1
|
Jensen SA, Fiocchi A, Baars T, Jordakieva G, Nowak-Wegrzyn A, Pali-Schöll I, Passanisi S, Pranger CL, Roth-Walter F, Takkinen K, Assa'ad AH, Venter C, Jensen-Jarolim E. Diagnosis and Rationale for Action against Cow's Milk Allergy (DRACMA) Guidelines update - III - Cow's milk allergens and mechanisms triggering immune activation. World Allergy Organ J 2022; 15:100668. [PMID: 36185551 PMCID: PMC9483786 DOI: 10.1016/j.waojou.2022.100668] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 11/30/2022] Open
Abstract
Background The immunopathogenesis of cow's milk protein allergy (CMPA) is based on different mechanisms related to immune recognition of protein epitopes, which are affected by industrial processing. Purpose The purpose of this WAO DRACMA paper is to: (i) give a comprehensive overview of milk protein allergens, (ii) to review their immunogenicity and allergenicity in the context of industrial processing, and (iii) to review the milk-related immune mechanisms triggering IgE-mediated immediate type hypersensitivity reactions, mixed reactions and non-IgE mediated hypersensitivities. Results The main cow’s milk allergens – α-lactalbumin, β-lactoglobulin, serum albumin, caseins, bovine serum albumins, and others – may determine allergic reactions through a range of mechanisms. All marketed milk and milk products have undergone industrial processing that involves heating, filtration, and defatting. Milk processing results in structural changes of immunomodulatory proteins, leads to a loss of lipophilic compounds in the matrix, and hence to a higher allergenicity of industrially processed milk products. Thereby, the tolerogenic capacity of raw farm milk, associated with the whey proteins α-lactalbumin and β-lactoglobulin and their lipophilic ligands, is lost. Conclusion The spectrum of immunopathogenic mechanisms underlying cow's milk allergy (CMA) is wide. Unprocessed, fresh cow's milk, like human breast milk, contains various tolerogenic factors that are impaired by industrial processing. Further studies focusing on the immunological consequences of milk processing are warranted to understand on a molecular basis to what extent processing procedures make single milk compounds into allergens.
Collapse
Affiliation(s)
- Sebastian A Jensen
- Institute of Pathophysiology and Allergy Research, Centre of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,University Clinics for Ear Nose and Throat, Medical University Vienna, Austria.,The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria
| | - Alessandro Fiocchi
- Allergy Unit - Area of Translational Research in Pediatric Specialities, Bambino Gesù Children's Hospital, Rome, Italy
| | - Ton Baars
- Division of Pharmacology, Department of Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Galateja Jordakieva
- Department of Physical Medicine, Rehabilitation and Occupational Medicine, Medical University of Vienna, Austria
| | - Anna Nowak-Wegrzyn
- Department of Pediatrics, NYU Grossman School of Medicine, Hassenfeld Childrens' Hospital, New York, NY, USA.,Department of Pediatrics, Gastroenterology and Nutrition, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Isabella Pali-Schöll
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,AllergyCare - Allergy Diagnosis Center Vienna, Private Clinics Döbling, Vienna, Austria
| | - Stefano Passanisi
- Department of Human Pathology of Adult and Developmental Age, University of Messina, Italy
| | - Christina L Pranger
- Institute of Pathophysiology and Allergy Research, Centre of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria
| | - Franziska Roth-Walter
- University Clinics for Ear Nose and Throat, Medical University Vienna, Austria.,The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria
| | | | - Amal H Assa'ad
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Carina Venter
- Childrenás Hospital Colorado, University of Colorado, Denver, CO, USA
| | - Erika Jensen-Jarolim
- Institute of Pathophysiology and Allergy Research, Centre of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria.,AllergyCare - Allergy Diagnosis Center Vienna, Private Clinics Döbling, Vienna, Austria
| | | |
Collapse
|
2
|
Ermakov EA, Nevinsky GA, Buneva VN. Immunoglobulins with Non-Canonical Functions in Inflammatory and Autoimmune Disease States. Int J Mol Sci 2020; 21:ijms21155392. [PMID: 32751323 PMCID: PMC7432551 DOI: 10.3390/ijms21155392] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022] Open
