1
|
Zhang L, Li S, Xu X, Ma C, Zhang P, Ji W, Liu X. HIV-1 p17 matrix protein enhances type I interferon responses through the p17-OLA1-STING axis. J Cell Sci 2024; 137:jcs261500. [PMID: 38132845 DOI: 10.1242/jcs.261500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
Stimulator of IFN genes (STING; also known as STING1) is an important adaptor protein for detecting cytosolic double-stranded DNA, which can come from HIV infection. Several HIV proteins, such as p6, Vpx and Vif, can influence STING-mediated innate immunity, but the function of p17 is still unknown. In this study, we find that HIV-1 p17, but not HIV-2 p17 or SIV p17, promotes STING signaling induced by cyclic GMP-AMP (cGAMP) treatment. Mechanistically, HIV-1 p17 binds to Obg-like ATPase 1 (OLA1) and inhibits the regulation of STING by OLA1. Here, OLA1 interacts with STING and inhibits the translocation and phosphorylation of STING upon cGAMP stimulation. Furthermore, compared with HIV-2 and SIV, the ATPase and GTPase activities of OLA1 are only promoted by HIV-1 p17. Our study shows that the p17 of HIV-1, but not HIV-2 or SIV, promotes STING-mediated innate immunity by interfering the interaction between OLA1 and STING, thus providing a new clue for specific immune activation of HIV-1.
Collapse
Affiliation(s)
- Lianfei Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shuai Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaoyu Xu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Chengxin Ma
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Pan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wangsheng Ji
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
- Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital of Henan University, Henan University, Kaifeng 475000, China
| | - Xinqi Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
2
|
Cabral-Piccin MP, Papagno L, Lahaye X, Perdomo-Celis F, Volant S, White E, Monceaux V, Llewellyn-Lacey S, Fromentin R, Price DA, Chomont N, Manel N, Saez-Cirion A, Appay V. Primary role of type I interferons for the induction of functionally optimal antigen-specific CD8 + T cells in HIV infection. EBioMedicine 2023; 91:104557. [PMID: 37058769 PMCID: PMC10130611 DOI: 10.1016/j.ebiom.2023.104557] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 04/16/2023] Open
Abstract
BACKGROUND CD8+ T cells equipped with a full arsenal of antiviral effector functions are critical for effective immune control of HIV-1. It has nonetheless remained unclear how best to elicit such potent cellular immune responses in the context of immunotherapy or vaccination. HIV-2 has been associated with milder disease manifestations and more commonly elicits functionally replete virus-specific CD8+ T cell responses compared with HIV-1. We aimed to learn from this immunological dichotomy and to develop informed strategies that could enhance the induction of robust CD8+ T cell responses against HIV-1. METHODS We developed an unbiased in vitro system to compare the de novo induction of antigen-specific CD8+ T cell responses after exposure to HIV-1 or HIV-2. The functional properties of primed CD8+ T cells were assessed using flow cytometry and molecular analyses of gene transcription. FINDINGS HIV-2 primed functionally optimal antigen-specific CD8+ T cells with enhanced survival properties more effectively than HIV-1. This superior induction process was dependent on type I interferons (IFNs) and could be mimicked via the adjuvant delivery of cyclic GMP-AMP (cGAMP), a known agonist of the stimulator of interferon genes (STING). CD8+ T cells elicited in the presence of cGAMP were polyfunctional and highly sensitive to antigen stimulation, even after priming from people living with HIV-1. INTERPRETATION HIV-2 primes CD8+ T cells with potent antiviral functionality by activating the cyclic GMP-AMP synthase (cGAS)/STING pathway, which results in the production of type I IFNs. This process may be amenable to therapeutic development via the use of cGAMP or other STING agonists to bolster CD8+ T cell-mediated immunity against HIV-1. FUNDING This work was funded by INSERM, the Institut Curie, and the University of Bordeaux (Senior IdEx Chair) and by grants from Sidaction (17-1-AAE-11097, 17-1-FJC-11199, VIH2016126002, 20-2-AEQ-12822-2, and 22-2-AEQ-13411), the Agence Nationale de la Recherche sur le SIDA (ECTZ36691, ECTZ25472, ECTZ71745, and ECTZ118797), and the Fondation pour la Recherche Médicale (EQ U202103012774). D.A.P. was supported by a Wellcome Trust Senior Investigator Award (100326/Z/12/Z).
