1
|
Lirussi D, Weissmann SF, Ebensen T, Nitsche-Gloy U, Franz HBG, Guzmán CA. Cyclic Di-Adenosine Monophosphate: A Promising Adjuvant Candidate for the Development of Neonatal Vaccines. Pharmaceutics 2021; 13:pharmaceutics13020188. [PMID: 33535570 PMCID: PMC7912751 DOI: 10.3390/pharmaceutics13020188] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/18/2022] Open
Abstract
Underdeveloped immunity during the neonatal age makes this period one of the most dangerous during the human lifespan, with infection-related mortality being one of the highest of all age groups. It is also discussed that vaccination during this time window may result in tolerance rather than in productive immunity, thus raising concerns about the overall vaccine-mediated protective efficacy. Cyclic di-nucleotides (CDN) are bacterial second messengers that are rapidly sensed by the immune system as a danger signal, allowing the utilization of these molecules as potent activators of the immune response. We have previously shown that cyclic di-adenosine monophosphate (CDA) is a potent and versatile adjuvant capable of promoting humoral and cellular immunity. We characterize here the cytokine profiles elicited by CDA in neonatal cord blood in comparison with other promising neonatal adjuvants, such as the imidazoquinoline resiquimod (R848), which is a synthetic dual TLR7 and TLR8 agonist. We observed superior activity of CDA in eliciting T helper 1 (Th1) and T follicular helper (TfH) cytokines in cells from human cord blood when compared to R848. Additional in vivo studies in mice showed that neonatal priming in a three-dose vaccination schedule is beneficial when CDA is used as a vaccine adjuvant. Humoral antibody titers were significantly higher in mice that received a neonatal prime as compared to those that did not. This effect was absent when using other adjuvants that were reported as suitable for neonatal vaccination. The biological significance of this immune response was assessed by a challenge with a genetically modified influenza H1N1 PR8 virus. The obtained results confirmed that CDA performed better than any other adjuvant tested. Altogether, our results suggest that CDA is a potent adjuvant in vitro on human cord blood, and in vivo in newborn mice, and thus a suitable candidate for the development of neonatal vaccines.
Collapse
Affiliation(s)
- Darío Lirussi
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany; (S.F.W.); (C.A.G.)
- Correspondence: (D.L.); (T.E.); Tel.: +49-531-61814607 (T.E.); Fax: +49-531-618414699 (T.E.)
| | - Sebastian Felix Weissmann
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany; (S.F.W.); (C.A.G.)
| | - Thomas Ebensen
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany; (S.F.W.); (C.A.G.)
- Correspondence: (D.L.); (T.E.); Tel.: +49-531-61814607 (T.E.); Fax: +49-531-618414699 (T.E.)
| | - Ursula Nitsche-Gloy
- Women’s Clinic, Hospital Marienstift GmbH, Helmstedter Strasse 35, 38102 Braunschweig, Germany;
| | - Heiko B. G. Franz
- Department of Obstetrics and Gynecology, Women’s Clinic, Braunschweig Central Hospital, Celler Strasse 38, 38114 Braunschweig, Germany;
| | - Carlos A. Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany; (S.F.W.); (C.A.G.)
