1
|
Zhu Q, Jin S, Gang DD, Yang F. A review in analytical progress for house dust mite allergens. REVIEWS ON ENVIRONMENTAL HEALTH 2025:reveh-2024-0177. [PMID: 40074681 DOI: 10.1515/reveh-2024-0177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 02/21/2025] [Indexed: 03/14/2025]
Abstract
House dust mite (HDM) allergens are one of the most important causes of allergenic diseases in the indoor environment. The World Health Organization (WHO) has defined risk thresholds for Group I HDM allergens as a concentration of 2 and 10 μg/mL in dust for producing asthma risk and polar asthma attacks, respectively. Continuing exposure to high concentrations of HDM allergens greatly increases the risk of developing allergic diseases. Therefore, it's necessary to determine the exposure levels of HDM allergens to estimate the risk. So, various approaches have been developed to directly or indirectly detect HDM allergens in the environment. This paper overviews the developmental progress of HDM allergen detection and introduces the principle of HDM allergen detection methods, including semi-quantitative radioallergosorbent test (RAST), ACAREX test, dot immunobinding assay (DIBA), radioimmunoassay (RIA) which combines the high sensitivity and accuracy, enzyme-linked immunosorbent assay (ELISA) with high accuracy, fluorescent multiple arrays which can simultaneously detect multiple HDM allergens, polymerase chain reaction (PCR), and liquid chromatograph-mass spectrometer (LC-MS) with high sensitivity and accuracy. The paper provides an overall understanding of the development of HDM allergen detection methods and guidance for choosing an appropriate method to detect HDM allergens.
Collapse
Affiliation(s)
- Qiling Zhu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, 12404 South-Central Minzu University , Wuhan, China
| | - Shiwei Jin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, 12404 South-Central Minzu University , Wuhan, China
| | - Daniel D Gang
- Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA, USA
| | - Fangxing Yang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan, China
| |
Collapse
|
2
|
Khatri K, O'Malley A, Linn C, Kowal K, Chruszcz M. Role of Small Molecule Ligands in IgE-Mediated Allergy. Curr Allergy Asthma Rep 2023; 23:497-508. [PMID: 37351723 PMCID: PMC11490272 DOI: 10.1007/s11882-023-01100-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 06/24/2023]
Abstract
PURPOSE OF REVIEW A significant fraction of allergens bind small molecular ligands, and many of these compounds are classified as lipids. However, in most cases, we do not know the role that is played by the ligands in the allergic sensitization or allergic effector phases. RECENT FINDINGS More effort is dedicated toward identification of allergens' ligands. This resulted in identification of some lipidic compounds that can play active immunomodulatory roles or impact allergens' molecular and allergic properties. Four allergen families (lipocalins, NPC2, nsLTP, and PR-10) are among the best characterized in terms of their ligand-binding properties. Allergens from these four families are able to bind many chemically diverse molecules. These molecules can directly interact with human immune system and/or affect conformation and stability of allergens. While there is more data on the allergens and their small molecular ligands, we are just starting to understand their role in allergy.
Collapse
Affiliation(s)
- Kriti Khatri
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd, East Lansing, MI, 48824, USA
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Andrea O'Malley
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd, East Lansing, MI, 48824, USA
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Christina Linn
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd, East Lansing, MI, 48824, USA
| | - Krzysztof Kowal
- Department of Experimental Allergology and Immunology, Medical University of Bialystok, Bialystok, Poland
| | - Maksymilian Chruszcz
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd, East Lansing, MI, 48824, USA.
