1
|
Hisamatsu D, Ogata Y, Suda W, Mabuchi Y, Naraoka Y, Yamato T, Ikeba A, Kumagai K, Hattori M, Akazawa C. Alteration of salivary Streptococcus is associated with statin therapy in older adults: a cohort study. Front Pharmacol 2025; 16:1455753. [PMID: 40260382 PMCID: PMC12010438 DOI: 10.3389/fphar.2025.1455753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 03/05/2025] [Indexed: 04/23/2025] Open
Abstract
Background Salivary microbiome alterations are associated with chronic diseases, such as cardiovascular disease, diabetes, and dementia. These chronic diseases often coexist in older adults, leading to polypharmacy. This situation complicates the relationship between systemic diseases and salivary microbiome dysbiosis. Previous studies have demonstrated the association of the human gut microbiome with common prescription drug use, including polypharmacy. However, a comprehensive analysis of the salivary microbiome and prescription drugs is yet to be conducted in older adults. Therefore, in this study, we performed a multivariate analysis to investigate the relationship between salivary microbiomes and host variables, including prescribed drugs, cognitive function, and oral health, in Japanese older adults with different disease backgrounds. Methods We enrolled non-hospitalised 82 older adults aged ≥70 years from a Japanese village community, and collected metadata, including age, sex, body mass index, cognitive function, oral health, alcohol consumption, smoking, and common prescription drug information. We performed multivariate analyses and functional predictions on the salivary microbiome based on 16S ribosomal RNA gene amplicon sequencing, including the metadata as potential confounders. Results We observed a relationship between the human salivary microbiome and prescribed drug use in Japanese older adults with a heterogeneous background of comorbidities. The effects of several prescribed drugs, such as statins, proton pump inhibitors, and transporter/symporter inhibitors, on the salivary microbiome diversity were more prominent than those of host variables, including age, sex, and oral health. Notably, statin use was strongly correlated with a decrease in the Streptococcus abundance. Furthermore, statin intensity and obesity may be associated with altering the salivary microbiome, including functional predictions for vitamin biosynthesis and purine nucleotide degradation pathways in statin users. Conclusion Our multivariate analysis, adjusted for prescribed drug use and non-use, revealed the drug-specific alteration of salivary microbiome composition in Japanese older adults with comorbidities. To our knowledge, this study is the first to described the association of common prescription drug use with salivary microbiome alterations in older adults. Our findings indicated that prescribed drug use is a key factor in understanding the link between salivary microbiome changes and systemic diseases in older adults.
Collapse
Affiliation(s)
- Daisuke Hisamatsu
- Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yusuke Ogata
- Laboratory for Symbiotic Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Wataru Suda
- Laboratory for Symbiotic Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yo Mabuchi
- Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuna Naraoka
- Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Taku Yamato
- Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akimi Ikeba
- Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kyoko Kumagai
- Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masahira Hattori
- Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Laboratory for Symbiotic Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Chihiro Akazawa
- Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Lv X, Wang W, Dong H, Li W. Glycolysis in asthma: Its role and potential as a diagnostic or therapeutic target. Int Immunopharmacol 2025; 148:114143. [PMID: 39874848 DOI: 10.1016/j.intimp.2025.114143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/12/2025] [Accepted: 01/20/2025] [Indexed: 01/30/2025]
Abstract
Asthma is a heterogeneous disease characterized by chronic airway inflammation and hyperresponsiveness. A number of immune cells are involved in asthma pathogenesis, such as eosinophils, mast cells, T lymphocytes and neutrophils, as well as airway epithelial cells. Glycolysis plays a crucial role in glucose metabolism, and serves as a bridge between metabolic and inflammatory dysfunction. Research has found that abnormal glycolytic metabolism in various immune cells may contribute to the pathogenesis of asthma by inducing dysregulation in congenital and adaptive immune responses. Therefore, the inhibition of glycolysis can be a viable approach to prevent airway inflammation in asthma. The present study reviews the relationship between glycolysis and inflammatory cells in different asthma subtypes, and its potential therapeutic significance.