| |
Collapse
|
2
|
Prabhu SB, Rathore DK, Nair D, Chaudhary A, Raza S, Kanodia P, Sopory S, George A, Rath S, Bal V, Tripathi R, Ramji S, Batra A, Aggarwal KC, Chellani HK, Arya S, Agarwal N, Mehta U, Natchu UCM, Wadhwa N, Bhatnagar S. Comparison of Human Neonatal and Adult Blood Leukocyte Subset Composition Phenotypes. PLoS One 2016; 11:e0162242. [PMID: 27610624 PMCID: PMC5017693 DOI: 10.1371/journal.pone.0162242] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/21/2016] [Indexed: 12/26/2022] Open
Abstract
The human peripheral leukocyte subset composition depends on genotype variation and pre-natal and post-natal environmental influence diversity. We quantified this composition in adults and neonates, and compared the median values and dispersal ranges of various subsets in them. We confirmed higher frequencies of monocytes and regulatory T cells (Tregs), similar frequencies of neutrophils, and lower frequencies of CD8 T cells, NKT cells, B1 B cells and gamma-delta T cells in neonatal umbilical cord blood. Unlike previous reports, we found higher frequencies of eosinophils and B cells, higher CD4:CD8 ratios, lower frequencies of T cells and iNKT cells, and similar frequencies of CD4 T cells and NK cells in neonates. We characterized monocyte subsets and dendritic cell (DC) subsets in far greater detail than previously reported, using recently described surface markers and gating strategies and observed that neonates had lower frequencies of patrolling monocytes and lower myeloid dendritic cell (mDC):plasmacytoid DC (pDC) ratios. Our data contribute to South Asian reference values for these parameters. We found that dispersal ranges differ between different leukocyte subsets, suggesting differential determination of variation. Further, some subsets were more dispersed in adults than in neonates suggesting influences of postnatal sources of variation, while some show the opposite pattern suggesting influences of developmental process variation. Together, these data and analyses provide interesting biological possibilities for future exploration.
Collapse
Affiliation(s)
- Savit B. Prabhu
- Pediatric Biology Center, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- National Institute of Immunology, New Delhi, India
- * E-mail:
| | - Deepak K. Rathore
- Pediatric Biology Center, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Deepa Nair
- Pediatric Biology Center, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Anita Chaudhary
- Pediatric Biology Center, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Saimah Raza
- Pediatric Biology Center, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | | | - Shailaja Sopory
- Pediatric Biology Center, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Anna George
- National Institute of Immunology, New Delhi, India
| | - Satyajit Rath
- Pediatric Biology Center, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- National Institute of Immunology, New Delhi, India
| | - Vineeta Bal
- Pediatric Biology Center, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- National Institute of Immunology, New Delhi, India
| | - Reva Tripathi
- Department of Obstetrics & Gynecology, Maulana Azad Medical College, New Delhi, India
| | - Siddharth Ramji
- Department of Neonatology, Maulana Azad Medical College, New Delhi, India
| | - Aruna Batra
- Department of Obstetrics & Gynecology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Kailash C. Aggarwal
- Department of Pediatrics, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Harish K. Chellani
- Department of Pediatrics, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Sugandha Arya
- Department of Pediatrics, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Nidhi Agarwal
- Department of Obstetrics and Gynecology, Gurgaon Civil Hospital, Gurgaon, India
| | - Umesh Mehta
- Department of Pediatrics, Gurgaon Civil Hospital, Gurgaon, India
| | - Uma Chandra Mouli Natchu
- Pediatric Biology Center, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Nitya Wadhwa
- Pediatric Biology Center, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Shinjini Bhatnagar
- Pediatric Biology Center, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| |
Collapse
|
3
|
Darmochwal-Kolarz D, Serafin A, Tabarkiewicz J, Kolarz B, Rolinski J, Oleszczuk J. The expressions of co-stimulatory molecules are altered on putative antigen-presenting cells in cord blood. Am J Reprod Immunol 2012; 69:180-7. [PMID: 23066977 DOI: 10.1111/aji.12031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 09/17/2012] [Indexed: 11/30/2022] Open
Abstract
PROBLEM The aim of our study was to estimate the expressions of both B7-H1 and B7-H4 as well as CD200 and CD200R co-stimulatory molecules on immature myeloid and lymphoid dendritic cells, B CD19(+) lymphocytes and monocytes in umbilical cord blood of healthy neonates and in peripheral blood of healthy adults. METHOD OF STUDY Thirty-nine healthy full-term neonates from physiological single pregnancies and 27 healthy adults were included in the study. The expressions of B7-H1, B7-H4, CD200, CD200R antigens were estimated using flow cytometry. Statistical analysis was performed using a non-parametric Mann-Whitney U-test and parametric Wilcoxon's test. RESULTS The expressions of B7-H1 and B7-H4 molecules on immature BDCA-1(+) myeloid dendritic cells were significantly lower in umbilical cord blood of healthy neonates when compared with those cells in peripheral blood of healthy adults (P < 0.0001). Furthermore, the suppression of B7-H4 molecule on BDCA-2(+) lymphoid dendritic cells was observed in cord blood of healthy neonates when compared with peripheral blood of healthy adults (P < 0.02). The expressions of CD200 antigen on BDCA-1(+) cells, CD200R antigen on BDCA-2(+) cells and CD200R antigen on B CD19(+) cells were significantly lower in cord blood of healthy neonates. On the other hand, the expressions of CD200 and CD200R as well as B7-H4 co-stimulatory molecules on CD14(+) cells were significantly higher in cord blood when compared with peripheral blood. CONCLUSION The increased percentages of CD14(+) monocytes with the expressions of CD200 and CD200R as well as B7-H4 co-stimulatory molecules can suggest the increased immunomodulatory properties of neonatal monocytes in cord blood.