Collapse
Affiliation(s)
- Mariela P Cabral-Piccin
- Université de Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, 33000, Bordeaux, France; Sorbonne Université, INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013, Paris, France
| | - Laura Papagno
- Université de Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, 33000, Bordeaux, France; Sorbonne Université, INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013, Paris, France
| | - Xavier Lahaye
- Institut Curie, INSERM U932, Immunity and Cancer Department, PSL Research University, 75005, Paris, France
| | | | - Stevenn Volant
- Institut Pasteur, Hub Bioinformatique et Biostatistique, 75015, Paris, France
| | - Eoghann White
- Université de Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, 33000, Bordeaux, France; Sorbonne Université, INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013, Paris, France
| | - Valérie Monceaux
- Institut Pasteur, Unité HIV Inflammation et Persistance, 75015, Paris, France
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Rémi Fromentin
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK; Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Nicolas Chomont
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Nicolas Manel
- Institut Curie, INSERM U932, Immunity and Cancer Department, PSL Research University, 75005, Paris, France.
| | - Asier Saez-Cirion
- Institut Pasteur, Unité HIV Inflammation et Persistance, 75015, Paris, France; Institut Pasteur, Université Paris Cité, Viral Reservoirs and Immune Control Unit, 75015, Paris, France.
| | - Victor Appay
- Université de Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, 33000, Bordeaux, France; Sorbonne Université, INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013, Paris, France; International Research Center of Medical Sciences, Kumamoto University, Kumamoto, 860-0811, Japan.
| |
Collapse
|
3
|
Al-Mozaini M, Alzahrani A, Alsharif I, Shinwari Z, Halim M, Alhokail A, Alrajhi A, Alaiya A. Quantitative proteomics analysis reveals unique but overlapping protein signatures in HIV infections. J Infect Public Health 2021; 14:795-802. [PMID: 34030014 DOI: 10.1016/j.jiph.2021.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/11/2021] [Accepted: 03/25/2021] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND Human immunodeficiency virus-1 (HIV-1) exploits human host factors to complete its life cycle. Hence, discovery of HIV-regulated host proteins markers would better our understanding of the virus life-cycle and its contribution to pathogenesis and discovery of objective diagnostic and prognostic molecules. METHODS We conducted holistic total proteomics analysis of three closely related study populations including patients with HIV type-1 (HIV-1) and HIV type-2 (HIV-2) as well as HIV-1 elite controllers (HIV-1-EC). Peripheral blood plasma (PBP) samples were subjected to label-free quantitative liquid-chromatography tandem mass-spectrometry (LC-MS/MS). RESULTS Over 314 unique PBP protein species were identified of which 100 (approx. 32%) were significantly differentially expressed (≥2 to ∞ - fold-change; p < 0.05) between the three sample cohorts. Of the 100 proteins, 91 were significantly changed between pairs of HIV-1 versus HIV-1-EC, while 83 of the 100 proteins differed significantly between HIV-2 and HIV-1-EC. Interestingly, 76 proteins (87.5%) overlap between the two data sets indicating that majority of these proteins share similar expression changes between HIV-1 and HIV-2 sample groups. Two of the identified proteins, XRCC5 and PSME1, were implicated in the early phase of the pathway network for HIV life cycle, while others were involved in infectious disease and disease of signal transduction. Among them were MAP2K1, RPL23A, RPS3, CALR, PRDX1, SOD2, LMNB1, PHB, and FGB. Despite the high degree of similarity in protein profiles of HIV-1 and HIV-2, six proteins differed significantly including ETFB, PHB2, S100A9, LMO2, PPP3R1 and Vif, a fragment of virion infectivity factor of HIV-1. Additionally, 15 proteins were uniquely expressed, and one of them (LSP1) is present only in HIV-1-EC but absent in HIV1 and HIV-2 and vice versa for the rest 14 proteins. CONCLUSIONS Altogether, we have identified HIV-specific/related protein expression changes that might potentially be capable of early diagnosis and prognosis of HIV diseases and other related infectious diseases.