Collapse
Affiliation(s)
- Xuejiao Lv
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Wenrui Wang
- Department of Hepatopancreatobiliary Medicine, Digestive Diseases Center, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Hongna Dong
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Wei Li
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
3
|
Yang Z, Li X, Wei L, Bao L, Hu H, Liu L, Tan W, Tong X, Huang F. Involucrasin B suppresses airway inflammation in obese asthma by inhibiting the TLR4-NF-κB-NLRP3 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155850. [PMID: 39029138 DOI: 10.1016/j.phymed.2024.155850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Obese asthma is an asthma phenotype that causes more severe lung inflammation and airway hyperresponsiveness than allergic asthma and it is resistant to conventional therapy. Involucrasin B (IB) is a dihydroflavonoid isolated from Shuteria involucrata (Wall.) Wight & Arn., a traditional "Dai" and "Wa" medicine was used in southern China to treat the "phlegm and wetness of sputum" (obesity disease) as well as lung inflammation. However, whether IB can ameliorate obese asthma remains unclear, and the underlying mechanisms and molecular expression in obese asthma specifically targeted by IB are still not fully understood. METHODS An in vivo C57BL/6 J mouse model of obese asthma was established using house dust mites (HDMs) and high-fat diet (HFD) as inducers to evaluate the therapeutic effect of IB. An in vitro cell culture of human THP-1 monocytic cell culture was used to investigate the effect of IB after the treatment with lipopolysaccharide (LPS) and palmitic acid (PA). RESULTS In vivo, we found that intervention with IB improved airway hyperresponsiveness and lung histopathology and significantly inhibited the secretion of relevant inflammatory factors, such as interleukin (IL)-1β, IL-17A, and IL-22 in bronchoalveolar lavage fluid, and total-IgE and HDM-IgE in serum compared with the model group (HFD+HDM). The findings indicate that IB could decrease the expression of granulocyte receptor 1 (Gr-1) and neutrophil extracellular traps (NETs) in lung tissue, as well as the expression of NLR family pyrin domain containing 3 (NLRP3) and inducible nitric oxide synthase in M1 macrophages (M1). IB also reduced the population of ILC3/Th17 cells, which are responsible for producing IL-17A, a crucial mediator of neutrophil-mediated inflammation, confirming that the therapeutic effect of IB in obesity-related asthma was related to neutrophils and M1 cells. In addition, IB regulated lipid metabolism and inhibited the production of macrophages in adipose tissue. The in vitro results revealed that IB inhibited the secretion of IL-1β, IL-18, and tumor necrosis factor-α (TNF-α) from THP-1 cells, and the expression of NLRP3-related protein in THP-1 cells compared with the model groups (LPS, PA, and LPS+PA), confirming that the action of IB involved the TLR4-NF-κB-NLRP3 pathway. CONCLUSION This study demonstrated the therapeutic effect of IB in obese asthma for the first time and further clarified its mechanistic pathway as the TLR4-NF-κB-NLRP3 pathway.
Collapse
Affiliation(s)
- Zhuya Yang
- Key Laboratory of Yunnan Provincial Department of Education on Substance Benchmark Research of Ethnic Medicines, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Xiaohong Li
- Key Laboratory of Yunnan Provincial Department of Education on Substance Benchmark Research of Ethnic Medicines, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Lisha Wei
- Key Laboratory of Yunnan Provincial Department of Education on Substance Benchmark Research of Ethnic Medicines, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Lue Bao
- Key Laboratory of Yunnan Provincial Department of Education on Substance Benchmark Research of Ethnic Medicines, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Huiling Hu
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Lu Liu
- Key Laboratory of Yunnan Provincial Department of Education on Substance Benchmark Research of Ethnic Medicines, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Wenhong Tan
- Key Laboratory of Yunnan Provincial Department of Education on Substance Benchmark Research of Ethnic Medicines, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Xiaoyun Tong
- The First Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming 650021, China.
| | - Feng Huang
- Key Laboratory of Yunnan Provincial Department of Education on Substance Benchmark Research of Ethnic Medicines, Yunnan University of Chinese Medicine, Kunming 650500, China.