Collapse
|
4
|
Foye OT, Huang IF, Chiou CC, Walker WA, Shi HN. Early administration of probiotic Lactobacillus acidophilus and/or prebiotic inulin attenuates pathogen-mediated intestinal inflammation and Smad 7 cell signaling. ACTA ACUST UNITED AC 2012; 65:467-80. [PMID: 22524476 DOI: 10.1111/j.1574-695x.2012.00978.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 03/29/2012] [Accepted: 04/16/2012] [Indexed: 01/19/2023]
Abstract
Immaturity of gut-associated immunity may contribute to pediatric mortality associated with enteric infections. A murine model to parallel infantile enteric disease was used to determine the effects of probiotic, Lactobacillus acidophilus (La), prebiotic, inulin, or both (synbiotic, syn) on pathogen-induced inflammatory responses, NF-κB, and Smad 7 signaling. Newborn mice were inoculated bi-weekly for 4 weeks with La, inulin, or syn and challenged with Citrobacter rodentium (Cr) at 5 weeks. Mouse intestinal epithelial cells (CMT93) were exposed to Cr to determine temporal alterations in NF-Kappa B and Smad 7 levels. Mice with pretreatment of La, inulin, and syn show reduced intestinal inflammation following Cr infection compared with controls, which is associated with significantly reduced bacterial colonization in La, inulin, and syn animals. Our results further show that host defense against Cr infection correlated with enhanced colonic IL-10 and transforming growth factor-β expression and inhibition of NF-κB in syn-treated mice, whereas mice pretreated with syn, La, or inulin had attenuation of Cr-induced Smad 7 expression. There was a temporal Smad 7 and NF-κB intracellular accumulation post-Cr infection and post-tumor necrosis factor stimulation in CMT93 cells. These results, therefore, suggest that probiotic, La, prebiotic inulin, or synbiotic may promote host-protective immunity and attenuate Cr-induced intestinal inflammation through mechanisms affecting NF-κB and Smad 7 signaling.
Collapse
Affiliation(s)
- Ondulla T Foye
- Mucosal Immunology Laboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | | | | | | | | |
Collapse
|
5
|
Rodriguez P, Carlier Y, Truyens C. Activation of cord blood myeloid dendritic cells by Trypanosoma cruzi and parasite-specific antibodies, proliferation of CD8+ T cells, and production of IFN-γ. Med Microbiol Immunol 2012; 201:157-69. [PMID: 22037700 DOI: 10.1007/s00430-011-0217-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Indexed: 01/23/2023]
Abstract
We previously reported that Trypanosoma cruzi, the agent of Chagas disease, induces in congenitally infected fetuses a strong, adult-like parasite-specific CD8(+) T cell response producing IFN-γ (Hermann et al. in Blood 100:2153-2158, 2002). This suggests that the parasite is able to overcome the immaturity of neonatal antigen presenting cells, an issue which has not been previously addressed. We therefore investigated in vitro the ability of T. cruzi to activate cord blood DCs and compared its effect to that on adult cells. We show that T. cruzi induces phenotypic maturation of cord blood CD11c(+) myeloid DCs (mDCs), by enhancing surface expression of CD40, CD80, and CD83, and that parasite-specific IgG purified from cord blood of neonates born to T. cruzi-infected mothers amplify such expression. CD83, considered as the best marker of mature DCs, reaches higher level on cord blood than on adult mDCs. Allo-stimulation experiments showed that T. cruzi-activated cord blood mononuclear cells enriched in DCs (eDCs) stimulate proliferation of cord blood and adult CD3(+) T cells to a similar extent. Of note, T. cruzi-activated eDCs from cord blood trigger more potent proliferation of CD8(+) than CD8(-) (mainly CD4(+)) adult T cells, a feature not observed with adult eDCs. T cell proliferation is associated with IFN-γ release and down-regulation of IL-13 production. These data show that T. cruzi potently activates human cord blood mDCs and endows eDCs to trigger CD8(+) T cell proliferation and favor type 1 immune response. Interestingly, maternal antibodies can strengthen the development of mature DCs that might contribute to overcome the immunological immaturity associated with early life.
