1
|
Li S, Li Z, Tan T, Dai S, Wu Y, Xu F. Tanshinone IIA improves degranulation of mast cells and allergic rhinitis induced by ovalbumin by inhibiting the PLCγ1/PKC/IP3R pathway. Hum Exp Toxicol 2021; 40:S702-S710. [PMID: 34792426 DOI: 10.1177/09603271211058884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Allergic rhinitis (AR) is a common allergic inflammatory and chronic reactive disease caused by allergen-induced immunoglobulin E (IgE). Tanshinone IIA (Tan IIA) is one of the active ingredients in Salvia miltiorrhiza Bunge (Danshen) and plays a vital role in inhibiting inflammation. Thus, we hypothesized that Tan IIA has anti-allergic effects and studied the function of Tan IIA in mast cells and an AR animal model. We induced RBL-2H3 cell sensitization with monoclonal anti-2,4,6-dinitrophenyl-immunoglobulin (Ig) E/human serum albumin (DNP-IgE/HSA) and constructed an ovalbumin (OVA)-induced AR model in mice. The role of Tan IIA in AR progression was studied using the MTT assay, ELISA, western blot, toluidine blue staining, HE staining, and Alcian blue and safranin O (A&S) staining. Tan IIA treatment significantly increased IgE/HSA-induced cell viability. However, Tan IIA treatment markedly downregulated the expression levels of β-hexosaminidase, histamine, tumor necrosis factor (TNF-α), interleukin 1β (IL-1β), IL-4, and IL-5 in IgE/HSA-induced cells. Furthermore, Tan IIA improved typical symptoms in the OVA-induced AR model mice by inhibiting the phospholipase Cγ1 (PLCγ1)/protein kinase C (PKC)/IP3R pathway. Additionally, Tan IIA effectively improved the degranulation of RBL-2H3 cells and OVA-induced AR in mice. Together, these results suggest that Tan IIA may be a potential drug for the treatment of AR in the future.
Collapse
Affiliation(s)
- Shouye Li
- College of Pharmacy, 117839Hangzhou Medical College, Hangzhou, China
| | - Zheming Li
- College of Pharmacy, 117839Hangzhou Medical College, Hangzhou, China
| | - Tao Tan
- Internal Medicine Department, Zhejiang Provincial General Team Hospital of the Chinese People's Armed Police Force, Hangzhou, China
| | - Shijie Dai
- College of Pharmacy, 117839Hangzhou Medical College, Hangzhou, China
| | - Yangsheng Wu
- College of Pharmacy, 117839Hangzhou Medical College, Hangzhou, China
| | - Faying Xu
- School of Medical Imaging, 117839Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
2
|
Kim HY, Kim J, Jeong HJ, Kim HM. Potential anti-inflammatory effect of Madi-Ryuk and its active ingredient tannic acid on allergic rhinitis. Mol Immunol 2019; 114:362-368. [PMID: 31450181 DOI: 10.1016/j.molimm.2019.08.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/14/2019] [Accepted: 08/18/2019] [Indexed: 02/06/2023]
Abstract
Madi-Ryuk (MDR) is a traditional Korean medicine and it has been widely used in Korea to treat arthritis and we previously reported the anti-allergic inflammatory effect of MDR in vitro model. However, therapeutic evidence of MDR on in vivo model of allergic inflammatory reaction has not yet been demonstrated. The research purpose was to investigate the efficacy of MDR and its active ingredient tannic acid (TA) in ovalbumin (OVA)-induced AR mice model. OVA-challenged AR mice orally medicated MDR or its active ingredient TA daily for ten days. In mice having a AR, MDR and TA prominently diminished number of rubs and levels of histamine, IgE, thymic stromal lymphopoietin, interleukin (IL)-1β, IL-4, IL-5, IL-13, IL-33, and tumor necrosis factor-α. In addition, protein expression levels and activities of caspase-1 were declined by oral medication of MDR and TA. Decline in levels of macrophage inflammatory protein-2 and intercellular adhesion molecules-1 and reduction in penetrations of inflammatory cells into inflamed tissue were also noted in MDR and TA groups. Taken together, identification of MDR effect in preclinical models suggests that MDR may be a therapeutic drug for the treatment and prevention of AR.
