1
|
Nies YH, Yahaya MF, Lim WL, Teoh SL. Microarray-based Analysis of Differential Gene Expression Profile in Rotenone-induced Parkinson's Disease Zebrafish Model. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:761-772. [PMID: 37291778 DOI: 10.2174/1871527322666230608122552] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND & OBJECTIVES Despite much clinical and laboratory research that has been performed to explore the mechanisms of Parkinson's disease (PD), its pathogenesis remains elusive to date. Therefore, this study aimed to identify possible regulators of neurodegeneration by performing microarray analysis of the zebrafish PD model's brain following rotenone exposure. METHODS A total of 36 adult zebrafish were divided into two groups: control (n = 17) and rotenonetreated (n = 19). Fish were treated with rotenone water (5 μg/L water) for 28 days and subjected to locomotor behavior analysis. Total RNA was extracted from the brain tissue after rotenone treatment. The cDNA synthesized was subjected to microarray analysis and subsequently validated by qPCR. RESULTS Administration of rotenone has significantly reduced locomotor activity in zebrafish (p < 0.05), dysregulated dopamine-related gene expression (dat, th1, and th2, p < 0.001), and reduced dopamine level in the brain (p < 0.001). In the rotenone-treated group, genes involved in cytotoxic T lymphocytes (gzm3, cd8a, p < 0.001) and T cell receptor signaling (themis, lck, p < 0.001) were upregulated significantly. Additionally, gene expression involved in microgliosis regulation (tyrobp, p < 0.001), cellular response to IL-1 (ccl34b4, il2rb, p < 0.05), and regulation of apoptotic process (dedd1, p < 0.001) were also upregulated significantly. CONCLUSION The mechanisms of T cell receptor signaling, microgliosis regulation, cellular response to IL-1, and apoptotic signaling pathways have potentially contributed to PD development in rotenonetreated zebrafish.
Collapse
Affiliation(s)
- Yong Hui Nies
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mohamad Fairuz Yahaya
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Wei Ling Lim
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Abstract
Bioanalysts and immunologists can interrogate the immune system with a variety of high-throughput technologies such as gene expression, multiplex bead arrays and flow cytometry. Conceptually, these assays support systems immunology studies, in which phenomena can be measured and correlated across biological compartments. First, however, the resulting high-dimensional data must be combined in a consistent fashion that supports analysis of the data as an integrated whole. Next, analytical methods must be applied to the hundreds or thousands of readouts. We recommend the use of a four-part analytical pipeline, consisting of data integration, hypothesis generation, prediction and hypothesis testing, and validation. We describe a variety of established methods appropriate for these integrated datasets, and highlight their application to human immunological studies. Our goal is to provide bioanalysts, immunologists and data analysts with a valuable perspective with which to approach the multiassay high-dimensional datasets generated by contemporary immunological studies.
Collapse
|
3
|
Jang JY, Moon SY, Joo HG. Differential effects of fucoidans with low and high molecular weight on the viability and function of spleen cells. Food Chem Toxicol 2014; 68:234-8. [PMID: 24681238 DOI: 10.1016/j.fct.2014.03.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 03/17/2014] [Accepted: 03/19/2014] [Indexed: 10/25/2022]
Abstract
Fucoidan is an edible sulfated polysaccharide purified from brown algae that has multiple biological activities. However, the effects of fucoidans of different molecular weights on immune cells have not been determined. Thus, we treated spleen cells with low- and high-molecular-weight fucoidans (LMF and HMF, respectively). Viability assays demonstrated that HMF enhanced the viability and prevented the death of spleen cells. Furthermore, functional analysis revealed that HMF significantly increased the production of interferon-γ and nitric oxide. In contrast, LMF had low activity and was relatively toxic to spleen cells. Taken together, these results indicate that HMF makes the greatest contribution to the immunostimulatory activity of fucoidan mixtures. Additionally, fucoidans with different molecular weights may have different effects on the viability and function of immune cells. This study increases our understanding of fucoidans, and may broaden their use in the basic research and clinical fields.
