. MAIT cells can respond to L. infantum by producing TNF-α and IFN-γ upon MR1-dependent activation. Objective and methods Here, we describe the impact of the MR1-blockage on L. infantum internalization on the functional profile of circulating neutrophils and monocytes as well as the impact of the MR1-blockage on the soluble mediator signatures of in vitro whole blood cultures. Results Overall, our data showed that VL patients presents higher percentage of activated neutrophils than asymptomatic and non-infected controls. In addition, MR1 blockade led to lower TNF-α and TGF-β production by non-activated neutrophils from asymptomatic individuals. Moreover, TNF-α and IL-10 production by monocytes was higher in VL patients. In the analysis of soluble mediators produced in vitro, MR1-blockade induced a decrease of IFN-γ and an increase of IL-10, IL-27 and IL-33 in the cell cultures of AS group, a cytokine pattern associated with type 2 deleterious response. Discussion and conclusion These data corroborate the hypothesis that MR1-restricted responses are associated to a protective role during Leishmania infection.
Collapse
Affiliation(s)
| | - Marcela de Lima Moreira
- René Rachou Institute, Oswaldo Cruz Foundation (FIOCRUZ-MINAS), Belo Horizonte, Minas Gerais, Brazil
| | | | - Marcelo Antônio Pascoal-Xavier
- René Rachou Institute, Oswaldo Cruz Foundation (FIOCRUZ-MINAS), Belo Horizonte, Minas Gerais, Brazil
- School of Medicine, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ágata Lopes Ribeiro
- René Rachou Institute, Oswaldo Cruz Foundation (FIOCRUZ-MINAS), Belo Horizonte, Minas Gerais, Brazil
- Basic and Applied Virology Laboratory, Department of Microbiology, Institute for Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Ludmila Rosa Lopes
- René Rachou Institute, Oswaldo Cruz Foundation (FIOCRUZ-MINAS), Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Andréa Teixeira-Carvalho
- René Rachou Institute, Oswaldo Cruz Foundation (FIOCRUZ-MINAS), Belo Horizonte, Minas Gerais, Brazil
| | | | - Andrea Lucchesi de Carvalho
- João Paulo II Children’s Hospital, Fundação Hospitalar do Estado de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Flávia Alves Campos
- João Paulo II Children’s Hospital, Fundação Hospitalar do Estado de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marineide Borges
- João Paulo II Children’s Hospital, Fundação Hospitalar do Estado de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mariângela Carneiro
- Parasitology Department, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Moriya Tsuji
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
- Division of Infectious Disease, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | | | - Jordana Grazziela Alves Coelho-dos-Reis
- René Rachou Institute, Oswaldo Cruz Foundation (FIOCRUZ-MINAS), Belo Horizonte, Minas Gerais, Brazil
- Basic and Applied Virology Laboratory, Department of Microbiology, Institute for Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | |
Collapse
|
3
|
Na J, Engwerda C. The role of CD4 + T cells in visceral leishmaniasis; new and emerging roles for NKG7 and TGFβ. Front Cell Infect Microbiol 2024; 14:1414493. [PMID: 38881737 PMCID: PMC11176485 DOI: 10.3389/fcimb.2024.1414493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
Visceral leishmaniasis is a potentially devastating neglected tropical disease caused by the protozoan parasites Leishmania donovani and L. infantum (chagasi). These parasites reside in tissue macrophages and survive by deploying a number of mechanisms aimed at subverting the host immune response. CD4+ T cells play an important role in controlling Leishmania parasites by providing help in the form of pro-inflammatory cytokines to activate microbiocidal pathways in infected macrophages. However, because these cytokines can also cause tissue damage if over-produced, regulatory immune responses develop, and the balance between pro-inflammatory and regulatory CD4+ T cells responses determines the outcomes of infection. Past studies have identified important roles for pro-inflammatory cytokines such as IFNγ and TNF, as well as regulatory co-inhibitory receptors and the potent anti-inflammatory cytokine IL-10. More recently, other immunoregulatory molecules have been identified that play important roles in CD4+ T cell responses during VL. In this review, we will discuss recent findings about two of these molecules; the NK cell granule protein Nkg7 and the anti-inflammatory cytokine TGFβ, and describe how they impact CD4+ T cell functions and immune responses during visceral leishmaniasis.