Abstract
Immunoglobulins are known to combine various effector mechanisms of the adaptive and the innate immune system. Classical immunoglobulin functions are associated with antigen recognition and the initiation of innate immune responses. However, in addition to classical functions, antibodies exhibit a variety of non-canonical functions related to the destruction of various pathogens due to catalytic activity and cofactor effects, the action of antibodies as agonists/antagonists of various receptors, the control of bacterial diversity of the intestine, etc. Canonical and non-canonical functions reflect the extreme human antibody repertoire and the variety of antibody types generated in the organism: antigen-specific, natural, polyreactive, broadly neutralizing, homophilic, bispecific and catalytic. The therapeutic effects of intravenous immunoglobulins (IVIg) are associated with both the canonical and non-canonical functions of antibodies. In this review, catalytic antibodies will be considered in more detail, since their formation is associated with inflammatory and autoimmune diseases. We will systematically summarize the diversity of catalytic antibodies in normal and pathological conditions. Translational perspectives of knowledge about natural antibodies for IVIg therapy will be also discussed.
Collapse
MESH Headings
- Adaptive Immunity
- Antibodies, Bispecific/chemistry
- Antibodies, Bispecific/genetics
- Antibodies, Bispecific/metabolism
- Antibodies, Catalytic/chemistry
- Antibodies, Catalytic/genetics
- Antibodies, Catalytic/metabolism
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/genetics
- Antibodies, Neutralizing/metabolism
- Autoimmune Diseases/genetics
- Autoimmune Diseases/immunology
- Autoimmune Diseases/pathology
- Autoimmune Diseases/therapy
- Humans
- Immunity, Innate
- Immunoglobulin Fab Fragments/chemistry
- Immunoglobulin Fab Fragments/genetics
- Immunoglobulin Fab Fragments/metabolism
- Immunoglobulin Fc Fragments/chemistry
- Immunoglobulin Fc Fragments/genetics
- Immunoglobulin Fc Fragments/metabolism
- Immunoglobulin Isotypes/chemistry
- Immunoglobulin Isotypes/classification
- Immunoglobulin Isotypes/genetics
- Immunoglobulin Isotypes/metabolism
- Immunoglobulins, Intravenous/therapeutic use
- Immunologic Tests
- Neurodegenerative Diseases/genetics
- Neurodegenerative Diseases/immunology
- Neurodegenerative Diseases/pathology
- Neurodegenerative Diseases/therapy
Collapse
Affiliation(s)
- Evgeny A. Ermakov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.E.); (G.A.N.)
- Novosibirsk State University, Department of Natural Sciences, 630090 Novosibirsk, Russia
| | - Georgy A. Nevinsky
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.E.); (G.A.N.)
- Novosibirsk State University, Department of Natural Sciences, 630090 Novosibirsk, Russia
| | - Valentina N. Buneva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.E.); (G.A.N.)
- Novosibirsk State University, Department of Natural Sciences, 630090 Novosibirsk, Russia
- Correspondence: ; Tel.: +7-(383)-363-51-27; Fax: +7-(383)-363-51-53
| |
Collapse
|
3
|
Abstract
The existence of catalytic antibodies has been known for decades. Natural antibodies capable of cleaving nucleic acid, protein, and polysaccharide substrates have been described. Although the discovery of catalytic antibodies initially aroused great interest because of their promise for the development of new catalysts, their enzymatic performance has been disappointing due to low reaction rates. However, in the areas of infection and immunity, where processes often occur over much longer times and involve high antibody concentrations, even low catalytic rates have the potential to influence biological outcomes. In this regard, the presence of catalytic antibodies recognizing host antigens has been associated with several autoimmune diseases. Furthermore, naturally occurring catalytic antibodies to microbial determinants have been correlated with resistance to infection. Recently, there has been substantial interest in harnessing the power of antibody-mediated catalysis against microbial antigens for host defense. Additional work is needed, however, to better understand the prevalence, function, and structural basis of catalytic activity in antibodies. Here we review the available information and suggest that antibody-mediated catalysis is a fertile area for study with broad applications in infection and immunity.