Collapse
Affiliation(s)
- Ji-Young Jang
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Jeju National University, Jeju 690-756, Republic of Korea
| | - Sun-Young Moon
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Jeju National University, Jeju 690-756, Republic of Korea
| | - Hong-Gu Joo
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Jeju National University, Jeju 690-756, Republic of Korea.
| |
Collapse
|
4
|
Ranji N, Sadeghizadeh M, Shokrgozar MA, Bakhshandeh B, Karimipour M, Amanzadeh A, Azadmanesh K. MiR-17-92 cluster: an apoptosis inducer or proliferation enhancer. Mol Cell Biochem 2013; 380:229-38. [PMID: 23681423 DOI: 10.1007/s11010-013-1678-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 05/02/2013] [Indexed: 12/31/2022]
Abstract
Study of the non-coding RNA roles in the regulation of adaptive immune responses through T cells could be the basis of novel therapeutic applications. MicroRNAs (miRNAs) are a class of short non-coding RNAs that control the cell's functions and destination. To investigate the role of miRNAs in T cell activation, herein the expressions of miR-17-92 cluster and its paralogs were studied in naïve CD4(+)T cells that were activated by anti-CD2, -CD3, -CD28 microbeads and induced with or without IL-2. Proliferation and apoptosis rate of the cultured cells were determined by BrdU incorporation assay (ELISA) and propidium iodide staining, respectively. In continuation the expressions of eight miRNAs of the mentioned clusters were analyzed quantitatively. In addition their potential targets were predicted using multiple algorithms; as a confirmation, the transcription of PIK3R3 (a putative target of modulated miRNAs) was evaluated. Stimulation index (SI) of activated cells was decreased on day 6; whereas, the IL-2 induced cells showed increase in SI in the assay time. Evaluation of eight members of the aforementioned cluster showed upregulation of miR-92a-2* (~15 times) in IL-2 un-induced (activated) cells relative to the IL-2 induced cells. In silico investigations revealed that the suggested miRNAs targeted genes that were involved in cell proliferation, survival, and apoptosis. Transcriptional analysis of PIK3R3 illustrated decrease in activated cells relative to IL-2 induced cells. According to our findings, it seems that multiple members of miR-17-92 families in activated CD4(+)T cells inhibited negative regulators of IL-2 such as DUSP, PTPN, and SOCS families after IL-2 induction. According to our findings, it seems that multiple genes of cell proliferation-related families such as MAPK, E2F, AKT, STAT, and JAK as well as PIK3R3 are inhibited by miR-17-92 cluster in activated cells. As FASL is a putative target of over-expressed miRNAs in activated cell, antigen-induced cell death (AICD) might be occurred in FASL-independent manner. Altogether this study suggested that clonal expansion through IL-2 signaling pathway does not depend on the members of miR-17-92 family; while, it appears that AICD in activated CD4(+)T cells without IL-2 induction is affected by these miRNA clusters.
Collapse
Affiliation(s)
- Najmeh Ranji
- Department of Biology, Science and Research Branch, Islamic Azad University, P.O. Box: 1477893855, Tehran, Iran.
| | | | | | | | | | | | | |
Collapse
|
5
|
Kim JM, Joo HG. Immunostimulatory Effects of β-glucan Purified from Paenibacillus polymyxa JB115 on Mouse Splenocytes. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2012; 16:225-30. [PMID: 22915986 PMCID: PMC3419756 DOI: 10.4196/kjpp.2012.16.4.225] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 06/07/2012] [Accepted: 06/22/2012] [Indexed: 11/21/2022]
Abstract
We investigated the effects of β-glucan purified from Paenibacillus polymyxa JB115 on the viability and proliferation of splenocytes. Splenocytes play a critical role in host immunity. MTT assays and trypan blue exclusion tests revealed that β-glucan significantly promoted the viability and proliferation of splenocytes over a range of concentrations. However, there was no specific subset change. β-glucan protected splenocytes from cytokine withdrawal-induced spontaneous cell death. For further mechanistic studies, ELISA assay revealed that β-glucan enhanced the expression of anti-apoptotic molecules and interleukin 7 (IL-7), a cytokine critical for lymphocyte survival. We also investigated the IL-2 dependency of β-glucan-treated splenocytes to determine if treated cells could still undergo clonal expansion. In flow cytometric analysis, β-glucan induced increased levels of the activation marker CD25 on the surface of splenocytes and β-glucan-treated splenocytes showed higher proliferation rates in response to IL-2 treatment. This study demonstrates that β-glucan can enhance the survival of splenocytes and provides valuable information to broaden the use of β-glucan in research fields.
