1
|
Hassan NF, El-Ansary MR, Selim HMRM, Ousman MS, Khattab MS, El-Ansary MRM, Gad ES, Moursi SMM, Gohar A, Gowifel AMH. Alirocumab boosts antioxidant status and halts inflammation in rat model of sepsis-induced nephrotoxicity via modulation of Nrf2/HO-1, PCSK9/HMGB1/NF-ᴋB/NLRP3 and Fractalkine/CX3CR1 hubs. Biomed Pharmacother 2024; 177:116929. [PMID: 38889644 DOI: 10.1016/j.biopha.2024.116929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/05/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024] Open
Abstract
Acute kidney injury (AKI) is a devastating consequence of sepsis, accompanied by high mortality rates. It was suggested that inflammatory pathways are closely linked to the pathogenesis of lipopolysaccharide (LPS)-induced AKI. Inflammatory signaling, including PCSK9, HMGB1/RAGE/TLR4/MYD88/NF-κB, NLRP3/caspase-1 and Fractalkine/CX3CR1 are considered major forerunners in this link. Alirocumab, PCSK9 inhibitor, with remarkable anti-inflammatory features. Accordingly, this study aimed to elucidate the antibacterial effect of alirocumab against E. coli in vitro. Additionally, evaluation of the potential nephroprotective effects of alirocumab against LPS-induced AKI in rats, highlighting the potential underlying mechanisms involved in these beneficial actions. Thirty-six adult male Wistar rats were assorted into three groups (n=12). Group I; was a normal control group, whereas sepsis-mediated AKI was induced in groups II and III through single-dose intraperitoneal injection of LPS on day 16. In group III, animals were given alirocumab. The results revealed that LPS-induced AKI was mitigated by alirocumab, evidenced by amelioration in renal function tests (creatinine, cystatin C, KIM-1, and NGAL); oxidative stress biomarkers (Nrf2, HO-1, TAC, and MDA); apoptotic markers and renal histopathological findings. Besides, alirocumab pronouncedly hindered LPS-mediated inflammatory response, confirmed by diminishing HMGB1, TNF-α, IL-1β, and caspase-1 contents; the gene expression of PCSK9, RAGE, NF-ᴋB and Fractalkine/CX3CR1, along with mRNA expression of TLR4, MYD88, and NLRP3. Regarding the antibacterial actions, results showed that alirocumab displayed potential anti-bacterial activity against pathogenic gram-negative E. coli. In conclusion, alirocumab elicited nephroprotective activities against LPS-induced AKI via modulation of Nrf2/HO-1, PCSK9, HMGB1/RAGE/TLR4/MYD88/NF-ᴋB/NLRP3/Caspase-1, Fractalkine/CX3R1 and apoptotic axes.
Collapse
Affiliation(s)
- Noha F Hassan
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo 11571, Egypt.
| | - Mona R El-Ansary
- Biochemistry Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo 11571, Egypt.
| | - Heba Mohammed Refat M Selim
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, P.O. Box 71666, Riyadh, 11597, Saudi Arabia; Microbiology and Immunology Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11651, Egypt.
| | - Mona S Ousman
- Emergency Medical Services, College of Applied Sciences, AlMaarefa University, P.O. Box 71666, Riyadh, Saudi Arabia.
| | - Marwa S Khattab
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza 1211, Egypt.
| | - Mahmoud R M El-Ansary
- Medical Microbiology and Immunology Department, Faculty of Medicine, Misr University for Science and Technology (MUST), Giza 12566, Egypt.
| | - Enas S Gad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia; Department of Pharmacology and Toxicology, faculty of Pharmacy, Sinai University-Kantara branch, Ismailia, Egypt
| | - Suzan M M Moursi
- Medical Physiology Department, Faculty of Medicine, Zagazig University, 44519, Egypt.
| | - Asmaa Gohar
- Microbiology and Immunology Department, Faculty of Pharmacy, Ahram Canadian University, sixth of October city, Giza, Egypt; Microbiology and Immunology Department, Faculty of Pharmacy, Galala University, New Galala City, Suez, 43713, Egypt.
| | - Ayah M H Gowifel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo 11571, Egypt.