Collapse
|
4
|
Bowen A, Wear MP, Cordero RJB, Oscarson S, Casadevall A. A Monoclonal Antibody to Cryptococcus neoformans Glucuronoxylomannan Manifests Hydrolytic Activity for Both Peptides and Polysaccharides. J Biol Chem 2016; 292:417-434. [PMID: 27872188 DOI: 10.1074/jbc.m116.767582] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Indexed: 11/06/2022] Open
Abstract
Studies in the 1980s first showed that some natural antibodies were "catalytic" and able to hydrolyze peptide or phosphodiester bonds in antigens. Many naturally occurring catalytic antibodies have since been isolated from human sera and associated with positive and negative outcomes in autoimmune disease and infection. The function and prevalence of these antibodies, however, remain unclear. A previous study suggested that the 18B7 monoclonal antibody against glucuronoxylomannan (GXM), the major component of the Cryptococcus neoformans polysaccharide capsule, hydrolyzed a peptide antigen mimetic. Using mass spectrometry and Förster resonance energy transfer techniques, we confirm and characterize the hydrolytic activity of 18B7 against peptide mimetics and show that 18B7 is able to hydrolyze an oligosaccharide substrate, providing the first example of a naturally occurring catalytic antibody for polysaccharides. Additionally, we show that the catalytic 18B7 antibody increases release of capsular polysaccharide from fungal cells. A serine protease inhibitor blocked peptide and oligosaccharide hydrolysis by 18B7, and a putative serine protease-like active site was identified in the light chain variable region of the antibody. An algorithm was developed to detect similar sites present in unique antibody structures in the Protein Data Bank. The putative site was found in 14 of 63 (22.2%) catalytic antibody structures and 119 of 1602 (7.4%) antibodies with no annotation of catalytic activity. The ability of many antibodies to cleave antigen, albeit slowly, supports the notion that this activity is an important immunoglobulin function in host defense. The discovery of GXM hydrolytic activity suggests new therapeutic possibilities for polysaccharide-binding antibodies.
Collapse
Affiliation(s)
- Anthony Bowen
- From the Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Maggie P Wear
- the Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, and
| | - Radames J B Cordero
- the Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, and
| | - Stefan Oscarson
- the Centre for Synthesis and Chemical Biology, UCD School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Arturo Casadevall
- the Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, and
| |
Collapse
|
5
|
Xia Y, Eryilmaz E, Zhang Q, Cowburn D, Putterman C. Anti-DNA antibody mediated catalysis is isotype dependent. Mol Immunol 2015; 69:33-43. [PMID: 26655427 DOI: 10.1016/j.molimm.2015.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/29/2015] [Accepted: 11/01/2015] [Indexed: 12/27/2022]
Abstract
Anti-DNA antibodies are the serological hallmark of systemic lupus erythematosus, and participate in the pathogenesis of lupus nephritis by cross-reacting with multiple renal antigens. Previously, using a panel of murine anti-DNA IgGs that share identical variable regions but that differ in the constant regions, we demonstrated that the cross-reaction and renal pathogenicity of anti-DNA antibodies are isotype dependent. In this study, we investigated the catalytic potential of this anti-DNA antibody panel, and determined its isotype dependency. The three isotype switch variants (IgG1, IgG2a, IgG2b) and the parent IgG3 PL9-11 anti-DNA antibodies were compared in their catalysis of 500 base pair linear double stranded DNA and a 12-mer peptide (ALWPPNLHAWVP), by gel analysis, MALDI-TOF mass spectrometry, and nuclear magnetic resonance spectroscopy. The binding affinity of anti-DNA antibodies to double stranded DNA and peptide antigens were assessed by ELISA and surface plasmon resonance. We found that the PL9-11 antibody isotypes vary significantly in their potential to catalyze the cleavage of both linear and double stranded DNA and the proteolysis of peptides. The degree of the cleavage and proteolysis increases with the incubation temperature and time. While different PL9-11 isotypes have the same initial attack sites within the ALWPPNLHAWVP peptide, there was no correlation between binding affinity to the peptide and proteolysis rates. In conclusion, the catalytic properties of anti-DNA antibodies are isotype dependent. This finding provides further evidence that antibodies that share the same variable region, but which have different constant regions, are functionally distinct. The catalytic effects modulated by antibody constant regions need to be considered in the design of therapeutic antibodies (abzymes) and peptides designed to block pathogenic autoantibodies.