| |
Collapse
|
4
|
Zimbru RI, Zimbru EL, Ordodi VL, Bojin FM, Crîsnic D, Grijincu M, Mirica SN, Tănasie G, Georgescu M, Huțu I, Haidar L, Păunescu V, Panaitescu C. The Impact of High-Fructose Diet and Co-Sensitization to House Dust Mites and Ragweed Pollen on the Modulation of Airway Reactivity and Serum Biomarkers in Rats. Int J Mol Sci 2024; 25:8868. [PMID: 39201554 PMCID: PMC11354849 DOI: 10.3390/ijms25168868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
The topic of ragweed pollen (RW) versus house dust mites (HDMs) has often been deliberated, but the increasing incidence of co-sensitization between them has been scarcely addressed. Utilizing Sprague Dawley rats, we explored the effects of co-sensitization with the combination of HDMs and RW pollen extracts in correlation with high-fructose diet (HFrD) by in vitro tracheal reactivity analysis in isolated organ bath and biological explorations. Our findings unveiled interrelated connections between allergic asthma, dyslipidemia, and HFrD-induced obesity, shedding light on their compounding role through inflammation. The increased CRP values and airway hyperresponsiveness to the methacholine challenge suggest a synergistic effect of obesity on amplifying the existing inflammation induced by asthma. One of the major outcomes is that the co-sensitization to HDMs and RW pollen led to the development of a severe allergic asthma phenotype in rats, especially in those with HFrD. Therefore, the co-sensitization to these allergens as well as the HFrD may play a crucial role in the modulation of systemic inflammation, obesity, and airway reactivity.
Collapse
Affiliation(s)
- Răzvan-Ionuț Zimbru
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.-I.Z.); (E.-L.Z.); (V.-L.O.); (F.-M.B.); (D.C.); (G.T.); (M.G.); (V.P.); (C.P.)
- OncoGen Center, Pius Brinzeu County Clinical Emergency Hospital, 300723 Timisoara, Romania
| | - Elena-Larisa Zimbru
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.-I.Z.); (E.-L.Z.); (V.-L.O.); (F.-M.B.); (D.C.); (G.T.); (M.G.); (V.P.); (C.P.)
- OncoGen Center, Pius Brinzeu County Clinical Emergency Hospital, 300723 Timisoara, Romania
| | - Valentin-Laurențiu Ordodi
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.-I.Z.); (E.-L.Z.); (V.-L.O.); (F.-M.B.); (D.C.); (G.T.); (M.G.); (V.P.); (C.P.)
- OncoGen Center, Pius Brinzeu County Clinical Emergency Hospital, 300723 Timisoara, Romania
- Chemistry and Engineering of Organic and Natural Compounds Department, University Politehnica Timisoara, 300006 Timisoara, Romania
| | - Florina-Maria Bojin
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.-I.Z.); (E.-L.Z.); (V.-L.O.); (F.-M.B.); (D.C.); (G.T.); (M.G.); (V.P.); (C.P.)
- OncoGen Center, Pius Brinzeu County Clinical Emergency Hospital, 300723 Timisoara, Romania
| | - Daniela Crîsnic
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.-I.Z.); (E.-L.Z.); (V.-L.O.); (F.-M.B.); (D.C.); (G.T.); (M.G.); (V.P.); (C.P.)
- OncoGen Center, Pius Brinzeu County Clinical Emergency Hospital, 300723 Timisoara, Romania
| | - Manuela Grijincu
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.-I.Z.); (E.-L.Z.); (V.-L.O.); (F.-M.B.); (D.C.); (G.T.); (M.G.); (V.P.); (C.P.)
- OncoGen Center, Pius Brinzeu County Clinical Emergency Hospital, 300723 Timisoara, Romania
| | - Silvia-Nicoleta Mirica
- Faculty of Sport and Physical Education, West University of Timisoara, 300223 Timisoara, Romania;
| | - Gabriela Tănasie
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.-I.Z.); (E.-L.Z.); (V.-L.O.); (F.-M.B.); (D.C.); (G.T.); (M.G.); (V.P.); (C.P.)
- OncoGen Center, Pius Brinzeu County Clinical Emergency Hospital, 300723 Timisoara, Romania
| | - Marius Georgescu
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.-I.Z.); (E.-L.Z.); (V.-L.O.); (F.-M.B.); (D.C.); (G.T.); (M.G.); (V.P.); (C.P.)
| | - Ioan Huțu
- Horia Cernescu Research Unit, Faculty of Veterinary Medicine, University of Life Sciences “King Michael I of Romania”, 300645 Timișoara, Romania;
| | - Laura Haidar
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.-I.Z.); (E.-L.Z.); (V.-L.O.); (F.-M.B.); (D.C.); (G.T.); (M.G.); (V.P.); (C.P.)
| | - Virgil Păunescu
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.-I.Z.); (E.-L.Z.); (V.-L.O.); (F.-M.B.); (D.C.); (G.T.); (M.G.); (V.P.); (C.P.)