| |
Collapse
|
3
|
Galván-Morales MÁ. Perspectives of Proteomics in Respiratory Allergic Diseases. Int J Mol Sci 2023; 24:12924. [PMID: 37629105 PMCID: PMC10454482 DOI: 10.3390/ijms241612924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/18/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Proteomics in respiratory allergic diseases has such a battery of techniques and programs that one would almost think there is nothing impossible to find, invent or mold. All the resources that we document here are involved in solving problems in allergic diseases, both diagnostic and prognostic treatment, and immunotherapy development. The main perspectives, according to this version, are in three strands and/or a lockout immunological system: (1) Blocking the diapedesis of the cells involved, (2) Modifications and blocking of paratopes and epitopes being understood by modifications to antibodies, antagonisms, or blocking them, and (3) Blocking FcεRI high-affinity receptors to prevent specific IgEs from sticking to mast cells and basophils. These tools and targets in the allergic landscape are, in our view, the prospects in the field. However, there are still many allergens to identify, including some homologies between allergens and cross-reactions, through the identification of structures and epitopes. The current vision of using proteomics for this purpose remains a constant; this is also true for the basis of diagnostic and controlled systems for immunotherapy. Ours is an open proposal to use this vision for treatment.
Collapse
Affiliation(s)
- Miguel Ángel Galván-Morales
- Departamento de Atención a la Salud, CBS. Unidad Xochimilco, Universidad Autónoma Metropolitana, Calzada del Hueso 1100, Villa Quietud, Coyoacán, Ciudad de México 04960, Mexico
| |
Collapse
|
4
|
Component-Resolved Diagnosis Based on a Recombinant Variant of Mus m 1 Lipocalin Allergen. Int J Mol Sci 2023; 24:ijms24021193. [PMID: 36674705 PMCID: PMC9862564 DOI: 10.3390/ijms24021193] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Exposure to the Mus m 1 aeroallergen is a significant risk factor for laboratory animal allergy. This allergen, primarily expressed in mouse urine where it is characterized by a marked and dynamic polymorphism, is also present in epithelium and dander. Considering the relevance of sequence/structure assessment in protein antigenic reactivity, we compared the sequence of the variant Mus m 1.0102 to other members of the Mus m 1 allergen, and used Discotope 2.0 to predict conformational epitopes based on its 3D-structure. Conventional diagnosis of mouse allergy is based on serum IgE testing, using an epithelial extract as the antigen source. Given the heterogeneous and variable composition of extracts, we developed an indirect ELISA assay based on the recombinant component Mus m 1.0102. The assay performed with adequate precision and reasonable diagnostic accuracy (AUC = 0.87) compared to a routine clinical diagnostic test that exploits the native allergen. Recombinant Mus m 1.0102 turned out to be a valuable tool to study the fine epitope mapping of specific IgE reactivity to the major allergen responsible for mouse allergy. We believe that advancing in its functional characterization will lead to the standardization of murine lipocalins and to the development of allergen-specific immunotherapy.
Collapse
|
5
|
Mindaye ST, Sun C, Esfahani SAZ, Matsui EC, Sheehan MJ, Rabin RL, Slater JE. Diversity and complexity of mouse allergens in urine, house dust, and allergen extracts assessed with an immuno-allergomic approach. Allergy 2021; 76:3723-3732. [PMID: 33864689 DOI: 10.1111/all.14860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/05/2021] [Accepted: 03/24/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Mouse allergy is an important cause of indoor asthma and allergic rhinoconjunctivitis. The major mouse allergen, Mus m 1, is a complex of homologous pheromone-binding lipocalins called major urinary proteins (MUPs). METHODS We analyzed the proteome of MUPs in mouse urine, commercial mouse epithelial extracts, and environmental samples using several approaches. These include as follows: two-dimensional electrophoresis and immunoblotting; liquid chromatography-high-resolution mass spectrometry (LC/HRMS); multiple reaction monitoring (MRM) mass spectrometry; and LC/HRMS analysis of glycans at the N-66 residue of MUP3. RESULTS Albumin is predominant in the extracts, while MUPs are predominant in urine. LC/HRMS of 4 mouse allergen extracts revealed surprising heterogeneity. Of 22 known mouse MUPs, only 6 (MUP3, MUP4, MUP5, MUP13, MUP20, and MUP21) could be identified with MRM using unique peptides. Assessment of MUP content in urine, extracts, and dust samples showed good correlation between MRM and other methods working with different detection principles. All 6 identifiable MUPs were found in electrophoretically separated urine bands, but only MUP3 and MUP20 were above LOQ in unseparated mouse urine, and only MUP3, MUP4, and MUP20 were found in mouse epithelial extracts. Glycan heterogeneity was noted among 4 individual inbred mice: of 13 glycan structures detected, 8 were unique to one mouse, and only 2 glycan modifications were present in all 4 mice. CONCLUSIONS Using mass spectrometry and MRM, mouse allergen extracts and urine samples are shown to be complex and heterogeneous. The efficacy and safety of commercial mouse allergen extracts will be improved with better controls of allergen content.