Collapse
Affiliation(s)
- Maha Al-Mozaini
- Immunocompromised Host Research Section, Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, KSA, Saudi Arabia; Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, KSA, Saudi Arabia.
| | - Alhusain Alzahrani
- College of Applied Medical Sciences, University of Hafr Al Baten, Hafr Al Baten, KSA, Saudi Arabia.
| | - Ibtihaj Alsharif
- Immunocompromised Host Research Section, Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, KSA, Saudi Arabia.
| | - Zakia Shinwari
- Proteomics Unit, Stem Cell & Tissue Re-Engineering Program, King Faisal Specialist Hospital and Research Centre, Riyadh, KSA, Saudi Arabia.
| | - Magid Halim
- Department of Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, KSA, Saudi Arabia.
| | - Abdullah Alhokail
- Department of Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, KSA, Saudi Arabia.
| | - Abdulrahman Alrajhi
- Department of Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, KSA, Saudi Arabia.
| | - Ayodele Alaiya
- Proteomics Unit, Stem Cell & Tissue Re-Engineering Program, King Faisal Specialist Hospital and Research Centre, Riyadh, KSA, Saudi Arabia.
| |
Collapse
|
4
|
Godinho-Santos A, Foxall RB, Antão AV, Tavares B, Ferreira T, Serra-Caetano A, Matoso P, Sousa AE. Follicular Helper T Cells Are Major Human Immunodeficiency Virus-2 Reservoirs and Support Productive Infection. J Infect Dis 2020; 221:122-126. [PMID: 31504642 PMCID: PMC6910871 DOI: 10.1093/infdis/jiz431] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/23/2019] [Indexed: 01/09/2023] Open
Abstract
Follicular helper T cells (Tfh), CD4 lymphocytes critical for efficient antibody responses, have been shown to be key human immunodeficiency virus (HIV)-1 reservoirs. Human immunodeficiency virus-2 infection represents a unique naturally occurring model for investigating Tfh role in HIV/acquired immune deficiency syndrome, given its slow rate of CD4 decline, low to undetectable viremia, and high neutralizing antibody titers throughout the disease course. In this study, we investigated, for the first time, Tfh susceptibility to HIV-2 infection by combining in vitro infection of tonsillar Tfh with the ex vivo study of circulating Tfh from HIV-2-infected patients. We reveal that Tfh support productive HIV-2 infection and are preferential viral targets in HIV-2-infected individuals.
Collapse
Affiliation(s)
- Ana Godinho-Santos
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | | | | | - Bárbara Tavares
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | | | - Ana Serra-Caetano
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | | | - Ana E Sousa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal
| |
Collapse
|
5
|
Dufrasne FE, Lucchetti M, Martin A, André E, Dessilly G, Kabamba B, Goubau P, Ruelle J. Modulation of the NF-κB signaling pathway by the HIV-2 envelope glycoprotein and its incomplete BST-2 antagonism. Virology 2017; 513:11-16. [PMID: 29028477 DOI: 10.1016/j.virol.2017.09.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/26/2017] [Accepted: 09/30/2017] [Indexed: 12/19/2022]
Abstract
The HIVs have evolved by selecting means to hijack numerous host cellular factors. HIVs exploit the transcription factor NF-κB to ensure efficient LTR-driven gene transcription. However, NF-κB is primarily known to act as a key regulator of the proinflammatory and antiviral responses. Interestingly, retroviruses activate NF-κB during early stages of infection to initiate proviral genome expression while suppressing it at later stages to restrain expression of antiviral genes. During HIV-1 infection, diverse viral proteins such as Env, Nef and Vpr have been proposed to activate NF-κB activity, whereas Vpu has been shown to inhibit NF-κB activation. It is still unclear how HIV-2 regulates NF-κB signaling pathway during its replication cycle. Here we confirm that human BST-2 and HIV-1 Env proteins can trigger potent activation of NF-κB. Importantly, we demonstrate for the first time that the HIV-2 Env induces NF-κB activation in HEΚ293T cells. Furthermore, the anti-BST-2 activity of the HIV-2 Env is not sufficient to completely inhibit NF-κB activity.