| |
Collapse
|
2
|
Chen X, Wei Q, Hu Y, Wang C. Role of Fractalkine in promoting inflammation in sepsis-induced multiple organ dysfunction. INFECTION GENETICS AND EVOLUTION 2020; 85:104569. [PMID: 32979549 DOI: 10.1016/j.meegid.2020.104569] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 09/20/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Fractalkine, CX3CL1, is involved in the directional movement of chemokine cells, immune response, inflammatory response, tissue repair, and other processes. However, its role in sepsis is not well known. METHODS We measured circulating Fractalkine in adult patients with sepsis. Effects of Fractalkine on the survival, inflammation, tissue injury, and bacterial clearance were assessed using the WT or CX3CL-/- murine model of cecal ligation and puncture (CLP)-induced sepsis. RESULTS Serum Fractalkine concentrations were significantly elevated in adult patients with sepsis compared to healthy adults. Increased Fractalkine correlated positively with the number of blood leukocytes and the level of inflammatory cytokines, including IL-6, IL-1β, IL-17A, IFN-γ, and TNF-α, and correlated negatively with IL-10 in clinical sepsis. Recombinant Fractalkine impaired survival whereas Fractalkine gene knockout or anti-Fractalkine antibody improved survival in the murine model of CLP-induced sepsis. Fractalkine administration increased inflammatory response, evident by higher levels of cytokines (TNF-α, IL-1β, IL-17A, IFN-γ, and IL-6 but not IL-10), and tissue damage (lung, liver, and kidney) in CLP-induced sepsis. Fractalkine reduced bacterial clearance in CLP-induced polymicrobial sepsis by reducing macrophage or neutrophil phagocytosis and intracellular elimination of E. coli. CONCLUSIONS Fractalkine aggravates sepsis by increasing inflammation and decreasing bacterial clearance, and is a potential tool for anti-sepsis therapy.
Collapse
Affiliation(s)
- Xi Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing, Medical University, Chongqing, China.
| | - Qiang Wei
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing, Medical University, Chongqing, China
| | - Yida Hu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chuanjiang Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
3
|
Hajishengallis G, Diaz PI. Porphyromonas gingivalis: Immune subversion activities and role in periodontal dysbiosis. ACTA ACUST UNITED AC 2020; 7:12-21. [PMID: 33344104 DOI: 10.1007/s40496-020-00249-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Purpose of review This review summarizes mechanisms by which Porphyromonas gingivalis interacts with community members and the host so that it can persist in the periodontium under inflammatory conditions that drive periodontal disease. Recent findings Recent advances indicate that, in great part, the pathogenicity of P. gingivalis is dependent upon its ability to establish residence in the subgingival environment and to subvert innate immunity in a manner that uncouples the nutritionally favorable (for the bacteria) inflammatory response from antimicrobial pathways. While the initial establishment of P. gingivalis is dependent upon interactions with early colonizing bacteria, the immune subversion strategies of P. gingivalis in turn benefit co-habiting species. Summary Specific interspecies interactions and subversion of the host response contribute to the emergence and persistence of dysbiotic communities and are thus targets of therapeutic approaches for the treatment of periodontitis.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 S. 40 Street, Philadelphia, PA 19104, USA
| | - Patricia I Diaz
- Division of Periodontology, Department of Oral Health and Diagnostic Sciences, UConn Health, 263 Farmington Avenue, Farmington, CT 06030, USA
| |
Collapse
|
4
|
Mu L, Yin X, Wu H, Han K, Wu L, Ding M, Bian X, Li B, Fu S, Liang F, Guo Z, Ye J. Expression and functional characterization of a mannose-binding lectin-associated serine protease-1 (MASP-1) from Nile tilapia (Oreochromis niloticus) in host defense against bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2019; 91:68-77. [PMID: 31096060 DOI: 10.1016/j.fsi.2019.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/09/2019] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
Mannose-binding lectin-associated serine protease-1 (MASP-1), a multifunctional serine protease, plays an important role in innate immunity which is capable of activating the lectin pathway of the complement system and also triggering coagulation cascade system. In this study, a MASP-1 homolog (OnMASP-1) was identified from Nile tilapia (Oreochromis niloticus) and characterized at expression and inflammation functional levels. The open reading frame (ORF) of OnMASP-1 is 2187 bp of nucleotide sequence encoding a polypeptide of 728 amino acids. The deduced amino acid sequence has 6 characteristic structures, including two C1r/C1s-Uegf-BMP domains (CUB), one epidermal growth factor domain (EGF), two complement control protein domains (CCP) and a catalytic serine protease domain (SP). Expression analysis revealed that the OnMASP-1 was highly expressed in the liver, and widely exhibited in other tissues containing intestine, spleen and kidney. In addition, the OnMASP-1 expression was significantly up-regulated in spleen and head kidney following challenges with Streptococcus agalactiae and Aeromonas hydrophila. The up-regulations of OnMASP-1 mRNA and protein expression were also demonstrated in hepatocytes and monocytes/macrophages in vitro stimulation with S. agalactiae and A. hydrophila. Recombinant OnMASP-1 protein was likely to participate in the regulation of inflammatory and migration reaction by monocytes/macrophages. These results indicated that OnMASP-1, playing an important role in innate immunity, was likely to involve in host defense against bacterial infection in Nile tilapia.