Collapse
Affiliation(s)
- Yumin Xia
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Division of Rheumatology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Ertan Eryilmaz
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Qiuting Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - David Cowburn
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Chaim Putterman
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Division of Rheumatology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
6
|
Baricelli J, Rocafull MA, Vázquez D, Bastidas B, Báez-Ramirez E, Thomas LE. β-defensin-2 in breast milk displays a broad antimicrobial activity against pathogenic bacteria. J Pediatr (Rio J) 2015; 91:36-43. [PMID: 25211380 DOI: 10.1016/j.jped.2014.05.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/06/2014] [Accepted: 05/14/2014] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE To describe the antimicrobial activity of β-defensin-2 produced in the mammary gland and secreted in human breast milk. METHODS The peptide production was performed by DNA cloning. β-defensin-2 levels were quantified in 61 colostrum samples and 39 mature milk samples from healthy donors, by an indirect enzyme-linked immunosorbent assay (ELISA). Using halo inhibition assay, this study assessed activity against seven clinical isolates from diarrheal feces of children between 0 and 2 years of age. The activity of β-defensin-2 against three opportunistic pathogens that can cause nosocomial infections was determined by microdilution test. RESULTS The peptide levels were higher in colostrum (n=61) than in mature milk samples (n=39), as follows: median and range, 8.52 (2.6-16.3) μg/ml versus 0.97 (0.22-3.78), p<0.0001; Mann-Whitney test. The recombinant peptide obtained showed high antimicrobial activity against a broad range of pathogenic bacteria. Its antibacterial activity was demonstrated in a disk containing between 1-4 μg, which produced inhibition zones ranging from 18 to 30 mm against three isolates of Salmonella spp. and four of E. coli. β-defensin-2 showed minimum inhibitory concentrations (MICs) of 0.25 μg/mL and 0.5 μg/mL for S. marcescen and P. aeruginosa, respectively, while a higher MIC (4 μg/mL) was obtained against an isolated of multidrug-resistant strain of A. baumannii. CONCLUSIONS To the authors' knowledge, this study is the first to report β-defensin-2 levels in Latin American women. The production and the activity of β-defensin-2 in breast milk prove its importance as a defense molecule for intestinal health in pediatric patients.
Collapse
Affiliation(s)
- Joanna Baricelli
- Laboratorio de Fisiología Molecular, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela; Banco de Leche Humana, Hospital Universitario de Caracas, Caracas, Venezuela
| | - Miguel A Rocafull
- Laboratorio de Fisiología Molecular, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela; Banco de Leche Humana, Hospital Universitario de Caracas, Caracas, Venezuela
| | - Desiree Vázquez
- Laboratorio de Fisiología Molecular, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela; Banco de Leche Humana, Hospital Universitario de Caracas, Caracas, Venezuela
| | - Betsi Bastidas
- Banco de Leche Humana, Hospital Universitario de Caracas, Caracas, Venezuela; Laboratorio Delgado Launois, Clínica Lugo, Maracay, Venezuela
| | - Estalina Báez-Ramirez
- Laboratorio de Fisiología Molecular, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela; Banco de Leche Humana, Hospital Universitario de Caracas, Caracas, Venezuela
| | - Luz E Thomas
- Laboratorio de Fisiología Molecular, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela; Banco de Leche Humana, Hospital Universitario de Caracas, Caracas, Venezuela.