- OncoGen Center, Pius Brinzeu County Clinical Emergency Hospital, 300723 Timisoara, Romania
| | - Carmen Panaitescu
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.-I.Z.); (E.-L.Z.); (V.-L.O.); (F.-M.B.); (D.C.); (G.T.); (M.G.); (V.P.); (C.P.)
- OncoGen Center, Pius Brinzeu County Clinical Emergency Hospital, 300723 Timisoara, Romania
| |
Collapse
|
5
|
Zhu W, Bai D, Ji W, Gao J. TRP channels associated with macrophages as targets for the treatment of obese asthma. Lipids Health Dis 2024; 23:49. [PMID: 38365763 PMCID: PMC10874053 DOI: 10.1186/s12944-024-02016-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/10/2024] [Indexed: 02/18/2024] Open
Abstract
Globally, obesity and asthma pose significant health challenges, with obesity being a key factor influencing asthma. Despite this, effective treatments for obese asthma, a distinct phenotype, remain elusive. Since the discovery of transient receptor potential (TRP) channels in 1969, their value as therapeutic targets for various diseases has been acknowledged. TRP channels, present in adipose tissue cells, influence fat cell heat production and the secretion of adipokines and cytokines, which are closely associated with asthma and obesity. This paper aims to investigate the mechanisms by which obesity exacerbates asthma-related inflammation and suggests that targeting TRP channels in adipose tissue could potentially suppress obese asthma and offer novel insights into its treatment.
Collapse
Affiliation(s)
- Wenzhao Zhu
- Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China
| | - Dinxi Bai
- Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China
| | - Wenting Ji
- Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China.
| | - Jing Gao
- Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China.
| |
Collapse
|
6
|
Wu LR, Peng QY, Li XJ, Guo MY, He JQ, Ying HZ, Yu CH. Daqing formula ameliorated allergic asthma and airway dysbacteriosis in mice challenged with ovalbumin and ampicillin. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117056. [PMID: 37597673 DOI: 10.1016/j.jep.2023.117056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Asthma is a chronic airway inflammatory disease that can lead to several complications caused by bacterial infections. However, recurrent attacks of the disease require long-term use of antibiotics, resulting in lung dysbiosis and poor outcomes. Daqing Formula (DQF) is a well-known herbal medicine in Pharmacopoeia of China, which is widely used for various stimuli-induced lower respiratory diseases, including asthma, bronchitis, and pneumonia. Thus, it has been demonstrated to be a plant-derived broad-spectrum antibiotic for treating and preventing various acute and chronic respiratory diseases. AIM OF THE STUDY This study evaluated the efficacy and possible mechanism of DQF on allergic asthma and airway dysbiosis. METHODS AND MATERIALS The mice were co-challenged with ovalbumin and ampicillin to induce allergic asthma combined with airway dysbacteriosis. The populations of lung microbiota were detected by using 16s DNA sequencing. The levels of asthmatic markers in BALF were detected by ELISA. The levels of Th1/Th2 cytokines in splenic CD4+ cells of mice were analyzed by flow cytometry. The expressions of the GSK-3β signaling pathway in the lung tissues of asthmatic mice and eosinophils were detected by western blotting assay. The inhibition of DQF on the production of pro-inflammatory cytokines in eosinophils of asthmatic mice. RESULTS The results showed that treatment with DQF at 200-800 mg/kg doses significantly reduced the frequency of nasal rubbing and lung inflammation as well as the number of total cells, eosinophils, and macrophages in bronchoalveolar lavage fluid. It decreased the relative abundances of Streptococcus, Cuoriavidus, and Moraxella, increased Akkermansia and Prevotella_6 in lung tissues of asthmatic mice, and inhibited the growth of Staphylococcus aureus, Klebsiella pneumoniae, Streptococcus pneumoniae and their resistant strains in vitro. Furthermore, DQF reduced the levels of eotaxin, TSLP, IL-4, IL-5, IL-25, and IL-33, but enhanced IFN-γ and IL-12 in BALF. It elevated the population of Th1 cells, inhibited eosinophil activation, and downregulated the expressions of p-GSK-3β, p-p65, nuclear β-catenin, and p-STAT3 in the lung tissues of asthmatic mice. CONCLUSIONS The results revealed that DQF reduced airway inflammation, ameliorated lung dysbiosis, shifted the Th1/Th2 balance, and inhibited eosinophil activation in asthmatic mice, indicating its potential for severe asthma treatment.