Collapse
Affiliation(s)
- Jinrui Na
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Medicine, University of Queensland, Brisbane, QLD, Australia
| | | |
Collapse
|
4
|
Wang Y, Zhang Q, Deng X, Wang Y, Tian X, Zhang S, Shen Y, Zhou X, Zeng X, Chen Q, Jiang L, Li J. PA28γ induces dendritic cell maturation and activates T-cell immune responses in oral lichen planus. MedComm (Beijing) 2024; 5:e561. [PMID: 38721005 PMCID: PMC11077662 DOI: 10.1002/mco2.561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 03/24/2024] [Accepted: 04/06/2024] [Indexed: 01/06/2025] Open
Abstract
Oral lichen planus (OLP) is a common chronic inflammatory disease of the oral mucosa, the mechanism of its inflammatory progression has not yet been fully elucidated. PA28γ plays a significant role in a variety of immune-related diseases. However, the exact role of PA28γ in the pathogenesis of OLP remains unclear. Here, we demonstrated that PA28γ is overexpressed in epithelial cells and inflammatory cells of OLP tissues but has no significant relationship with OLP subtypes. Functionally, keratinocytes with high PA28γ expression could induce dendritic cell (DC) maturation and promote the T-cell differentiation into Th1 cells in response to the immune response. In addition, we found that a high level of PA28γ expression is associated with high numbers of infiltrating mature DCs and activated T-cells in OLP tissues. Mechanistically, keratinocytes with high PA28γ expression could promote the secretion of C-C motif chemokine (CCL)5, blocking CCL5 or/and its receptor CD44 could inhibit the induction of T-cell differentiation by keratinocytes with high PA28γ expression. In conclusion, we reveal that keratinocytes with high expression of PA28γ in OLP can induce DC maturation and promote T-cell differentiation through the CCL5-CD44 pathway, providing previously unidentified mechanistic insights into the mechanism of inflammatory progression in OLP.
Collapse
Affiliation(s)
- Yimei Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of StomatologySichuan UniversityChengduSichuanPR China
| | - Qiyue Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of StomatologySichuan UniversityChengduSichuanPR China
| | - Xiaoting Deng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of StomatologySichuan UniversityChengduSichuanPR China
- Yunnan Maternal and Child Health HospitalKunmingPR China
| | - Ying Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of StomatologySichuan UniversityChengduSichuanPR China
| | - Xin Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of StomatologySichuan UniversityChengduSichuanPR China
| | - Shiyu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of StomatologySichuan UniversityChengduSichuanPR China
| | - Yingqiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of StomatologySichuan UniversityChengduSichuanPR China
| | - Xikun Zhou
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center for BiotherapyChengduPR China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of StomatologySichuan UniversityChengduSichuanPR China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of StomatologySichuan UniversityChengduSichuanPR China
| | - Lu Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of StomatologySichuan UniversityChengduSichuanPR China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of StomatologySichuan UniversityChengduSichuanPR China
| |
Collapse
|
5
|
Diotallevi A, Bruno F, Castelli G, Persico G, Buffi G, Ceccarelli M, Ligi D, Mannello F, Vitale F, Magnani M, Galluzzi L. Transcriptional signatures in human macrophage-like cells infected by Leishmania infantum, Leishmania major and Leishmania tropica. PLoS Negl Trop Dis 2024; 18:e0012085. [PMID: 38578804 PMCID: PMC11023634 DOI: 10.1371/journal.pntd.0012085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 04/17/2024] [Accepted: 03/19/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND In the Mediterranean basin, three Leishmania species have been identified: L. infantum, L. major and L. tropica, causing zoonotic visceral leishmaniasis (VL), zoonotic cutaneous leishmaniasis (CL) and anthroponotic CL, respectively. Despite animal models and genomic/transcriptomic studies provided important insights, the pathogenic determinants modulating the development of VL and CL are still poorly understood. This work aimed to identify host transcriptional signatures shared by cells infected with L. infantum, L. major, and L. tropica, as well as specific transcriptional signatures elicited by parasites causing VL (i.e., L. infantum) and parasites involved in CL (i.e., L. major, L. tropica). METHODOLOGY/PRINCIPAL FINDINGS U937 cells