| |
Collapse
|
7
|
Baricelli J, Rocafull MA, Vázquez D, Bastidas B, Báez‐Ramirez E, Thomas LE. β‐defensin‐2 in breast milk displays a broad antimicrobial activity against pathogenic bacteria. JORNAL DE PEDIATRIA (VERSÃO EM PORTUGUÊS) 2015. [DOI: 10.1016/j.jpedp.2014.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
8
|
Levast B, Berri M, Wilson HL, Meurens F, Salmon H. Development of gut immunoglobulin A production in piglet in response to innate and environmental factors. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 44:235-244. [PMID: 24384471 DOI: 10.1016/j.dci.2013.12.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/20/2013] [Accepted: 12/21/2013] [Indexed: 06/03/2023]
Abstract
The current review focuses on pre- and post-natal development of intestinal immunoglobulin A (IgA) production in pig. IgA production is influenced by intrinsic genetic factors in the foetus as well as extrinsic environmental factors during the post-natal period. At birth, piglets are exposed to new antigens through maternal colostrums/milk as well as exogenous microbiota. This exposure to new antigens is critical for the proper development of the gut mucosal immune system and is characterized mainly by the establishment of IgA response. A second critical period for neonatal intestinal immune system development occurs at weaning time when the gut environment is exposed to new dietary antigens. Neonate needs to establish oral tolerance and in the absence of protective milk need to fight potential new pathogens. To improve knowledge about the immune response in the neonates, it is important to identify intrinsic and extrinsic factors which influence the intestinal immune system development and to elucidate their mechanism of action.
Collapse
Affiliation(s)
- Benoît Levast
- Vaccine and Infectious Disease Organization (VIDO), Home of the International Vaccine Centre (InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada.
| | - Mustapha Berri
- Institut National de la Recherche Agronomique (INRA), UMR1282 ISP, Nouzilly, France; Université de Tours, UMR1282 ISP, Tours, France
| | - Heather L Wilson
- Vaccine and Infectious Disease Organization (VIDO), Home of the International Vaccine Centre (InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - François Meurens
- Vaccine and Infectious Disease Organization (VIDO), Home of the International Vaccine Centre (InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - Henri Salmon
- Institut National de la Recherche Agronomique (INRA), UMR1282 ISP, Nouzilly, France; Université de Tours, UMR1282 ISP, Tours, France
| |
Collapse
|
9
|
Do KH, Choi HJ, Kim J, Park SH, Kim KH, Moon Y. SOCS3 Regulates BAFF in Human Enterocytes under Ribosomal Stress. THE JOURNAL OF IMMUNOLOGY 2013; 190:6501-10. [DOI: 10.4049/jimmunol.1203004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Hill DR, Kessler SP, Rho HK, Cowman MK, de la Motte CA. Specific-sized hyaluronan fragments promote expression of human β-defensin 2 in intestinal epithelium. J Biol Chem 2012; 287:30610-24. [PMID: 22761444 DOI: 10.1074/jbc.m112.356238] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hyaluronan (HA) is a glycosaminoglycan polymer found in the extracellular matrix of virtually all mammalian tissues. Recent work has suggested a role for small, fragmented HA polymers in initiating innate defense responses in immune cells, endothelium, and epidermis through interaction with innate molecular pattern recognition receptors, such as TLR4. Despite these advances, little is known regarding the effect of fragmented HA at the intestinal epithelium, where numerous pattern recognition receptors act as sentinels of an innate defense response that maintains epithelial barrier integrity in the presence of abundant and diverse microbial challenges. Here we report that HA fragments promote expression of the innate antimicrobial peptide human β-defensin 2 (HβD2) in intestinal epithelial cells. Treatment of HT-29 colonic epithelial cells with HA fragment preparations resulted in time- and dose-dependent up-regulated expression of HβD2 protein in a fragment size-specific manner, with 35-kDa HA fragment preparations emerging as the most potent inducers of intracellular HβD2. Furthermore, oral administration of specific-sized HA fragments promotes the expression of an HβD2 ortholog in the colonic epithelium of both wild-type and CD44-deficient mice but not in TLR4-deficient mice. Together, our observations suggest that a highly size-specific, TLR4-dependent, innate defense response to fragmented HA contributes to intestinal epithelium barrier defense through the induction of intracellular HβD2 protein.