Collapse
Affiliation(s)
- Li-Ren Wu
- Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou, 310013, China
| | - Qian-Yu Peng
- Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou, 310013, China
| | - Xue-Jian Li
- Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou, 310013, China
| | - Mei-Ying Guo
- Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou, 310013, China
| | - Jia-Qi He
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Hua-Zhong Ying
- Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou, 310013, China.
| | - Chen-Huan Yu
- Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou, 310013, China; Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310022, China; Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, 310018, China.
| |
Collapse
|
7
|
Córdova S, Tena-Garitaonaindia M, Álvarez-Mercado AI, Gámez-Belmonte R, Gómez-Llorente MA, Sánchez de Medina F, Martínez-Cañavate A, Martínez-Augustin O, Gómez-Llorente C. Differential Modulation of Mouse Intestinal Organoids with Fecal Luminal Factors from Obese, Allergic, Asthmatic Children. Int J Mol Sci 2024; 25:866. [PMID: 38255939 PMCID: PMC10815115 DOI: 10.3390/ijms25020866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Asthma is a multifactorial condition that can be associated with obesity. The phenotypes of asthma in lean and obese patients are different, with proinflammatory signatures being further elevated in the latter. Both obesity and asthma are associated with alterations in intestinal barrier function and immunity, and with the composition of the intestinal microbiota and food consumption. In this study, we aimed to establish an organoid model to test the hypothesis that the intestinal content of lean and obese, allergic, asthmatic children differentially regulates epithelial intestinal gene expression. A model of mouse jejunum intestinal organoids was used. A group of healthy, normal-weight children was used as a control. The intestinal content of asthmatic obese children differentially induced the expression of inflammatory and mitochondrial response genes (Tnf-tumor necrosis factor, Cd14, Muc13-mucin 13, Tff2-Trefoil factor 2 and Tff3, Cldn1-claudin 1 and 5, Reg3g-regenerating family member 3 gamma, mt-Nd1-NADH dehydrogenase 1 and 6, and mt-Cyb-mitochondrial cytochrome b) via the RAGE-advanced glycosylation end product-specific receptor, NF-κB-nuclear factor kappa b and AKT kinase signal transduction pathways. Fecal homogenates from asthmatic normal-weight and obese children induce a differential phenotype in intestinal organoids, in which the presence of obesity plays a major role.
Collapse
Affiliation(s)
- Samir Córdova
- Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Campus de Cartuja s/n, Universidad de Granada, 18071 Granada, Spain; (S.C.); (M.T.-G.); (A.I.Á.-M.); (C.G.-L.)
| | - Mireia Tena-Garitaonaindia
- Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Campus de Cartuja s/n, Universidad de Granada, 18071 Granada, Spain; (S.C.); (M.T.-G.); (A.I.Á.-M.); (C.G.-L.)
| | - Ana Isabel Álvarez-Mercado
- Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Campus de Cartuja s/n, Universidad de Granada, 18071 Granada, Spain; (S.C.); (M.T.-G.); (A.I.Á.-M.); (C.G.-L.)
- Ibs.GRANADA, 18012 Granada, Spain; (M.A.G.-L.); (F.S.d.M.)
| | - Reyes Gámez-Belmonte
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Granada, 18071 Granada, Spain;
| | - Mª Amelia Gómez-Llorente
- Ibs.GRANADA, 18012 Granada, Spain; (M.A.G.-L.); (F.S.d.M.)
- Unidad de Pediatría, Hospital Materno-Infantil, 18071 Granada, Spain;
| | - Fermín Sánchez de Medina
- Ibs.GRANADA, 18012 Granada, Spain; (M.A.G.-L.); (F.S.d.M.)
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Granada, 18071 Granada, Spain;
- Centro de Investigación Biomédica en Red-Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | | | - Olga Martínez-Augustin
- Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Campus de Cartuja s/n, Universidad de Granada, 18071 Granada, Spain; (S.C.); (M.T.-G.); (A.I.Á.-M.); (C.G.-L.)
- Ibs.GRANADA, 18012 Granada, Spain; (M.A.G.-L.); (F.S.d.M.)