Collapse
Affiliation(s)
- Ji-Mi Kim
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Jeju National University, Jeju 690-756, Korea
| | | |
Collapse
|
6
|
The effects of different endocrine disruptors defining compound-specific alterations of gene expression profiles in the developing testis. Reprod Toxicol 2012; 33:106-15. [DOI: 10.1016/j.reprotox.2011.12.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 12/20/2011] [Accepted: 12/24/2011] [Indexed: 12/11/2022]
|
7
|
Induction of PP2A Bβ, a regulator of IL-2 deprivation-induced T-cell apoptosis, is deficient in systemic lupus erythematosus. Proc Natl Acad Sci U S A 2011; 108:12443-8. [PMID: 21746932 DOI: 10.1073/pnas.1103915108] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The activity and substrate specificity of the ubiquitously expressed phosphatase PP2A is determined by the type of regulatory (B) subunit that couples to the catalytic/scaffold core of the enzyme. We determined that the Bβ subunit (PPP2R2B) is expressed in resting T cells, its transcription is down-regulated during T-cell activation, and up-regulated in conditions of low IL-2. Specifically, high levels of PP2A Bβ were produced during IL-2 deprivation-induced apoptosis, whereas Fas ligation had no effect. Forced expression of the Bβ subunit in primary human T cells was sufficient to induce apoptosis, whereas silencing using siRNA protected activated T cells from IL-2 withdrawal-induced cell death. Because T-cell apoptosis is known to be altered in T cells from patients with systemic lupus erythematosus, we analyzed the regulation of PP2A Bβ in this autoimmune disease. We found that levels of PP2A Bβ did not increase upon IL-2 deprivation in 50% of the patients. Remarkably, this defect was accompanied by resistance to apoptosis. Importantly, kinetics of cell death were normal in cells of patients that up-regulated PP2A Bβ in a normal manner. We have identified a unique role for the phosphatase PP2A, particularly the holoenzyme formed by PP2A Bβ. Bβ appears to trigger apoptosis of T cells in the absence of IL-2 and probably contributes to the termination of a no-longer-needed immune response. We propose that defective production of PP2A Bβ upon IL-2 deprivation results in apoptosis resistance and longer survival of autoreactive T cells, in a subset of SLE patients.
Collapse
|
8
|
Watkins NE, Kennelly WJ, Tsay MJ, Tuin A, Swenson L, Lee HR, Morosyuk S, Hicks DA, Santalucia J. Thermodynamic contributions of single internal rA·dA, rC·dC, rG·dG and rU·dT mismatches in RNA/DNA duplexes. Nucleic Acids Res 2010; 39:1894-902. [PMID: 21071398 PMCID: PMC3061078 DOI: 10.1093/nar/gkq905] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The thermodynamic contributions of rA·dA, rC·dC, rG·dG and rU·dT single internal mismatches were measured for 54 RNA/DNA duplexes in a 1 M NaCl buffer using UV absorbance thermal denaturation. Thermodynamic parameters were obtained by fitting absorbance versus temperature profiles using the curve-fitting program Meltwin. The weighted average thermodynamic data were fit using singular value decomposition to determine the eight non-unique nearest-neighbor parameters for each internal mismatch. The new parameters predict the ΔG°(37), ΔH° and melting temperature (T(m)) of duplexes containing these single mismatches within an average of 0.33 kcal/mol, 4.5 kcal/mol and 1.4°C, respectively. The general trend in decreasing stability for the single internal mismatches is rG·dG > rU·dT > rA·dA > rC·dC. The stability trend for the base pairs 5' of the single internal mismatch is rG·dC > rC·dG > rA·dT > rU·dA. The stability trend for the base pairs 3' of the single internal mismatch is rC·dG > rG·dC >> rA·dT > rU·dA. These nearest-neighbor values are now a part of a complete set of single internal mismatch thermodynamic parameters for RNA/DNA duplexes that are incorporated into the nucleic acid assay development software programs Visual oligonucleotide modeling platform (OMP) and ThermoBLAST.
Collapse
|
9
|
Ko EJ, Joo HG. Stimulatory effects of ginsan on the proliferation and viability of mouse spleen cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2010; 14:133-7. [PMID: 20631884 DOI: 10.4196/kjpp.2010.14.3.133] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 05/16/2010] [Accepted: 05/19/2010] [Indexed: 11/15/2022]
Abstract
Ginsan is an acidic polysaccharide purified from Panax ginseng, a famous oriental herb. Although a variety of biological activities of ginsan have been studied, the effects of ginsan on spleen cells are not fully elucidated. We investigated the effect of ginsan on the viability and proliferation of spleen cells. Using Cell Counting Kit-8(R) solution and trypan blue solution, we found that ginsan significantly enhanced viability and proliferation. Multiple clusters, indicating proliferation, were observed in ginsan-treated spleen cells and, carboxyfluorescein succinimidyl ester and surface marker staining assay revealed that ginsan promoted proliferation from CD19(+) B cells rather than CD4(+) or CD8(+) T cells. In addition, ginsan decreased the percentage of late apoptotic cells. Ginsan increased the surface expression of CD25 and CD69 as well as production of interleukin-2 from spleen cells, suggesting increased activation. Taken together, these results demonstrate that ginsan increases the viability and proliferation of spleen cells via multiple mechanisms, valuable information for broadening the use of ginsan in clinical and research settings.