Collapse
Affiliation(s)
- David R Hill
- Department of Molecular Medicine, Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | | | |
Collapse
|
11
|
Human β-defensin 2 and protease activated receptor-2 expression in patients with chronic periodontitis. Arch Oral Biol 2012; 57:1609-14. [PMID: 22647427 DOI: 10.1016/j.archoralbio.2012.04.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 03/16/2012] [Accepted: 04/26/2012] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Some previous studies have shown that gingipains, trypsin-like proteases produced by Porphyromonas gingivalis, up-regulate human β defensin-2 (HBD-2) mRNA expression through protease-activated receptor-2 (PAR(2)) in gingival epithelial cells. This study aimed at investigating salivary HBD-2 levels and crevicular PAR(2) mRNA expression in human chronic periodontitis and evaluating whether periodontal treatment affected this process. METHODS Salivary and gingival crevicular fluid (GCF) samples were collected from periodontally healthy (control) and chronic periodontitis patients at baseline and 50 days after non-surgical periodontal treatment. Salivary HBD-2, and GCF TNF-α levels were analysed by ELISA, and PAR(2) mRNA at the GCF was evaluated by RT-PCR. RESULTS P. gingivalis was significantly (p<0.05) more prevalent in patients with chronic periodontitis when compared to controls. This prevalence decreased after periodontal therapy (p<0.0001). The control group showed statistically significant lower levels of HBD-2, TNF-α, and PAR(2) expression when compared to the chronic periodontitis group. In addition, periodontal treatment significantly reduced PAR(2) expression and HBD-2 levels in chronic periodontitis patients (p<0.001). CONCLUSIONS Our results suggest that salivary HBD-2 levels and PAR(2) mRNA expression from GCF are higher in subjects with chronic periodontitis than in healthy subjects, and that periodontal treatment decreases both HBD-2 levels and PAR(2) expression.
Collapse
|
12
|
A novel molecular analysis of genes encoding catalytic antibodies. Mol Immunol 2012; 50:160-8. [PMID: 22325472 DOI: 10.1016/j.molimm.2012.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 01/09/2012] [Accepted: 01/12/2012] [Indexed: 10/14/2022]
Abstract
Among the numerous questions remaining opened about catalytic antibodies (abzymes), the understanding of the origin of the genes encoding them is of vital significance. An original statistical analysis of genes encoding abzymes is described in the present report. Results suggested that these genes display a high conservation degree with their germline counterpart and a limited number of amino acid changes. Hence, on the contrary with high-affinity antibodies, maturation process by accumulation of somatic hypermutations is not required for the catalytic function. We demonstrated that despite a weak somatic mutation rate, the physicochemical properties of mutated amino acid (AA) are predominantly dissimilar with that of the germline AA. Further, we developed a novel approach in order to analyze the nature of genes encoding catalytic antibodies. For the first time, an unexpected and significant high level expression of rare gene subgroups was noticed and emphasized. The data described in this paper would lay the foundation for future studies about origin of genes encoding catalytic antibodies.