Collapse
Affiliation(s)
- Hee-Yun Kim
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, 130-701, Republic of Korea
| | - Jihyeon Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hyun-Ja Jeong
- Division of Food and Pharmaceutical Engineering, Hoseo University, 20, Hoseo-ro 79 beon-gil, Baebang-eup, Asan, Chungcheongnam-do 31499, Republic of Korea.
| | - Hyung-Min Kim
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, 130-701, Republic of Korea; Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
3
|
Fu S, Ni S, Wang D, Hong T. Coptisine Suppresses Mast Cell Degranulation and Ovalbumin-Induced Allergic Rhinitis. Molecules 2018; 23:E3039. [PMID: 30469322 PMCID: PMC6278392 DOI: 10.3390/molecules23113039] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 01/15/2023] Open
Abstract
Coptisine is one of the main components of isoquinoline alkaloids in the coptidis rhizome. The effect of coptisine on allergic rhinitis has not been investigated. In this study, we report the effects and mechanisms of coptisine using monoclonal anti-2,4,6-dinitrophenyl-immunoglobulin (Ig) E/human serum albumin (DNP-IgE/HSA)-stimulated rat basophilic leukemia cells (RBL-2H3 cells) in vitro and an ovalbumin (OVA)-induced allergic rhinitis (AR) in mice. The results showed that coptisine markedly decreased the levels of β-hexosaminidase, histamine, interleukin (IL)-4, and tumor necrosis factor (TNF)-α. Coptisine also prevented morphological changes, such as restoring an elongated shape, inhibiting granule release on toluidine blue staining, and reorganizing inhibited filamentous actins (F-actin). Additionally, coptisine blocked the phosphorylation of phosphoinositide3-kinase (PI3K)/Akt (as known as protein kinase B(PKB)) in RBL-2H3 cell. Furthermore, the results showed that coptisine suppressed OVA-induced allergic rhinitis symptoms, such as nasal rubbing and OVA-specific IgE, and histamine, IL-4 and TNF-α levels in the serum of AR mice. These data suggested that coptisine should have inhibitory effects on the inflammatory responses of mast cells, and may be beneficial for the development of coptisine as a potential anti-allergic drug.
Collapse
Affiliation(s)
- Shuilian Fu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Saihong Ni
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Danni Wang
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Tie Hong
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
4
|
Topical ocular treatment with monoclonal antibody Fab fragments targeting Japanese cedar pollen Cry j 1 inhibits Japanese cedar pollen-induced allergic conjunctivitis in mice. Eur J Pharmacol 2017; 798:105-112. [PMID: 28119075 DOI: 10.1016/j.ejphar.2017.01.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 12/12/2022]
Abstract
Fab fragments (Fabs) of antibodies having the ability only to bind to specific allergens lack effector functions due to the absence of the Fc portion. In the present study, we examined whether IgG1 monoclonal antibody (mAb) Fabs targeting Japanese cedar pollen (JCP) Cry j 1 were able to regulate JCP-induced allergic conjunctivitis in mice. BALB/c mice actively sensitized with JCP were repeatedly challenged by topical administration of JCP eye drops. Fabs prepared by the digestion of anti-JCP IgG1 mAbs (P1-3 and P1-8) with papain were applied to the eye 15min before the JCP challenges followed by measurement of the clinical conjunctivitis score. In the in vitro experiments, P1-3 and P1-8 showed specific binding to JCP Cry j 1. Furthermore, intact P1-3 binding to Cry j 1 was inhibited by P1-3 Fabs, but not P1-8 Fabs; additionally, P1-8 Fabs, but not P1-3 Fabs, suppressed the intact P1-8 binding, suggesting that the epitopes of Cry j 1 recognized by P1-3 and P1-8 were different. Topical ocular treatment with P1-3 Fabs or P1-8 Fabs was followed by marked suppression of JCP-induced conjunctivitis (P<0.01). In histological evaluation, P1-8 Fabs showed a reduction in eosinophil infiltration in the conjunctiva (P<0.01). These results demonstrated that topical ocular treatment with IgG1 mAb Fabs to Cry j 1 was effective in suppressing JCP-induced allergic conjunctivitis in mice. Furthermore, it suggests the possibility that some epitopes recognized by Fabs could be used as a tool to regulate allergic conjunctivitis.