Collapse
Affiliation(s)
- Eun-Ju Ko
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Jeju National University, Jeju 690-756, Korea
| | | |
Collapse
|
10
|
Jailwala P, Waukau J, Glisic S, Jana S, Ehlenbach S, Hessner M, Alemzadeh R, Matsuyama S, Laud P, Wang X, Ghosh S. Apoptosis of CD4+ CD25(high) T cells in type 1 diabetes may be partially mediated by IL-2 deprivation. PLoS One 2009; 4:e6527. [PMID: 19654878 PMCID: PMC2716541 DOI: 10.1371/journal.pone.0006527] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 07/02/2009] [Indexed: 01/26/2023] Open
Abstract
Background Type 1 diabetes (T1D) is a T-cell mediated autoimmune disease targeting the insulin-producing pancreatic β cells. Naturally occurring FOXP3+CD4+CD25high regulatory T cells (Tregs) play an important role in dominant tolerance, suppressing autoreactive CD4+ effector T cell activity. Previously, in both recent-onset T1D patients and β cell antibody-positive at-risk individuals, we observed increased apoptosis and decreased function of polyclonal Tregs in the periphery. Our objective here was to elucidate the genes and signaling pathways triggering apoptosis in Tregs from T1D subjects. Principal Findings Gene expression profiles of unstimulated Tregs from recent-onset T1D (n = 12) and healthy control subjects (n = 15) were generated. Statistical analysis was performed using a Bayesian approach that is highly efficient in determining differentially expressed genes with low number of replicate samples in each of the two phenotypic groups. Microarray analysis showed that several cytokine/chemokine receptor genes, HLA genes, GIMAP family genes and cell adhesion genes were downregulated in Tregs from T1D subjects, relative to control subjects. Several downstream target genes of the AKT and p53 pathways were also upregulated in T1D subjects, relative to controls. Further, expression signatures and increased apoptosis in Tregs from T1D subjects partially mirrored the response of healthy Tregs under conditions of IL-2 deprivation. CD4+ effector T-cells from T1D subjects showed a marked reduction in IL-2 secretion. This could indicate that prior to and during the onset of disease, Tregs in T1D may be caught up in a relatively deficient cytokine milieu. Conclusions In summary, expression signatures in Tregs from T1D subjects reflect a cellular response that leads to increased sensitivity to apoptosis, partially due to cytokine deprivation. Further characterization of these signaling cascades should enable the detection of genes that can be targeted for restoring Treg function in subjects predisposed to T1D.
Collapse
Affiliation(s)
- Parthav Jailwala
- The Max McGee National Research Center for Juvenile Diabetes and The Human and Molecular Genetics Center, Department of Pediatrics at the Medical College of Wisconsin and the Children's Research Institute of the Children's Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Jill Waukau
- The Max McGee National Research Center for Juvenile Diabetes and The Human and Molecular Genetics Center, Department of Pediatrics at the Medical College of Wisconsin and the Children's Research Institute of the Children's Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Sanja Glisic
- The Max McGee National Research Center for Juvenile Diabetes and The Human and Molecular Genetics Center, Department of Pediatrics at the Medical College of Wisconsin and the Children's Research Institute of the Children's Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Srikanta Jana
- The Max McGee National Research Center for Juvenile Diabetes and The Human and Molecular Genetics Center, Department of Pediatrics at the Medical College of Wisconsin and the Children's Research Institute of the Children's Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Sarah Ehlenbach
- The Max McGee National Research Center for Juvenile Diabetes and The Human and Molecular Genetics Center, Department of Pediatrics at the Medical College of Wisconsin and the Children's Research Institute of the Children's Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Martin Hessner
- The Max McGee National Research Center for Juvenile Diabetes and The Human and Molecular Genetics Center, Department of Pediatrics at the Medical College of Wisconsin and the Children's Research Institute of the Children's Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Ramin Alemzadeh
- Children's Hospital of Wisconsin Diabetes Center, Pediatric Endocrinology and Metabolism, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Shigemi Matsuyama
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Purushottam Laud
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Xujing Wang
- Department of Physics & the Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Soumitra Ghosh
- The Max McGee National Research Center for Juvenile Diabetes and The Human and Molecular Genetics Center, Department of Pediatrics at the Medical College of Wisconsin and the Children's Research Institute of the Children's Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|