Collapse
|
13
|
Paul S, Planque SA, Nishiyama Y, Hanson CV, Massey RJ. Nature and nurture of catalytic antibodies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 750:56-75. [PMID: 22903666 DOI: 10.1007/978-1-4614-3461-0_5] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Immunoglobulins (antibodies) frequently express constitutive functions. Two such functions are nucleophilic catalysis and the reversible binding to B-cell superantigens. Constitutive or "naturally-occurring" antibodies are produced spontaneously from germline genetic information. The antibody structural elements mediating the constitutive functions have originated over millions of years of phylogenic evolution, contrasting with antigen-driven, somatic sequence diversification of the complementarity determining regions (CDR) that underlies the better-known high affinity antigen binding function of antibodies. Often, the framework regions (FRs) play a dominant role in antibody constitutive functions. Catalytic antibody subsets with promiscuous, autoantigen-directed and microbe-directed specificities have been identified. Mucosal antibodies may be specialized to express high-level catalytic activity against microbes transmitted by the mucosal route, exemplified by constitutive production of IgA class antibodies in mucosal secretions that catalyze the cleavage of HIV gp120. Catalytic specificity can be gained by constitutive noncovalent superantigen binding at the FRs and by adaptive development of noncovalent classical antigen or superantigen binding, respectively, at the CDRs and FRs. Growing evidence suggests important functional roles for catalytic antibodies in homeostasis, autoimmune disease and protection against infection. Adaptive antibody responses to microbial superantigens are proscribed underphysiological circumstances. Covalent electrophilic immunogen binding to constitutively expressed nucleophilic sites in B-cell receptors bypasses the restriction on adaptive antibody production, and simultaneous occupancy of the CDR binding site by a stimulatory antigenic epitope can also overcome the downregulatory effect of superantigen binding at the FRs. These concepts may be useful for developing novel vaccines that capitalize and improve on constitutive antibody functions for protection against microbes.
Collapse
Affiliation(s)
- Sudhir Paul
- Chemical Immunology Research Center, Department of Pathology, University of Texas-Houston Medical School, Texas, USA.
| | | | | | | | | |
Collapse
|
14
|
Ewaschuk JB, Unger S, Harvey S, O'Connor DL, Field CJ. Effect of pasteurization on immune components of milk: implications for feeding preterm infants. Appl Physiol Nutr Metab 2011; 36:175-82. [PMID: 21609278 DOI: 10.1139/h11-008] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been unequivocally proven that human breast milk is the ideal source of nutrition for infants. However, mothers of preterm infants face a number of barriers to providing sufficient milk volume to their babies, who are at risk for developing necrotizing enterocolitis (NEC). Donated milk, distributed through milk banks, is becoming a desirable alternative to formula feeding, and is increasingly being considered for hospitalized, preterm infants in North America. Donor milk in North America is pasteurized (62.5 °C, 30 min) to remove possible infectious contaminants; a number of immune and bioactive components are either partially or entirely inactivated by this process. Identifying the impact of pasteurization on immune components of breast milk has been the focus of numerous research studies over the past several decades. The objective of this review is to summarize the literature on the feeding of pasteurized donor milk to preterm infants and the current understanding of the impact of pasteurization on immune components of breast milk, with particular reference to those implicated in the prevention of NEC.