Collapse
Affiliation(s)
- Patricia Rodriguez
- Laboratoire de Parasitologie, Faculté de Médecine, Université Libre de Bruxelles (U.L.B.), 808 Route de Lennik, CP 616, 1070, Brussels, Belgium
| | | | | |
Collapse
|
6
|
Philbin VJ, Dowling DJ, Gallington LC, Cortés G, Tan Z, Suter EE, Chi KW, Shuckett A, Stoler-Barak L, Tomai M, Miller RL, Mansfield K, Levy O. Imidazoquinoline Toll-like receptor 8 agonists activate human newborn monocytes and dendritic cells through adenosine-refractory and caspase-1-dependent pathways. J Allergy Clin Immunol 2012; 130:195-204.e9. [PMID: 22521247 DOI: 10.1016/j.jaci.2012.02.042] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 02/23/2012] [Accepted: 02/29/2012] [Indexed: 11/27/2022]
Abstract
BACKGROUND Newborns have frequent infections and manifest impaired vaccine responses, motivating a search for neonatal vaccine adjuvants. Alum is a neonatal adjuvant but might confer a T(H)2 bias. Toll-like receptor (TLR) agonists are candidate adjuvants, but human neonatal cord blood monocytes demonstrate impaired T(H)1-polarizing responses to many TLR agonists caused by plasma adenosine acting through cyclic AMP. TLR8 agonists, including imidazoquinolines (IMQs), such as the small synthetic 3M-002, induce adult-level TNF from neonatal monocytes, but the scope and mechanisms of IMQ-induced activation of neonatal monocytes and monocyte-derived dendritic cells (MoDCs) have not been reported. OBJECTIVE We sought to characterize IMQ-induced activation of neonatal monocytes and MoDCs. METHODS Neonatal cord and adult peripheral blood monocytes and MoDCs were cultured in autologous plasma; levels of alum- and TLR agonist-induced cytokines and costimulatory molecules were measured. TLR8 and inflammasome function were assayed by using small interfering RNA and Western blotting/caspase-1 inhibitory peptide, respectively. The ontogeny of TLR8 agonist-induced cytokine responses was defined in rhesus macaque whole blood ex vivo. RESULTS IMQs were more potent and effective than alum at inducing TNF and IL-1β from monocytes. 3M-002 induced robust TLR pathway transcriptome activation and T(H)1-polarizing cytokine production in neonatal and adult monocytes and MoDCs, signaling through TLR8 in an adenosine/cyclic AMP-refractory manner. Newborn MoDCs displayed impaired LPS/ATP-induced caspase-1-mediated IL-1β production but robust 3M-002-induced caspase-1-mediated inflammasome activation independent of exogenous ATP. TLR8 IMQs induced robust TNF and IL-1β in whole blood of rhesus macaques at birth and infancy. CONCLUSIONS IMQ TLR8 agonists engage adenosine-refractory TLR8 and inflammasome pathways to induce robust monocyte and MoDC activation and represent promising neonatal adjuvants.