differentiated into macrophage-like cells were infected with L. infantum, L. major and L. tropica for 24h and 48h, and total RNA was extracted. RNA sequencing, performed on an Illumina NovaSeq 6000 platform, was used to evaluate the transcriptional signatures of infected cells with respect to non-infected cells at both time points. The EdgeR package was used to identify differentially expressed genes (fold change > 2 and FDR-adjusted p-values < 0.05). Then, functional enrichment analysis was employed to identify the enriched ontology terms in which these genes are involved. At 24h post-infection, a common signature of 463 dysregulated genes shared among all infection conditions was recognized, while at 48h post-infection the common signature was reduced to 120 genes. Aside from a common transcriptional response, we evidenced different upregulated functional pathways characterizing L. infantum-infected cells, such as VEGFA-VEGFR2 and NFE2L2-related pathways, indicating vascular remodeling and reduction of oxidative stress as potentially important factors for visceralization. CONCLUSIONS The identification of pathways elicited by parasites causing VL or CL could lead to new therapeutic strategies for leishmaniasis, combining the canonical anti-leishmania compounds with host-directed therapy.
Collapse
Affiliation(s)
- Aurora Diotallevi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Federica Bruno
- Centro di Referenza Nazionale per le Leishmaniosi (C.Re.Na.L.), OIE Leishmania Reference Laboratory, Istituto Zooprofilattico Sperimentale della Sicilia A Mirri, Palermo, Italy
| | - Germano Castelli
- Centro di Referenza Nazionale per le Leishmaniosi (C.Re.Na.L.), OIE Leishmania Reference Laboratory, Istituto Zooprofilattico Sperimentale della Sicilia A Mirri, Palermo, Italy
| | - Giuseppe Persico
- Department of Experimental Oncology, IRCCS, European Institute of Oncology, Milan, Italy
| | - Gloria Buffi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Marcello Ceccarelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Daniela Ligi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Ferdinando Mannello
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Fabrizio Vitale
- Centro di Referenza Nazionale per le Leishmaniosi (C.Re.Na.L.), OIE Leishmania Reference Laboratory, Istituto Zooprofilattico Sperimentale della Sicilia A Mirri, Palermo, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Luca Galluzzi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| |
Collapse
|
6
|
Nateghi-Rostami M, Sohrabi Y. Memory T cells: promising biomarkers for evaluating protection and vaccine efficacy against leishmaniasis. Front Immunol 2024; 15:1304696. [PMID: 38469319 PMCID: PMC10925770 DOI: 10.3389/fimmu.2024.1304696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/08/2024] [Indexed: 03/13/2024] Open
Abstract
Understanding the immune response to Leishmania infection and identifying biomarkers that correlate with protection are crucial for developing effective vaccines. One intriguing aspect of Leishmania infection is the persistence of parasites, even after apparent lesion healing. Various host cells, including dendritic cells, fibroblasts, and Langerhans cells, may serve as safe sites for latent infection. Memory T cells, especially tissue-resident memory T cells (TRM), play a crucial role in concomitant immunity against cutaneous Leishmania infections. These TRM cells are long-lasting and can protect against reinfection in the absence of persistent parasites. CD4+ TRM cells, in particular, have been implicated in protection against Leishmania infections. These cells are characterized by their ability to reside in the skin and rapidly respond to secondary infections by producing cytokines such as IFN-γ, which activates macrophages to kill parasites. The induction of CD4+ TRM cells has shown promise in experimental immunization, leading to protection against Leishmania challenge infections. Identifying biomarkers of protection is a critical step in vaccine development and CD4+ TRM cells hold potential as biomarkers, as their presence and functions may correlate with protection. While recent studies have shown that Leishmania-specific memory CD4+ T-cell subsets are present in individuals with a history of cutaneous leishmaniasis, further studies are needed to characterize CD4+ TRM cell populations. Overall, this review highlights the importance of memory T cells, particularly skin-resident CD4+ TRM cells, as promising targets for developing effective vaccines against leishmaniasis and as biomarkers of immune protection to assess the efficacy of candidate vaccines against human leishmaniasis.