Collapse
Affiliation(s)
- Julia B Ewaschuk
- Department of Agricultural, Food, and Nutritional Sciences, University of Alberta, 4126 HRIF East, Edmonton, AB T6G 2E1, Canada
| | | | | | | | | |
Collapse
|
15
|
Lee SE, Kim JM, Jeong SK, Jeon JE, Yoon HJ, Jeong MK, Lee SH. Protease-activated receptor-2 mediates the expression of inflammatory cytokines, antimicrobial peptides, and matrix metalloproteinases in keratinocytes in response to Propionibacterium acnes. Arch Dermatol Res 2010; 302:745-56. [PMID: 20697725 PMCID: PMC2970807 DOI: 10.1007/s00403-010-1074-z] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Revised: 07/25/2010] [Accepted: 07/28/2010] [Indexed: 12/22/2022]
Abstract
Propionibacterium acnes (P. acnes) has been known to produce various exogenous proteases, however, their role in acne pathogenesis remains largely unknown. Proteases elicit cellular responses, at least in part, via proteinase-activated receptor-2 (PAR-2), which is known to mediate inflammation and immune response. In this study, we investigated whether proteases from P. acnes could activate PAR-2 on keratinocytes and induce pro-inflammatory cytokines, antimicrobial peptides (AMPs), and matrix metalloproteinases (MMPs) via PAR-2 signaling. We examined PAR-2 expression and protease activity in acne lesions using immunofluorescence staining and in situ zymography. The effect of the culture supernatant of P. acnes on Ca(2+) signaling in immortalized keratinocytes (HaCaT) was measured using a fluorescence method. HaCaT cells were treated with P. acnes strain ATCC 6919 culture supernatant, with or without pretreatment with serine protease inhibitor or selective PAR-2 antagonist and the gene expression of pro-inflammatory cytokines, AMPs, and MMPs was detected using real-time reverse transcription-polymerase chain reaction. We found that the protease activity and PAR-2 expression were increased in acne lesions. The P. acnes culture supernatant induced calcium signaling in keratinocytes via PAR-2 and stimulated the mRNA expression of interleukin (IL)-1α, -8, tumor necrosis factor (TNF)-α, human beta defensin (hBD)-2, LL-37, MMP-1, -2, -3, -9, and -13 in keratinocytes, which was significantly inhibited by serine protease inhibitor as well as selective PAR-2 specific antagonist. These results indicate that PAR-2 plays an important role in the pathogenesis of acne by inducing inflammatory mediators in response to proteases secreted from P. acnes.
Collapse
Affiliation(s)
- Sang Eun Lee
- Department of Dermatology, Gangnam Severance Hospital, Yonsei University College of Medicine, 712 Eonjuro, Kangnam-gu, Seoul, 135-720 Korea
- Human Barrier Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Ji-Min Kim
- Department of Dermatology, Gangnam Severance Hospital, Yonsei University College of Medicine, 712 Eonjuro, Kangnam-gu, Seoul, 135-720 Korea
- Human Barrier Research Institute, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Project for Medical Science, Yonsei University, Seoul, Korea
| | | | | | - Hyun-Ju Yoon
- Technology Support Part, Central Research Laboratories, Aekyung, Taejon, Korea
| | - Min-Kyung Jeong
- Department of Dermatology, Gangnam Severance Hospital, Yonsei University College of Medicine, 712 Eonjuro, Kangnam-gu, Seoul, 135-720 Korea
- Human Barrier Research Institute, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Project for Medical Science, Yonsei University, Seoul, Korea
| | - Seung Hun Lee
- Department of Dermatology, Gangnam Severance Hospital, Yonsei University College of Medicine, 712 Eonjuro, Kangnam-gu, Seoul, 135-720 Korea
- Human Barrier Research Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
16
|
Belogurov A, Kozyr A, Ponomarenko N, Gabibov A. Catalytic antibodies: balancing between Dr. Jekyll and Mr. Hyde. Bioessays 2010; 31:1161-71. [PMID: 19795406 DOI: 10.1002/bies.200900020] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The immunoglobulin molecule is a perfect template for the de novo generation of biocatalytic functions. Catalytic antibodies, or abzymes, obtained by the structural mimicking of enzyme active sites have been shown to catalyze numerous chemical reactions. Natural enzyme analogs for some of these reactions have not yet been found or possibly do not exist at all. Nowadays, the dramatic breakthrough in antibody engineering and expression technologies has promoted a considerable expansion of immunoglobulin's medical applications and is offering abzymes a unique chance to become a promising source of high-precision "catalytic vaccines." At the same time, the discovery of natural abzymes on the background of autoimmune disease revealed their beneficial and pathogenic roles in the disease progression. Thus, the conflicting Dr. Jekyll and Mr. Hyde protective and destructive essences of catalytic antibodies should be carefully considered in the development of therapeutic abzyme applications.
Collapse
Affiliation(s)
- Alexey Belogurov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | | | | | | |
Collapse
|