- Centro de Investigación Biomédica en Red-Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Carolina Gómez-Llorente
- Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Campus de Cartuja s/n, Universidad de Granada, 18071 Granada, Spain; (S.C.); (M.T.-G.); (A.I.Á.-M.); (C.G.-L.)
- Ibs.GRANADA, 18012 Granada, Spain; (M.A.G.-L.); (F.S.d.M.)
- Instituto de Nutrición y Tecnología de los Alimento José Mataix, 18071 Granada, Spain
- Centro de Investigación Biomédica en Red-Obesidad (CIBERobn), Spain
| |
Collapse
|
8
|
Shailesh H, Bhat AA, Janahi IA. Obesity-Associated Non-T2 Mechanisms in Obese Asthmatic Individuals. Biomedicines 2023; 11:2797. [PMID: 37893170 PMCID: PMC10603840 DOI: 10.3390/biomedicines11102797] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/30/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Obesity and asthma are two common health issues that have shown increased prevalence in recent years and have become a significant socioeconomic burden worldwide. Obesity increases asthma incidence and severity. Obese asthmatic individuals often experience increased exacerbation rates, enhanced airway remodeling, and reduced response to standard corticosteroid therapy. Recent studies indicate that obesity-associated non-T2 factors such as mechanical stress, hyperinsulinemia, systemic inflammation, adipose tissue mediators, metabolic dysregulation, microbiome dysbiosis, and high-fat-diet are responsible for increased asthma symptoms and reduced therapeutic response in obese asthmatic individuals. This manuscript reviews the recent findings highlighting the role of obesity-associated factors that contribute to airway hyper-reactivity, airway inflammation and remodeling, and immune cell dysfunction, consequently contributing to worsening asthma symptoms. Furthermore, the review also discusses the possible future therapies that might play a role in reducing asthma symptoms by diminishing the impact of obesity-associated non-T2 factors.
Collapse
Affiliation(s)
| | - Ajaz A. Bhat
- Precision Medicine in Diabetes, Obesity and Cancer Research Program, Department of Human Genetics, Sidra Medicine, Doha 26999, Qatar;
| | - Ibrahim A. Janahi
- Department of Medical Education, Sidra Medicine, Doha 26999, Qatar;
- Department of Pediatric Medicine, Sidra Medicine, Doha 26999, Qatar
- Department of Pediatrics, Weill Cornell Medicine, Doha 24144, Qatar
| |
Collapse
|
9
|
Li Y, Kan X. Mendelian randomization analysis to analyze the genetic causality between different levels of obesity and different allergic diseases. BMC Pulm Med 2023; 23:352. [PMID: 37723557 PMCID: PMC10508031 DOI: 10.1186/s12890-023-02636-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/06/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND The causal relationship between obesity and different allergic diseases remains controversial. METHODS The Two Sample MR package and Phenoscanner database were used to obtain and filter Genome-Wide Association Study (GWAS) data from the Open GWAS database. Mendelian randomization (MR) analysis was used to study the causal relationship between different levels of obesity and different allergic diseases. The data sets related to obesity and asthma were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were screened by the limma package. Cluster Profiler and GO plot packages were used for enrichment analysis to verify the results of MR analysis. RESULTS Two-sample MR analysis showed a causal relationship between obesity and childhood allergy (age < 16), allergic asthma and atopic dermatitis (P < 0.05). In addition, there was also a causal relationship between allergic asthma and obesity (P < 0.05), while there was no genetic causal relationship between obesity and allergic rhinitis, eczema, lactose intolerance and so on (P > 0.05). Subgroup analysis revealed a causal relationship between both class 1 and class 2 obesity and childhood allergy (age < 16) (P < 0.05). Obesity class 1 was associated with allergic asthma, while obesity class 3 was associated with atopic dermatitis (P < 0.05). Bioinformatics analysis shows that there were common DEGs between obesity and allergic asthma. CONCLUSION Obesity is a risk factor for childhood allergy (age < 16), allergic asthma and atopic dermatitis, while allergic asthma is also a risk factor for obesity. Class 1 and class 2 obesity are both causally associated with childhood allergy (age < 16). In addition, there is a causal relationship between milder obesity and allergic asthma, while heavier obesity is causally related to atopic dermatitis.