Collapse
Affiliation(s)
| | - Yahya Sohrabi
- Department of Cardiology I-Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, Westfälische Wilhelms-Universität, Münster, Germany
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
7
|
Pessôa-Pereira D, Scorza BM, Cyndari KI, Beasley EA, Petersen CA. Modulation of Macrophage Redox and Apoptotic Processes to Leishmania infantum during Coinfection with the Tick-Borne Bacteria Borrelia burgdorferi. Pathogens 2023; 12:1128. [PMID: 37764937 PMCID: PMC10537792 DOI: 10.3390/pathogens12091128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Canine leishmaniosis (CanL) is a zoonotic disease caused by protozoan Leishmania infantum. Dogs with CanL are often coinfected with tick-borne bacterial pathogens, including Borrelia burgdorferi in the United States. These coinfections have been causally associated with hastened disease progression and mortality. However, the specific cellular mechanisms of how coinfections affect microbicidal responses against L. infantum are unknown. We hypothesized that B. burgdorferi coinfection impacts host macrophage effector functions, prompting L. infantum intracellular survival. In vitro experiments demonstrated that exposure to B. burgdorferi spirochetes significantly increased L. infantum parasite burden and pro-inflammatory responses in DH82 canine macrophage cells. Induction of cell death and generation of mitochondrial ROS were significantly decreased in coinfected DH82 cells compared to uninfected and L. infantum-infected cells. Ex vivo stimulation of PBMCs from L. infantum-seronegative and -seropositive subclinical dogs with spirochetes and/or total Leishmania antigens promoted limited induction of IFNγ. Coexposure significantly induced expression of pro-inflammatory cytokines and chemokines associated with Th17 differentiation and neutrophilic and monocytic recruitment in PBMCs from L. infantum-seropositive dogs. Excessive pro-inflammatory responses have previously been shown to cause CanL pathology. This work supports effective tick prevention and risk management of coinfections as critical strategies to prevent and control L. infantum progression in dogs.
Collapse
Affiliation(s)
- Danielle Pessôa-Pereira
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA 52242, USA; (D.P.-P.); (B.M.S.); (E.A.B.)
- Center for Emerging Infectious Diseases, University of Iowa, Iowa City, IA 52242, USA;
| | - Breanna M. Scorza
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA 52242, USA; (D.P.-P.); (B.M.S.); (E.A.B.)
- Center for Emerging Infectious Diseases, University of Iowa, Iowa City, IA 52242, USA;
| | - Karen I. Cyndari
- Center for Emerging Infectious Diseases, University of Iowa, Iowa City, IA 52242, USA;
- Department of Emergency Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Erin A. Beasley
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA 52242, USA; (D.P.-P.); (B.M.S.); (E.A.B.)
- Center for Emerging Infectious Diseases, University of Iowa, Iowa City, IA 52242, USA;
| | - Christine A. Petersen
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA 52242, USA; (D.P.-P.); (B.M.S.); (E.A.B.)