Collapse
Affiliation(s)
- Victoria J Philbin
- Department of Medicine, Division of Infectious Diseases, Children's Hospital Boston, Boston, Mass; Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
The expression of B7-H1 and B7-H4 molecules on immature myeloid and lymphoid dendritic cells in cord blood of healthy neonates. Folia Histochem Cytobiol 2011; 48:658-62. [PMID: 21478111 DOI: 10.2478/v10042-010-0054-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of our study was to estimate both B7-H1 and B7-H4 molecules on immature myeloid and lymphoid dendritic cells in umbilical cord blood of healthy neonates in comparison with peripheral blood of healthy adults. Thirty nine healthy full-term neonates from physiological single pregnancies and 27 healthy adults were included in the study. The expression of B7-H1 and B7-H4 was revealed using the immunofluorescence method. Statistical analysis was performed using a non-parametric test (Mann-Whitney U-Test). The percentages of BDCA-1+ dendritic cells with B7-H1 and B7-H4 expressions were significantly higher in peripheral blood of healthy adults (p<0.00003). It was either observed that the percentage of BDCA-2+ dendritic cells with the expression of B7-H4 molecules was significantly higher in peripheral blood of healthy adults in comparison with umbilical cord blood (p<0.02). Decreased percentages of dendritic cells and co-stimulatory molecules indicate that neonates have immature immune system. Depletion of co-stimulatory B7-H1 and B7-H4 molecules enable appropriate development of immune response.
Collapse
|
8
|
The Antithesis of Entropy: Biosemiotic Communication from Genetics to Human Language with Special Emphasis on the Immune Systems. ENTROPY 2010. [DOI: 10.3390/e12040631] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Shin S, Jang JY, Roh EY, Yoon JH, Kim JS, Han KS, Kim S, Yun Y, Choi YS, Choi JD, Kim SH, Kim SJ, Song EY. Differences in circulating dendritic cell subtypes in pregnant women, cord blood and healthy adult women. J Korean Med Sci 2009; 24:853-9. [PMID: 19794983 PMCID: PMC2752768 DOI: 10.3346/jkms.2009.24.5.853] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Accepted: 10/10/2008] [Indexed: 11/20/2022] Open
Abstract
Different subtypes of dendritic cells (DC) influence the differentiation of naíve T lymphocytes into T helper type 1 (Th1) and Th2 effector cells. We evaluated the percentages of DC subtypes in peripheral blood from pregnant women (maternal blood) and their cord blood compared to the peripheral blood of healthy non pregnant women (control). Circulating DC were identified by flow cytometry as lineage (CD3, CD14, CD16, CD19, CD20, and CD56)-negative and HLA-DR-positive cells. Subtypes of DC were further characterized as myeloid DC (CD11c(+)/CD123(+/-)), lymphoid DC (CD11c(-)/CD123(+++)) and less differentiated DC (CD11c(-)/CD123(+/-)). The frequency of DC out of all nucleated cells was significantly lower in maternal blood than in control (P<0.001). The ratio of myeloid DC/lymphoid DC was significantly higher in maternal blood than in control (P<0.01). HLA-DR expressions of myeloid DC as mean fluorescence intensity (MFI) were significantly less in maternal blood and in cord blood than in control (P<0.001, respectively). The DC differentiation factors, TNF-alpha and GM-CSF, released from mononuclear cells after lipopolysaccharide stimulation were significantly lower in maternal blood than in control (P<0.01). The distribution of DC subtypes was different in maternal and cord blood from those of non-pregnant women. Their role during pregnancy remains to be determined.
