1
|
Alsagaby SA, Alhumaydhi FA. Proteomics insights into the pathology and prognosis of chronic lymphocytic leukemia. Saudi Med J 2019; 40:317-327. [PMID: 30957124 PMCID: PMC6506661 DOI: 10.15537/smj.2019.4.23598] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is an incurable malignant disease of B-lymphocytes characterized by drastically heterogeneous clinical courses. Proteomics is an advanced approach that allows a global profiling of protein expression, providing a valuable chance for the discovery of disease-related proteins. In the last 2 decades, several proteomics studies were conducted on CLL to identify aberrant protein expression underpinning the malignant transformation and progression of the disease. Overall, these studies provided insights into the pathology and prognosis of CLL and reveal protein candidates with the potential to serve as biomarkers and/or therapeutic targets of the tumor. The major findings reported in these studies are discussed here.
Collapse
MESH Headings
- Biomarkers, Tumor
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Molecular Targeted Therapy
- Prognosis
- Proteomics/trends
Collapse
Affiliation(s)
- Suliman A Alsagaby
- Department of Medical Laboratories Sciences, Faculty of Applied Medical Sciences, Majmaah University, Majmaah, Kingdom of Saudi Arabia. E-mail.
| | | |
Collapse
|
2
|
Lu J, Gao FH. Role and molecular mechanism of heterogeneous nuclear ribonucleoprotein K in tumor development and progression. Biomed Rep 2016; 4:657-663. [PMID: 27284403 DOI: 10.3892/br.2016.642] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 03/01/2016] [Indexed: 12/20/2022] Open
Abstract
Heterogeneous nuclear ribonucleoprotein K (hnRNP K) is a member of the hnRNP family, which exists in the nucleus and the cytoplasm simultaneously. It is a multifunctional protein that can participate in a variety of regulatory progressions of gene expression and signal transduction, such as chromatin remodeling, transcription, RNA alternative splicing and translation. hnRNP K not only directly binds to the kinases, but also recruits the associated factors regarding transcription, splicing and translation to control gene expression, and therefore, it serves as a docking platform for integrating transduction pathways to nucleic acid-directed processes. Numerous studies also show that abnormal expression of hnRNP K is closely associated with the tumor formation. This protein is overexpressed in numerous types of cancer and its aberrant cytoplasmic localization is also associated with a worse prognosis for patients. These results consistently indicate that hnRNP K has a key role in cancer progression. To understand the hnRNP K pathophysiological process in tumor disease, the previous research results regarding the association between hnRNP K and tumors were reviewed.
Collapse
Affiliation(s)
- Jing Lu
- Institute of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Feng-Hou Gao
- Institute of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
3
|
Rex EB, Kim S, Wiener J, Rao NL, Milla ME, DiSepio D. Phenotypic Approaches to Identify Inhibitors of B Cell Activation. ACTA ACUST UNITED AC 2015; 20:876-86. [PMID: 25948491 PMCID: PMC4512518 DOI: 10.1177/1087057115585724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/14/2015] [Indexed: 12/23/2022]
Abstract
An EPIC label-free phenotypic platform was developed to explore B cell receptor (BCR) and CD40R-mediated B cell activation. The phenotypic assay measured the association of RL non-Hodgkin’s lymphoma B cells expressing lymphocyte function-associated antigen 1 (LFA-1) to intercellular adhesion molecule 1 (ICAM-1)-coated EPIC plates. Anti-IgM (immunoglobulin M) mediated BCR activation elicited a response that was blocked by LFA-1/ICAM-1 specific inhibitors and a panel of Bruton’s tyrosine kinase (BTK) inhibitors. LFA-1/ICAM-1 association was further increased on coapplication of anti-IgM and mega CD40L when compared to individual application of either. Anti-IgM, mega CD40L, or the combination of both displayed distinct kinetic profiles that were inhibited by treatment with a BTK inhibitor. We also established a FLIPR-based assay to measure B cell activation in Ramos Burkitt’s lymphoma B cells and an RL cell line. Anti-IgM-mediated BCR activation elicited a robust calcium response that was inhibited by a panel of BTK inhibitors. Conversely, CD40R activation did not elicit a calcium response in the FLIPR assay. Compared to the FLIPR, the EPIC assay has the propensity to identify inhibitors of both BCR and CD40R-mediated B cell activation and may provide more pharmacological depth or novel mechanisms of action for inhibition of B cell activation.