- Center for Emerging Infectious Diseases, University of Iowa, Iowa City, IA 52242, USA;
| |
Collapse
|
8
|
Margaroni M, Agallou M, Vasilakaki A, Karagkouni D, Skoufos G, Hatzigeorgiou AG, Karagouni E. Transcriptional Profiling of Leishmania infantum Infected Dendritic Cells: Insights into the Role of Immunometabolism in Host-Parasite Interaction. Microorganisms 2022; 10:microorganisms10071271. [PMID: 35888991 PMCID: PMC9322131 DOI: 10.3390/microorganisms10071271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 01/27/2023] Open
Abstract
Leishmania parasites are capable of effectively invading dendritic cells (DCs), a cell population orchestrating immune responses against several diseases, including leishmaniasis, by bridging innate and adaptive immunity. Leishmania on the other hand has evolved various mechanisms to subvert DCs activation and establish infection. Thus, the transcriptional profile of DCs derived from bone marrow (BMDCs) that have been infected with Leishmania infantum parasite or of DCs exposed to chemically inactivated parasites was investigated via RNA sequencing, aiming to better understand the host–pathogen interplay. Flow cytometry analysis revealed that L. infantum actively inhibits maturation of not only infected but also bystander BMDCs. Analysis of double-sorted L. infantum infected BMDCs revealed significantly increased expression of genes mainly associated with metabolism and particularly glycolysis. Moreover, differentially expressed genes (DEGs) related to DC-T cell interactions were also found to be upregulated exclusively in infected BMDCs. On the contrary, transcriptome analysis of fixed parasites containing BMDCs indicated that energy production was mediated through TCA cycle and oxidative phosphorylation. In addition, DEGs related to differentiation of DCs leading to activation and differentiation of Th17 subpopulations were detected. These findings suggest an important role of metabolism on DCs-Leishmania interplay and eventually disease establishment.
Collapse
Affiliation(s)
- Maritsa Margaroni
- Immunology of Infection Laboratory, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece; (M.M.); (M.A.); (A.V.)
| | - Maria Agallou
- Immunology of Infection Laboratory, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece; (M.M.); (M.A.); (A.V.)
| | - Athina Vasilakaki
- Immunology of Infection Laboratory, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece; (M.M.); (M.A.); (A.V.)
| | - Dimitra Karagkouni
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (D.K.); (G.S.); (A.G.H.)
- Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Giorgos Skoufos
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (D.K.); (G.S.); (A.G.H.)
- Hellenic Pasteur Institute, 11521 Athens, Greece
- Department of Electrical & Computer Engineering, University of Thessaly, 38221 Volos, Greece
| | - Artemis G. Hatzigeorgiou
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (D.K.); (G.S.); (A.G.H.)
- Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Evdokia Karagouni
- Immunology of Infection Laboratory, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece; (M.M.); (M.A.); (A.V.)
- Correspondence: ; Tel.: +30-21-0647-8826
| |
Collapse
|
9
|
Abstract
Leishmaniasis is a zoonotic and vector-borne infectious disease that is caused by the genus Leishmania belonging to the trypanosomatid family. The protozoan parasite has a digenetic life cycle involving a mammalian host and an insect vector. Leishmaniasisis is a worldwide public health problem falling under the neglected tropical disease category, with over 90 endemic countries, and approximately 1 million new cases and 20,000 deaths annually. Leishmania infection can progress toward the development of species–specific pathologic disorders, ranging in severity from self-healing cutaneous lesions to disseminating muco-cutaneous and fatal visceral manifestations. The severity and the outcome of leishmaniasis is determined by the parasite’s antigenic epitope characteristics, the vector physiology, and most importantly, the immune response and immune status of the host. This review examines the nature of host–pathogen interaction in leishmaniasis, innate and adaptive immune responses, and various strategies that have been employed for vaccine development.
Collapse
|