Collapse
Affiliation(s)
- Sue Shin
- Department of Laboratory Medicine, Seoul National University Boramae Hospital, Seoul, Korea
| | | | - Eun Youn Roh
- Department of Laboratory Medicine, Seoul National University Boramae Hospital, Seoul, Korea
| | - Jong Hyun Yoon
- Department of Laboratory Medicine, Seoul National University Boramae Hospital, Seoul, Korea
| | - Jong Seung Kim
- Department of Family Medicine, Seoul National University Boramae Hospital, Seoul, Korea
| | - Kyou Sup Han
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Serim Kim
- Department of Laboratory Medicine, College of Medicine, Konkuk University, Seoul, Korea
| | - Yeomin Yun
- Department of Laboratory Medicine, College of Medicine, Konkuk University, Seoul, Korea
| | - Young Sook Choi
- Department of Laboratory Medicine, College of Medicine, Konkuk University, Seoul, Korea
| | - Ji-Da Choi
- Department of Biomedical Science and Technology, College of Medicine, Konkuk University, Seoul, Korea
| | - Soo-Hyun Kim
- Department of Biomedical Science and Technology, College of Medicine, Konkuk University, Seoul, Korea
| | - Sun-Jong Kim
- Department of Respiratory Medicine, College of Medicine, Konkuk University, Seoul, Korea
| | - Eun Young Song
- Department of Laboratory Medicine, College of Medicine, Konkuk University, Seoul, Korea
| |
Collapse
|
10
|
Naderi N, Pourfathollah AA, Alimoghaddam K, Moazzeni SM. Cord blood dendritic cells prevent the differentiation of naïve T-helper cells towards Th1 irrespective of their subtype. Clin Exp Med 2008; 9:29-36. [PMID: 18979063 DOI: 10.1007/s10238-008-0020-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2008] [Accepted: 09/03/2008] [Indexed: 11/27/2022]
Abstract
Allogeneic cord blood transplantation is associated with a less severe graft-versus-host disease (GVHD). This observation is thought to be due to immaturity of cord blood cell immune capabilities. Dendritic cells (DCs) are the most potent antigen-presenting cells of the immune system capable of initiation and regulation of immune responses. In this investigation, we hypothesized that non-manipulated cord blood dendritic cells (CBDCs) not only differ in their functional maturity from adult peripheral blood DCs (PBDCs) but also differ in their subsets and their preference in promoting Th1 or Th2 immune responses. Non-manipulated fresh DCs were isolated from cord blood (CB) and adult peripheral blood (PB) mononuclear cells as lineage marker negative cells. The differences in expression of costimulatory molecules, the proportion of myeloid and lymphoid DCs subsets, their immunostimulatory characteristics and their influence on promoting the differentiation of naïve T cells towards Th1 or Th2 cells were then investigated in these two populations. Our results showed that freshly isolated CBDCs, similar to cord blood monocyte derived DCs, were poor inducers of IFN-gamma secretion while they increased the induction of IL-4 production by T cells in comparison with PBDCs. CBDCs were also poor stimulators of allogenic T cells in mixed leukocyte reaction compared to adult peripheral blood dendritic cells. They also displayed decreased expression of HLA-DR and CD86 molecules. The ratio of lymphoid DCs (CD11c(-), CD123(+)) to myeloid DCs (CD11c(+), CD123(-)) was significantly higher in CB compared to PB. We conclude that CBDCs preferential priming of naive T cells towards Th2 population, seems to be an intrinsic property independent of their subtype. This property along with their functional immaturity should contribute to outcome of cord blood transplantation.
Collapse
Affiliation(s)
- Nadereh Naderi
- Department of Immunology, Tarbiat Modares University, P.O. Box 14115-331, Tehran, Iran
| | | | | | | |
Collapse
|
11
|
Effect of intrauterine HIV-1 exposure on the frequency and function of uninfected newborns' dendritic cells. Clin Immunol 2008; 126:243-50. [PMID: 18201932 DOI: 10.1016/j.clim.2007.11.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 10/29/2007] [Accepted: 11/10/2007] [Indexed: 11/21/2022]
Abstract
Immaturity of the neonatal immune system is considered an underlying factor for enhanced severity of infections in newborns. Functional defects of neonatal antigen-presenting cells lead to defective T-cell responses. T cells from uninfected neonates exposed in utero to HIV-1 (EU) exhibit phenotypic and functional alterations; however, the function of their circulating dendritic cells (DCs) has not been characterized. We hypothesized that an HIV-1-infected maternal environment may influence the infants' DC number, phenotype and function. EU exhibited a higher percentage of myeloid DCs (mDCs) than unexposed neonates, although this frequency remained lower than that observed in adults. Plasmacytoid DC (pDC) frequencies were similar in all groups, although both groups of infants tended to have lower frequencies than adults. After LPS stimulation, mDCs from EU up-regulated CD80, CD86 and B7-H1, whereas mDCs from unexposed infants upregulated B7-H1, but not CD80/CD86, and adult mDCs up-regulated mainly CD80 and CD86. IFN-alpha production was similar in all groups, indicating a normal pDC function. Therefore, in utero exposure to HIV-1 induces quantitative and qualitative changes in neonatal DCs, particularly in mDCs, which might be associated with alterations observed in T cells from these EU.