Collapse
|
5
|
Hong JY, Bae JH, Lee KE, Kim M, Kim MH, Kang HJ, Park EH, Yoo KS, Jeong SK, Kim KW, Kim KE, Sohn MH. Antibody to FcεRIα Suppresses Immunoglobulin E Binding to High-Affinity Receptor I in Allergic Inflammation. Yonsei Med J 2016; 57:1412-9. [PMID: 27593869 PMCID: PMC5011273 DOI: 10.3349/ymj.2016.57.6.1412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/21/2016] [Accepted: 03/24/2016] [Indexed: 11/27/2022] Open
Abstract
PURPOSE High-affinity receptor I (FcεRI) on mast cells and basophils plays a key role in the immunoglobulin E (IgE)-mediated type I hypersensitivity mediated by allergen cross-linking of the specific IgE-FcεRI complex. Thus, prevention of IgE binding to FcεRI on these cells is an effective therapy for allergic disease. We have developed a strategy to disrupt IgE binding to FcεRI using an antibody targeting FcεRIα. MATERIALS AND METHODS Fab fragment antibodies, which lack the Fc domain, with high affinity and specificity for FcεRIα and effective inhibitory activity against IgE-FcεRI binding were screened. IgE-induced histamine, β-hexosaminidase and Ca²⁺ release in basophils were determined by ELISA. A B6.Cg-Fcer1a(tm1Knt) Tg(FCER1A)1Bhk/J mouse model of passive cutaneous anaphylaxis (PCA) was used to examine the inhibitory effect of NPB311 on allergic skin inflammation. RESULTS NPB311 exhibited high affinity to human FcεRIα (KD=4 nM) and inhibited histamine, β-hexosaminidase and Ca²⁺ release in a concentration-dependent manner in hFcεRI-expressing cells. In hFcεRIα-expressing mice, dye leakage was higher in the PCA group than in controls, but decreased after NPB311 treatment. NPB311 could form a complex with FcεRIα and inhibit the release of inflammation mediators. CONCLUSION Our approach for producing anti-FcεRIα Fab fragment antibody NPB311 may enable clinical application to a therapeutic pathway in IgE/FcεRI-mediated diseases.
Collapse
Affiliation(s)
- Jung Yeon Hong
- Department of Pediatrics and Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | | | - Kyung Eun Lee
- Department of Pediatrics and Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Mina Kim
- Department of Pediatrics and Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Min Hee Kim
- CRID Center, NeoPharm Co., Ltd., Daejeon, Korea
| | | | | | | | | | - Kyung Won Kim
- Department of Pediatrics and Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Kyu Earn Kim
- Department of Pediatrics and Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Myung Hyun Sohn
- Department of Pediatrics and Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
6
|
Goldblum RM, Ning B, Judy BM, Holthauzen LMF, van Bavel J, Kamijo A, Midoro-Horiuti T. A single mouse monoclonal antibody, E58 modulates multiple IgE epitopes on group 1 cedar pollen allergens. Mol Immunol 2016; 74:106-12. [PMID: 27174188 DOI: 10.1016/j.molimm.2016.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 10/21/2022]
Abstract
We recently described a dominant role for conformational epitopes on the group 1 allergen of the mountain cedar (Juniperus ashei, Cupressaceae), Jun a 1, in pollen hypersensitivity in South Central U.S.A. Since these epitopes are surface exposed and are likely to be flexible, they may be susceptible to molecular or physical perturbations. This may make Jun a 1 a potential target for new forms of therapy for cedar pollinosis. Here, we describe a mouse monoclonal antibody, termed E58, which binds to the group 1 allergens of the cedar pollens from three highly populated regions of the world (central U.S.A., France and Japan). Upon binding to these allergens, E58 strongly reduces the binding of patient's IgE antibodies to these dominant allergens. This characteristic of E58, and potentially other similar antibodies, suggests an opportunity to develop preventative or therapeutic agents that may inhibit cedar pollen sensitization or prevent their allergic reactions.