Collapse
Affiliation(s)
- Yujian Li
- Department of Pediatrics, General Hospital of Tianjin Medical University, No. 154, Anshan Road, Heping District, 300052, Tianjin, China
| | - Xuan Kan
- Department of Pediatrics, General Hospital of Tianjin Medical University, No. 154, Anshan Road, Heping District, 300052, Tianjin, China.
| |
Collapse
|
10
|
Leija-Martínez JJ, Guzmán-Martín CA, González-Ramírez J, Giacoman-Martínez A, Del-Río-Navarro BE, Romero-Nava R, Villafaña S, Flores-Saenz JL, Sánchez-Muñoz F, Huang F. Whole Blood Expression Levels of Long Noncoding RNAs: HOTAIRM1, GAS5, MZF1-AS1, and OIP5-AS1 as Biomarkers in Adolescents with Obesity-Related Asthma. Int J Mol Sci 2023; 24:ijms24076481. [PMID: 37047453 PMCID: PMC10095005 DOI: 10.3390/ijms24076481] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
Asthma is a heterogeneous entity encompassing distinct endotypes and varying phenotypes, characterized by common clinical manifestations, such as shortness of breath, wheezing, and variable airflow obstruction. Two major asthma endotypes based on molecular patterns are described: type 2 endotype (allergic-asthma) and T2 low endotype (obesity-related asthma). Long noncoding RNAs (lncRNAs) are transcripts of more than 200 nucleotides in length, currently involved in many diverse biological functions, such as chromatin remodeling, gene transcription, protein transport, and microRNA processing. Despite the efforts to accurately classify and discriminate all the asthma endotypes and phenotypes, if long noncoding RNAs could play a role as biomarkers in allergic asthmatic and adolescent obesity-related asthma, adolescents remain unknown. To compare expression levels of lncRNAs: HOTAIRM1, OIP5-AS1, MZF1-AS1, and GAS5 from whole blood of Healthy Adolescents (HA), Obese adolescents (O), allergic asthmatic adolescents (AA) and Obesity-related asthma adolescents (OA). We measured and compared expression levels from the whole blood of the groups mentioned above through RT-q-PCR. We found differentially expressed levels of these lncRNAs between the groups of interest. In addition, we found a discriminative value of previously mentioned lncRNAs between studied groups. Finally, we generated an interaction network through bioinformatics. Expression levels of OIP5-AS1, MZF1-AS1, HOTAIRM1, and GAS5 in whole blood from the healthy adolescent population, obese adolescents, allergic asthma adolescents, and obesity-related asthma adolescents are differently expressed. Moreover, these lncRNAs could act as molecular biomarkers that help to discriminate between all studied groups, probably through molecular mechanisms with several genes and miRNAs implicated.
Collapse
Affiliation(s)
- José J. Leija-Martínez
- Laboratorio de Investigación en Obesidad y Asma, Hospital Infantil de México Federico Gómez, Ciudad de México 06720, Mexico; (J.J.L.-M.)
| | - Carlos A. Guzmán-Martín
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico;
| | - Javier González-Ramírez
- Laboratorio de Biología Celular, Facultad de Enfermería, Universidad Autónoma de Baja California Campus Mexicali, Mexicali 21280, Mexico
| | - Abraham Giacoman-Martínez
- Laboratorio de Investigación en Obesidad y Asma, Hospital Infantil de México Federico Gómez, Ciudad de México 06720, Mexico; (J.J.L.-M.)
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana-Iztapalapa (UAM-I), Ciudad de México 09340, Mexico;
| | - Blanca E. Del-Río-Navarro
- Departamento de Inmunología Clínica de Alergia Pediátrica, Hospital Infantil de México Federico Gómez, Ciudad de México 06720, Mexico
| | - Rodrigo Romero-Nava
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico
| | - Santiago Villafaña
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico
| | - José Luis Flores-Saenz
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana-Iztapalapa (UAM-I), Ciudad de México 09340, Mexico;
| | - Fausto Sánchez-Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico;
- Correspondence: (F.S.-M.); (F.H.); Tel.: +52-5523328417 (F.S.-M.); +52-5552289917 (ext. 4405 or 3308) (F.H.)
| | - Fengyang Huang
- Laboratorio de Investigación en Obesidad y Asma, Hospital Infantil de México Federico Gómez, Ciudad de México 06720, Mexico; (J.J.L.-M.)
- Correspondence: (F.S.-M.); (F.H.); Tel.: +52-5523328417 (F.S.-M.); +52-5552289917 (ext. 4405 or 3308) (F.H.)
| |
Collapse
|