Collapse
|
12
|
Levy O. Innate immunity of the newborn: basic mechanisms and clinical correlates. Nat Rev Immunol 2007; 7:379-90. [PMID: 17457344 DOI: 10.1038/nri2075] [Citation(s) in RCA: 883] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The fetus and newborn face a complex set of immunological demands, including protection against infection, avoidance of harmful inflammatory immune responses that can lead to pre-term delivery, and balancing the transition from a sterile intra-uterine environment to a world that is rich in foreign antigens. These demands shape a distinct neonatal innate immune system that is biased against the production of pro-inflammatory cytokines. This bias renders newborns at risk of infection and impairs responses to many vaccines. This Review describes innate immunity in newborns and discusses how this knowledge might be used to prevent and treat infection in this vulnerable population.
Collapse
Affiliation(s)
- Ofer Levy
- Department of Medicine, Division of Infectious Diseases, Children's Hospital Boston and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
13
|
Torres A, Storey L, Anders M, Miller RL, Bulbulian BJ, Jin J, Raghavan S, Lee J, Slade HB, Birmachu W. Immune-mediated changes in actinic keratosis following topical treatment with imiquimod 5% cream. J Transl Med 2007; 5:7. [PMID: 17257431 PMCID: PMC1796543 DOI: 10.1186/1479-5876-5-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2006] [Accepted: 01/26/2007] [Indexed: 12/15/2022] Open
Abstract
Background The objective of this study was to identify the molecular processes responsible for the anti-lesional activity of imiquimod in subjects with actinic keratosis using global gene expression profiling. Methods A double-blind, placebo-controlled, randomized study was conducted to evaluate gene expression changes in actinic keratosis treated with imiquimod 5% cream. Male subjects (N = 17) with ≥ 5 actinic keratosis on the scalp applied placebo cream or imiquimod 3 times a week on nonconsecutive days for 4 weeks. To elucidate the molecular processes involved in actinic keratosis lesion regression by imiquimod, gene expression analysis using oligonucleotide arrays and real time reverse transcriptase polymerase chain reaction were performed on shave biopsies of lesions taken before and after treatment. Results Imiquimod modulated the expression of a large number of genes important in both the innate and adaptive immune response, including increased expression of interferon-inducible genes with known antiviral, anti-proliferative and immune modulatory activity, as well as various Toll-like receptors. In addition, imiquimod increased the expression of genes associated with activation of macrophages, dendritic cells, cytotoxic T cells, and natural killer cells, as well as activation of apoptotic pathways. Conclusion Data suggest that topical application of imiquimod stimulates cells in the skin to secrete cytokines and chemokines that lead to inflammatory cell influx into the lesions and subsequent apoptotic and immune cell-mediated destruction of lesions.
Collapse
MESH Headings
- Adaptive Immunity/drug effects
- Adaptive Immunity/genetics
- Adjuvants, Immunologic/pharmacology
- Administration, Topical
- Aged
- Aged, 80 and over
- Aminoquinolines/administration & dosage
- Aminoquinolines/therapeutic use
- Apoptosis/drug effects
- Apoptosis/genetics
- Cell Proliferation/drug effects
- Chemokines/genetics
- Chemokines/metabolism
- Demography
- Dendritic Cells/drug effects
- Dendritic Cells/metabolism
- Dosage Forms
- Gene Expression Profiling
- Gene Expression Regulation/drug effects
- Humans
- Imiquimod
- Immunity, Innate/drug effects
- Immunity, Innate/genetics
- Interferon Type I/pharmacology
- Keratosis, Actinic/drug therapy
- Keratosis, Actinic/genetics
- Keratosis, Actinic/immunology
- Keratosis, Actinic/pathology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Macrophages/drug effects
- Macrophages/metabolism
- Male
- Middle Aged
- Oligonucleotide Array Sequence Analysis
- Receptors, Pattern Recognition/metabolism
- Reproducibility of Results
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- Abel Torres