Collapse
Affiliation(s)
- Samuel T. Mindaye
- Laboratory of Immunobiochemistry Division of Bacterial, Parasitic, and Allergenic Products Food and Drug Administration Silver Spring MD USA
| | - Carl Sun
- Laboratory of Immunobiochemistry Division of Bacterial, Parasitic, and Allergenic Products Food and Drug Administration Silver Spring MD USA
| | - Sayyed Amin Zarkesh Esfahani
- Laboratory of Immunobiochemistry Division of Bacterial, Parasitic, and Allergenic Products Food and Drug Administration Silver Spring MD USA
| | - Elizabeth C. Matsui
- Department of Population Health and Pediatrics Dell Medical School The University of Texas at Austin Austin TX USA
| | - Michael J. Sheehan
- Department of Neurobiology and Behavior Cornell University Ithaca NY USA
| | - Ronald L. Rabin
- Laboratory of Immunobiochemistry Division of Bacterial, Parasitic, and Allergenic Products Food and Drug Administration Silver Spring MD USA
| | - Jay E. Slater
- Laboratory of Immunobiochemistry Division of Bacterial, Parasitic, and Allergenic Products Food and Drug Administration Silver Spring MD USA
| |
Collapse
|
6
|
Mittermann I, Dzoro S, Gattinger P, Botha M, Basera W, Facey-Thomas HE, Gaunt B, Genuneit J, Gray CL, Hlela C, Flicker S, Lunjani N, Mankahla A, Ramjith J, Valenta R, Levin ME. Molecular IgE sensitization profiles of urban and rural children in South Africa. Pediatr Allergy Immunol 2021; 32:234-241. [PMID: 32969537 DOI: 10.1111/pai.13377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/01/2020] [Accepted: 09/10/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Allergens can act as disease-triggering factors in atopic dermatitis (AD) patients. The aim of the study was to elucidate the molecular IgE sensitization profile in children with and without AD living in urban and rural areas of South Africa. METHODS Specific IgE reactivity was assessed in 166 Black South African children aged 9-38 months using a comprehensive panel of microarrayed allergens. According to clinical characterization children fell in four groups, urban AD cases (n = 32), urban controls (non-AD, n = 40), rural cases (n = 49) and rural controls (non-AD, n = 45). RESULTS IgE reactivity to at least one of the allergens was detected in 94% of urban and 86% of rural AD children. House dust mite (HDM; 81% urban, 74% rural AD) and animal-derived allergens (50% urban, 31% rural AD) were the most frequently recognized respiratory allergens, whereas IgE to pollen allergens was almost absent. Urban AD children showed significantly higher frequency of IgE reactivity (50%) to mouse lipocalin, Mus m 1, than rural AD children (12%). The most frequently recognized food allergens were from egg (63% urban, 43% rural AD), peanut (31% vs 41%), and soybean (22% vs 27%), whereas milk sensitization was rare. α-gal-specific IgE almost exclusively occurred in rural children (AD: 14%, non-AD: 49%). CONCLUSION Molecular allergy diagnosis detects frequent IgE sensitization to HDM, animal but not pollen allergens and to egg, peanut, and soy, but not milk allergens in African AD children. Urban AD children reacted more often to Mus m 1, whereas α-gal sensitization is more common in rural children likely due to parasite exposure.