Collapse
Affiliation(s)
- Elizabeth B Rex
- Discovery Sciences, Janssen Research and Development LLC, La Jolla, CA, USA
| | - Suzie Kim
- Discovery Sciences, Janssen Research and Development LLC, La Jolla, CA, USA
| | - Jake Wiener
- Immunology, Janssen Research and Development LLC, La Jolla, CA, USA
| | - Navin L Rao
- Immunology, Janssen Research and Development LLC, La Jolla, CA, USA
| | - Marcos E Milla
- Discovery Sciences, Janssen Research and Development LLC, La Jolla, CA, USA
| | - Daniel DiSepio
- Discovery Sciences, Janssen Research and Development LLC, La Jolla, CA, USA
| |
Collapse
|
4
|
Salonen J, Rönnholm G, Kalkkinen N, Vihinen M. Proteomic changes during B cell maturation: 2D-DIGE approach. PLoS One 2013; 8:e77894. [PMID: 24205016 PMCID: PMC3812168 DOI: 10.1371/journal.pone.0077894] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 09/06/2013] [Indexed: 11/18/2022] Open
Abstract
B cells play a pivotal role in adaptive immune system, since they maintain a delicate balance between recognition and clearance of foreign pathogens and tolerance to self. During maturation, B cells progress through a series of developmental stages defined by specific phenotypic surface markers and the rearrangement and expression of immunoglobulin (Ig) genes. To get insight into B cell proteome during the maturation pathway, we studied differential protein expression in eight human cell lines, which cover four distinctive developmental stages; early pre-B, pre-B, plasma cell and immature B cell upon anti-IgM stimulation. Our two-dimensional differential gel electrophoresis (2D-DIGE) and mass spectrometry based proteomic study indicates the involvement of large number of proteins with various functions. Notably, proteins related to cytoskeleton were relatively highly expressed in early pre-B and pre-B cells, whereas plasma cell proteome contained endoplasmic reticulum and Golgi system proteins. Our long time series analysis in anti-IgM stimulated Ramos B cells revealed the dynamic regulation of cytoskeleton organization, gene expression and metabolic pathways, among others. The findings are related to cellular processes in B cells and are discussed in relation to experimental information for the proteins and pathways they are involved in. Representative 2D-DIGE maps of different B cell maturation stages are available online at http://structure.bmc.lu.se/BcellProteome/.
Collapse
Affiliation(s)
- Johanna Salonen
- Institute of Biomedical Technology, University of Tampere, Tampere, Finland
- BioMediTech, Tampere, Finland
- Research Unit, Tampere University Hospital, Tampere, Finland
| | - Gunilla Rönnholm
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Nisse Kalkkinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Mauno Vihinen
- Institute of Biomedical Technology, University of Tampere, Tampere, Finland
- BioMediTech, Tampere, Finland
- Research Unit, Tampere University Hospital, Tampere, Finland
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|
5
|
A unique proteomic profile on surface IgM ligation in unmutated chronic lymphocytic leukemia. Blood 2011; 118:e1-15. [PMID: 21602524 DOI: 10.1182/blood-2011-02-335125] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by a highly variable clinical course with 2 extreme subsets: indolent, ZAP70(-) and mutated immunoglobulin heavy chain gene (M-CLL); and aggressive, ZAP70(+) and unmutated immunoglobulin heavy chain (UM-CLL). Given the long-term suspicion of antigenic stimulation as a primum movens in the disease, the role of the B-cell receptor has been extensively studied in various experimental settings; albeit scarcely in a comparative dynamic proteomic approach. Here we use a quantitative 2-dimensional fluorescence difference gel electrophoresis technology to compare 48 proteomic profiles of the 2 CLL subsets before and after anti-IgM ligation. Differentially expressed proteins were subsequently identified by mass spectrometry. We show that unstimulated M- and UM-CLL cells display distinct proteomic profiles. Furthermore, anti-IgM stimulation induces a specific proteomic response, more pronounced in the more aggressive CLL. Statistical analyses demonstrate several significant protein variations according to stimulation conditions. Finally, we identify an intermediate form of M-CLL cells, with an indolent profile (ZAP70(-)) but sharing aggressive proteomic profiles alike UM-CLL cells. Collectively, this first quantitative and dynamic proteome analysis of CLL further dissects the complex molecular pathway after B-cell receptor stimulation and depicts distinct proteomic profiles, which could lead to novel molecular stratification of the disease.