Collapse
Affiliation(s)
- François E Dufrasne
- Université catholique de Louvain, Experimental and Clinical Research Institute (IREC), Medical Microbiology Unit (MBLG), AIDS Reference Laboratory, Avenue Hippocrate 54, B-1200 Brussels, Belgium.
| | - Mara Lucchetti
- Université catholique de Louvain, Experimental and Clinical Research Institute (IREC), Medical Microbiology Unit (MBLG), AIDS Reference Laboratory, Avenue Hippocrate 54, B-1200 Brussels, Belgium
| | - Anandi Martin
- Université catholique de Louvain, Experimental and Clinical Research Institute (IREC), Medical Microbiology Unit (MBLG), AIDS Reference Laboratory, Avenue Hippocrate 54, B-1200 Brussels, Belgium.
| | - Emmanuel André
- Université catholique de Louvain, Experimental and Clinical Research Institute (IREC), Medical Microbiology Unit (MBLG), AIDS Reference Laboratory, Avenue Hippocrate 54, B-1200 Brussels, Belgium; Cliniques Universitaires Saint-Luc, Clinical Biology Department, Microbiology Unit, B-1200 Brussels, Belgium.
| | - Géraldine Dessilly
- Université catholique de Louvain, Experimental and Clinical Research Institute (IREC), Medical Microbiology Unit (MBLG), AIDS Reference Laboratory, Avenue Hippocrate 54, B-1200 Brussels, Belgium.
| | - Benoit Kabamba
- Université catholique de Louvain, Experimental and Clinical Research Institute (IREC), Medical Microbiology Unit (MBLG), AIDS Reference Laboratory, Avenue Hippocrate 54, B-1200 Brussels, Belgium; Cliniques Universitaires Saint-Luc, Clinical Biology Department, Microbiology Unit, B-1200 Brussels, Belgium.
| | - Patrick Goubau
- Université catholique de Louvain, Experimental and Clinical Research Institute (IREC), Medical Microbiology Unit (MBLG), AIDS Reference Laboratory, Avenue Hippocrate 54, B-1200 Brussels, Belgium.
| | - Jean Ruelle
- Université catholique de Louvain, Experimental and Clinical Research Institute (IREC), Medical Microbiology Unit (MBLG), AIDS Reference Laboratory, Avenue Hippocrate 54, B-1200 Brussels, Belgium.
| |
Collapse
|
6
|
Yamaguchi J, Brennan CA, Alessandri-Gradt E, Plantier JC, Cloherty GA, Berg MG. HIV-2 Surveillance with Next-Generation Sequencing Reveals Mutations in a Cytotoxic Lymphocyte-Restricted Epitope Involved in Long-Term Nonprogression. AIDS Res Hum Retroviruses 2017; 33:347-352. [PMID: 27758113 DOI: 10.1089/aid.2016.0229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
HIV-2 exhibits a natural history of infection distinct from HIV-1. Primarily found in West Africa and in only 10%-20% of HIV infections in this region, patients with HIV-2 typically exhibit a slower progression to AIDS, lower viral loads, and decreased rates of transmission. Here, we used next-generation sequencing to determine the sequence and phylogenetic classification of nine HIV-2 genomes. We identified a patient with a series of mutations in an invariant cytotoxic lymphocyte (CTL)-restricted gag epitope required for retroviral structure and replication and implicated in long-term nonprogression to AIDS. The presence of wild-type sequence argues these mutations are involved in immune escape, whereas its reversion to a sequence seen only in the sooty mangabey reservoir suggests an alternate means of controlling infection. Surveillance and molecular characterization of circulating strains are essential for continued development of monitoring tools and may provide greater insight into the reduced pathogenicity of HIV-2.