Collapse
Affiliation(s)
- Irene Mittermann
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Sheron Dzoro
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Pia Gattinger
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Maresa Botha
- Division of Paediatric Allergy, Department of Paediatrics, University of Cape Town, Cape Town, South Africa
| | - Wisdom Basera
- School of Public Health and Family Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Heidi E Facey-Thomas
- Division of Paediatric Allergy, Department of Paediatrics, University of Cape Town, Cape Town, South Africa
| | - Ben Gaunt
- Eastern Cape Department of Health, Zithulele Hospital, Mqanduli, South Africa.,Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Jon Genuneit
- Pediatric Epidemiology, Department of Pediatrics, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Claudia L Gray
- School of Public Health and Family Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Carol Hlela
- Department of Dermatology, University of Cape Town, Cape Town, South Africa
| | - Sabine Flicker
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Nonhlanhla Lunjani
- Division of Paediatric Allergy, Department of Paediatrics, University of Cape Town, Cape Town, South Africa
| | - Avumile Mankahla
- Eastern Cape Department of Health, Zithulele Hospital, Mqanduli, South Africa
| | - Jordache Ramjith
- Department for Health Evidence, Biostatistics Research Group, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Division of Epidemiology & Biostatistics, School of Public Health & Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,NRC Institute of Immunology FMBA of Russia, Moscow, Russia.,Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow, Russia.,Karl Landsteiner University for Health Sciences, Krems, Austria
| | - Michael E Levin
- Division of Paediatric Allergy, Department of Paediatrics, University of Cape Town, Cape Town, South Africa.,INVIVO Planetary Health Network, Research subgroup of the Worldwide Universities Network
| |
Collapse
|
7
|
Munera M, Contreras N, Sánchez A, Sánchez J, Emiliani Y. In silico analysis of a major allergen from Rattus norvegicus, Rat n 1, and cross-reactivity with domestic pets. F1000Res 2019; 8:1707. [PMID: 32399183 PMCID: PMC7194344 DOI: 10.12688/f1000research.20534.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/10/2019] [Indexed: 11/20/2022] Open
Abstract
Background: Lipocalins play a role in the cellular trafficking of pheromones and are involved in allergic responses to domestic pets. However, the cross-reactivity among allergens of this group has been poorly explored, and the pheromone linking capacity is not well characterized. The aim of this study was to explore cross-reactive epitopes and pheromone linking capacity among Rat n 1 and homologues in domestic pets through an in silico approach. Methods: ElliPro and BepiPred in silico tools were used to predict B cell linear and cross-reactive epitopes. The pheromone linking capacity was explored by docking virtual screening with 2-ethylhexanol, 2,5-dimethylpyrazine, 2-sec-butyl-4,5-dihydrothiazole, and 2-heptanone ligands. Results: According to the analysis, Rat n 1 shares 52% identity with Equ c 1, Can f 6, Fel d 4, and Mus m 1 allergens. The overlapping structures analysis revealed high structural homology (root mean square deviation < 1). Four lineal and three discontinuous epitopes were predicted on Ra t n 1. A lineal epitope located between amino acids residues 24 and 36 was highly conserved on all allergens explored. A cross-reactive discontinuous epitope (T142, K143, D144, L145, S146, S147, D148, K152, L170, T171, T173, D174) was also found. Docking molecular simulations revealed the region involved in linking ligands, and we identified the properties of the binding of four pheromones and the binding potential of Rat n 1. Critical residues for interactions are reported in this study. Conclusions: We identified some possible allergens from Rattus norvegicus, and those allergens could have cross-reactivity with allergens from some animals. The results need to be confirmed with in vitro studies and could be utilized to contribute to immunotherapy and reduce allergic diseases related to lipocalins.
Collapse
Affiliation(s)
- Marlon Munera
- Medical Research Group (GINUMED) Universitary Corporation Rafael Nuñez, Cartagena, Colombia
| | - Neyder Contreras
- Medical Research Group (GINUMED) Universitary Corporation Rafael Nuñez, Cartagena, Colombia
| | - Andres Sánchez
- Medical Research Group (GINUMED) Universitary Corporation Rafael Nuñez, Cartagena, Colombia.,Group of Clinical and Experimental Allergy (GACE), IPS Universitaria, University of Antioquia, Medellin, Colombia
| | - Jorge Sánchez
- Group of Clinical and Experimental Allergy (GACE), IPS Universitaria, University of Antioquia, Medellin, Colombia
| | - Yuliana Emiliani
- Medical Research Group (GINUMED) Universitary Corporation Rafael Nuñez, Cartagena, Colombia
| |
Collapse
|