- Dermatology Office, Loma Linda University Medical Center, Loma Linda, California, USA
| | - Leslie Storey
- Dermatology Office, Loma Linda University Medical Center, Loma Linda, California, USA
| | - Makala Anders
- Dermatology Office, Loma Linda University Medical Center, Loma Linda, California, USA
| | | | | | - Jizhong Jin
- Pharmacology, 3M Pharmaceuticals, St Paul, Minnesota, USA
| | | | - James Lee
- Medical & Scientific Affairs, 3M Pharmaceuticals, St Paul, Minnesota, USA
| | - Herbert B Slade
- Medical & Scientific Affairs, 3M Pharmaceuticals, St Paul, Minnesota, USA
| | | |
Collapse
|
14
|
Breitling LP, Fendel R, Mordmueller B, Adegnika AA, Kremsner PG, Luty AJF. Cord blood dendritic cell subsets in African newborns exposed to Plasmodium falciparum in utero. Infect Immun 2006; 74:5725-9. [PMID: 16988249 PMCID: PMC1594912 DOI: 10.1128/iai.00682-06] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Placental Plasmodium falciparum infection affects birth outcomes and sensitizes fetal lymphocytes to parasite antigens. We assessed the influence of maternal P. falciparum infection on fetal myeloid dendritic cells (mDC) and plasmacytoid dendritic cells (pDC), analyzing the cord blood of offspring of Gabonese mothers with different infection histories. Cord blood from newborns of mothers with malarial infection at delivery had significantly more mDC than that from nonexposed newborns (P = 0.028) but mDC and pDC HLA-DR expression was unrelated to maternal infection history. Independently of these findings, cord blood mDC and pDC numbers declined significantly as a function of increasing maternal age (P = 0.029 and P = 0.033, respectively). The inducible antigen-specific interleukin-10-producing regulatory-type T-cell population that we have previously detected in cord blood of newborns with prolonged in utero exposure to P. falciparum may directly reflect the altered DC numbers in such neonates, while the maintenance of cord blood DC HLA-DR expression contrasts with that of DC from P. falciparum malaria patients.
Collapse
Affiliation(s)
- Lutz P Breitling
- Medical Parasitology-268, Department of Medical Microbiology, MMB-NCMLS, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
15
|
Aldebert D, Diallo M, Niang M, Sarr D, Cisse C, Moreau JC, Jambou R. Differences in circulating dendritic cell subtypes in peripheral, placental and cord blood in African pregnant women. J Reprod Immunol 2006; 73:11-9. [PMID: 16860878 DOI: 10.1016/j.jri.2006.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 05/15/2006] [Accepted: 05/18/2006] [Indexed: 11/19/2022]
Abstract
Dendritic cells (DC) are important for induction of primary immune responses and immunological tolerance. Changes in the frequency of DC subsets were analyzed in peripheral blood from pregnant women (mPB) and compared to placental blood (PB) and cord blood (CB). DCs were identified by flow cytometry in whole blood as lineage negative and HLA-DR-positive cells. Different DC subtypes were identified with CD123 and CD11c markers. In these data, the percentage of DC was significantly lower in mPB, PB and CB than in control women, but the absolute number of DC was higher in CB, suggesting that numbers of DC in CB do not explain the decrease of the immune response in newborn infants. Myeloid DCs (MDC) decreased in all compartments of pregnant women compared to control women, especially in mPB where MDC became lower than lymphoid DCs. An increase of less differentiated DC was observed in mPB and CB from pregnant women. DCs in pregnant women were mainly immature DC with a proportion of CD83-positive DC, identical as control women. The levels of IFNgamma, TNFalpha, IL-2, IL-4, IL-5 and IL-10 were not different in the three compartments (mPB, PB, CB). In conclusion, the phenotype and subset of DCs were different in pregnant women than in control women, suggesting a role in maintenance of immune tolerance against the fetus. The distribution of DC subsets was different in mPB, PB and CB. Their role in the regulation of immune response remains to be elicited.
Collapse
Affiliation(s)
- D Aldebert
- Department of Clinical and Parasite Immunology, Institut Pasteur, Dakar, Senegal.
| | | | | | | | | | | | | |
Collapse
|