Collapse
|
6
|
Feliers D, Lee MJ, Ghosh-Choudhury G, Bomsztyk K, Kasinath BS. Heterogeneous nuclear ribonucleoprotein K contributes to angiotensin II stimulation of vascular endothelial growth factor mRNA translation. Am J Physiol Renal Physiol 2007; 293:F607-15. [PMID: 17581920 DOI: 10.1152/ajprenal.00497.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ANG II rapidly increases VEGF synthesis in proximal tubular epithelial cells through mRNA translation. The role of heterogeneous nuclear ribonucleoprotein K (hnRNP K) in ANG II regulation of VEGF mRNA translation initiation was examined. ANG II activated hnRNP K as judged by binding to poly(C)- and poly(U)-agarose. ANG II increased hnRNP K binding to VEGF mRNA at the same time as it stimulated its translation, suggesting that hnRNP K contributes to VEGF mRNA translation. Inhibition of hnRNP K expression by RNA interference significantly reduced ANG II stimulation of VEGF synthesis. ANG II increased hnRNP K phosphorylation on both tyrosine and serine residues with distinct time courses; only Ser302 phosphorylation paralleled binding to VEGF mRNA. Src inhibition using PP2 or RNA interference inhibited PKCδ activity and prevented hnRNP K phosphorylation on both tyrosine and serine residues and its binding to VEGF mRNA. Under these conditions, ANG II-induced VEGF synthesis was inhibited. ANG II treatment induced redistribution of both VEGF mRNA and hnRNP K protein from light to heavy polysomal fractions, suggesting increased binding of hnRNP K to VEGF mRNA that is targeted for increased translation. This study shows that hnRNP K augments efficiency of VEGF mRNA translation stimulated by ANG II.
Collapse
Affiliation(s)
- Denis Feliers
- Dept. of Medicine/Nephrology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX, USA.
| | | | | | | | | |
Collapse
|
7
|
Abstract
Proteins affected by anti-mIgM stimulation during B-cell maturation were identified using 2-DE-based proteomics. We investigated the proteome profiles of stimulated and nonstimulated Ramos B-cells at eight time points during 5 d and compared the obtained proteomic data to the corresponding data from DNA-microarray studies. Anti-mIgM stimulation of the cells resulted in significant differences (> or =twofold) in the protein abundance close to 100 proteins and differences in post-translational protein modifications. Forty-eight up- or down-regulated proteins were identified by mass spectrometric methods and database searches. The identities of a further nine proteins were revealed by comparing their positions to the known proteins in other lymphocyte 2-DE databases. Several of the proteins are directly related to the functional and morphological characteristics of B-cells, such as cytoskeleton rearrangement and intracellular signalling triggered by the crosslinking of B-cell receptors. In addition to proteins known to be involved in human B-cell maturation, we identified several proteins that were not previously linked to lymphocyte differentiation. The results provide deeper insights into the process of B-cell maturation and may lead to novel therapeutic strategies for immunodeficiencies. An interactive 2-DE reference map is available at http://bioinf.uta.fi/BcellProteome.
Collapse
Affiliation(s)
- Johanna M Salonen
- Institute of Medical Technology, University of Tampere, Tampere, Finland
| | | | | | | | | |
Collapse
|
8
|
Mikula M, Dzwonek A, Karczmarski J, Rubel T, Dadlez M, Wyrwicz LS, Bomsztyk K, Ostrowski J. Landscape of the hnRNP K protein-protein interactome. Proteomics 2006; 6:2395-406. [PMID: 16518874 DOI: 10.1002/pmic.200500632] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The heterogeneous nuclear ribonucleoprotein K is an ancient RNA/DNA-binding protein that is involved in multiple processes that compose gene expression. The pleiotropic action of K protein reflects its ability to interact with different classes of factors, interactions that are regulated by extracellular signals. We used affinity purification and MS to better define the repertoire of K protein partners. We identified a large number of new K protein partners, some typically found in subcellular compartments, such as plasma membrane, where K protein has not previously been seen. Electron microscopy showed K protein in the nucleus, cytoplasm, mitochondria, and in vicinity of plasma membrane. These observations greatly expanded the view of the landscape of K protein-protein interaction and provide new opportunities to explore signal transduction and gene expression in several subcellular compartments.
Collapse
Affiliation(s)
- Michał Mikula
- Department of Gastroenterology, Medical Center for Postgraduate Education and Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | | | | | | | | | | | | | | |
Collapse
|