Collapse
Affiliation(s)
- Julie Yamaguchi
- Infectious Diseases Research, Abbott Diagnostics, Abbott Park, Illinois
| | | | - Elodie Alessandri-Gradt
- Virology Unit, National Reference for HIV, Centre Hospitalier Universitaire de Rouen, Rouen, France
| | - Jean-Christophe Plantier
- Virology Unit, National Reference for HIV, Centre Hospitalier Universitaire de Rouen, Rouen, France
| | - Gavin A. Cloherty
- Infectious Diseases Research, Abbott Diagnostics, Abbott Park, Illinois
| | - Michael G. Berg
- Infectious Diseases Research, Abbott Diagnostics, Abbott Park, Illinois
| |
Collapse
|
7
|
Cyclophilins and nucleoporins are required for infection mediated by capsids from circulating HIV-2 primary isolates. Sci Rep 2017; 7:45214. [PMID: 28345672 PMCID: PMC5366920 DOI: 10.1038/srep45214] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/20/2017] [Indexed: 12/11/2022] Open
Abstract
HIV-2 groups have emerged from sooty mangabey SIV and entered the human population in Africa on several separate occasions. Compared to world pandemic HIV-1 that arose from the chimpanzee SIVcpz virus, the SIVsm-derived HIV-2, largely confined to West Africa, is less replicative, less transmissible and less pathogenic. Here, we evaluated the interactions between host cellular factors, which control HIV-1 infection and target the capsid, and HIV-2 capsids obtained from primary isolates from patients with different disease progression status. We showed that, like HIV-1, all HIV-2 CA we tested exhibited a dependence on cyclophilin A. However, we observed no correlation between HIV-2 viremia and susceptibility to hu-TRIM5alpha or dependence to CypA. Finally, we found that all CA from HIV-2 primary isolates exploit Nup358 and Nup153 for nucleus transposition. Altogether, these findings indicate that the ability to use the two latter nucleoporins is essential to infection of human cells for both HIV-1 and HIV-2. This dependence provides another molecular target that could be used for antiviral strategies against both HIV-1 and 2, based on both nucleoporins.
Collapse
|
8
|
Hua CK, Ackerman ME. Engineering broadly neutralizing antibodies for HIV prevention and therapy. Adv Drug Deliv Rev 2016; 103:157-173. [PMID: 26827912 DOI: 10.1016/j.addr.2016.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/19/2016] [Accepted: 01/20/2016] [Indexed: 01/15/2023]
Abstract
A combination of advances spanning from isolation to delivery of potent HIV-specific antibodies has begun to revolutionize understandings of antibody-mediated antiviral activity. As a result, the set of broadly neutralizing and highly protective antibodies has grown in number, diversity, potency, and breadth of viral recognition and neutralization. These antibodies are now being further enhanced by rational engineering of their anti-HIV activities and coupled to cutting edge gene delivery and strategies to optimize their pharmacokinetics and biodistribution. As a result, the prospects for clinical use of HIV-specific antibodies to treat, clear, and prevent HIV infection are gaining momentum. Here we discuss the diverse methods whereby antibodies are being optimized for neutralization potency and breadth, biodistribution, pharmacokinetics, and effector function with the aim of revolutionizing HIV treatment and prevention options.
Collapse
|
9
|
Identification of Host Micro RNAs That Differentiate HIV-1 and HIV-2 Infection Using Genome Expression Profiling Techniques. Viruses 2016; 8:v8050121. [PMID: 27144577 PMCID: PMC4885076 DOI: 10.3390/v8050121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/30/2016] [Accepted: 04/20/2016] [Indexed: 01/02/2023] Open
Abstract
While human immunodeficiency virus type 1 and 2 (HIV-1 and HIV-2) share many similar traits, major differences in pathogenesis and clinical outcomes exist between the two viruses. The differential expression of host factors like microRNAs (miRNAs) in response to HIV-1 and HIV-2 infections are thought to influence the clinical outcomes presented by the two viruses. MicroRNAs are small non-coding RNA molecules which function in transcriptional and post-transcriptional regulation of gene expression. MiRNAs play a critical role in many key biological processes and could serve as putative biomarker(s) for infection. Identification of miRNAs that modulate viral life cycle, disease progression, and cellular responses to infection with HIV-1 and HIV-2 could reveal important insights into viral pathogenesis and provide new tools that could serve as prognostic markers and targets for therapeutic intervention. The aim of this study was to elucidate the differential expression profiles of host miRNAs in cells infected with HIV-1 and HIV-2 in order to identify potential differences in virus-host interactions between HIV-1 and HIV-2. Differential expression of host miRNA expression profiles was analyzed using the miRNA profiling polymerase chain reaction (PCR) arrays. Differentially expressed miRNAs were identified and their putative functional targets identified. The results indicate that hsa-miR 541-3p, hsa-miR 518f-3p, and hsa-miR 195-3p were consistently up-regulated only in HIV-1 infected cells. The expression of hsa-miR 1225-5p, hsa-miR 18a* and hsa-miR 335 were down modulated in HIV-1 and HIV-2 infected cells. Putative functional targets of these miRNAs include genes involved in signal transduction, metabolism, development and cell death.
Collapse
|