Collapse
Affiliation(s)
- Randall M Goldblum
- Department of Pediatrics, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0366, USA; Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-1068, USA
| | - Bo Ning
- Department of Pediatrics, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0366, USA
| | - Barbara M Judy
- Department of Pediatrics, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0366, USA
| | - Luis Marcelo F Holthauzen
- Sealy Center for Structural Biology and Molecular Biophysics, Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-1068, USA
| | - Julius van Bavel
- Isis Clinical Research, LLC, 6836 Austin Center Blvd. Ste 180, Austin, TX 78731, USA
| | - Atsushi Kamijo
- Department of Pediatrics, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0366, USA
| | - Terumi Midoro-Horiuti
- Department of Pediatrics, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0366, USA.
| |
Collapse
|
7
|
Sae-Wong C, Mizutani N, Kangsanant S, Yoshino S. Topical skin treatment with Fab fragments of an allergen-specific IgG1 monoclonal antibody suppresses allergen-induced atopic dermatitis-like skin lesions in mice. Eur J Pharmacol 2016; 779:131-7. [DOI: 10.1016/j.ejphar.2016.03.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/08/2016] [Accepted: 03/08/2016] [Indexed: 01/24/2023]
|
8
|
Yoshino S, Mizutani N. Intranasal exposure to monoclonal antibody Fab fragments to Japanese cedar pollen Cry j1 suppresses Japanese cedar pollen-induced allergic rhinitis. Br J Pharmacol 2016; 173:1629-38. [PMID: 26895546 PMCID: PMC4842921 DOI: 10.1111/bph.13463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 01/27/2016] [Accepted: 02/14/2016] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Fab fragments (Fabs) of antibodies have the ability to bind to specific allergens but lack the Fc portion that exerts effector functions via binding to receptors including FcεR1 on mast cells. In the present study, we investigated whether intranasal administration of the effector function-lacking Fabs of a monoclonal antibody IgG1 (mAb, P1-8) to the major allergen Cry j1 of Japanese cedar pollen (JCP) suppressed JCP-induced allergic rhinitis in mice. EXPERIMENTAL APPROACH Balb/c mice sensitized with JCP on days 0 and 14 were challenged intranasally with the pollen on days 28, 29, 30 and 35. Fabs prepared by the digestion of P1-8 with papain were also administered intranasally 15 min before each JCP challenge. KEY RESULTS Intranasal administration of P1-8 Fabs was followed by marked suppression of sneezing and nasal rubbing in mice with JCP-induced allergic rhinitis. The suppression of these allergic symptoms by P1-8 Fabs was associated with decreases in mast cells and eosinophils and decreased hyperplasia of goblet cells in the nasal mucosa. CONCLUSIONS AND IMPLICATIONS These results demonstrated that intranasal exposure to P1-8 Fabs was effective in suppressing JCP-induced allergic rhinitis in mice, suggesting that allergen-specific mAb Fabs might be used as a tool to regulate allergic pollinosis.
Collapse
Affiliation(s)
- S Yoshino
- Department of Pharmacology, Kobe Pharmaceutical University, Kobe, Japan
| | - N Mizutani
- Department of Pharmacology, Kobe Pharmaceutical University, Kobe, Japan
| |
Collapse
|