Collapse
Affiliation(s)
- Liangliang Mu
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Xiaoxue Yin
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Hairong Wu
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Kailiang Han
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Liting Wu
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Mingmei Ding
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Xia Bian
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Bingxi Li
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Shengli Fu
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Fang Liang
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Zheng Guo
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Jianmin Ye
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China.
| |
Collapse
|
5
|
Kumar V. The complement system, toll-like receptors and inflammasomes in host defense: three musketeers’ one target. Int Rev Immunol 2019; 38:131-156. [PMID: 31066339 DOI: 10.1080/08830185.2019.1609962] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Vijay Kumar
- Children’s Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, St Lucia, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, ST Lucia, Brisbane, QLD, Australia
| |
Collapse
|
6
|
Hajishengallis G, Lambris JD. More than complementing Tolls: complement-Toll-like receptor synergy and crosstalk in innate immunity and inflammation. Immunol Rev 2017; 274:233-244. [PMID: 27782328 DOI: 10.1111/imr.12467] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Complement and Toll-like receptors (TLRs) play key roles in the host immune response and are swiftly activated by infection or other types of immunological stress. This review focuses on the capacity of complement and TLRs to engage in signaling crosstalk, ostensibly to coordinate immune and inflammatory responses through synergistic or antagonistic (regulatory) interactions. However, overactivation or dysregulation of either system may lead-often synergistically-to exaggerated inflammation and host tissue injury. Intriguingly, moreover, certain pathogens can manipulate complement-TLR crosstalk pathways in ways that undermine host immunity and favor their persistence. In the setting of polymicrobial inflammatory disease, subversion of complement-TLR crosstalk by keystone pathogens can promote dysbiosis. Knowledge of the molecular mechanisms underlying complement-TLR crosstalk pathways can, therefore, be used productively for tailored therapeutic approaches, such as, to enhance host immunity, mitigate destructive inflammation, or counteract microbial subversion of the host response.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Microbiology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA.
| | - John D Lambris
- Perelman School of Medicine, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
7
|
Hajishengallis G, Krauss JL, Jotwani R, Lambris JD. Differential capacity for complement receptor-mediated immune evasion by Porphyromonas gingivalis depending on the type of innate leukocyte. Mol Oral Microbiol 2016; 32:154-165. [PMID: 27081768 DOI: 10.1111/omi.12161] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2016] [Indexed: 01/02/2023]
Abstract
The complement system plays a central role in immunity and inflammation, although certain pathogens can exploit complement to undermine protective immunity. In this context, the periodontal keystone pathogen Porphyromonas gingivalis was previously shown by our group to evade killing by neutrophils or macrophages through exploitation of complement C5a receptor 1 (C5aR1) and complement receptor 3 (CR3). Here, we examined whether P. gingivalis uses complement receptors to also subvert killing by dendritic cells. In line with earlier independent studies, intracellular viable P. gingivalis bacteria could be recovered from mouse bone-marrow-derived dendritic cells (BMDC) or human monocyte-derived dendritic cells (MDDC) exposed to the pathogen. However, in the presence of C5a, the intracellular survival of P. gingivalis was significantly decreased in a C5aR1-dependent way. Further work using wild-type and receptor-knockout BMDC showed that, in the presence of C3a, the C3a receptor (C3aR) similarly enhanced the intracellular killing of P. gingivalis. In contrast, C5aR2, an alternative receptor for C5a (G protein-coupled receptor 77), was associated with increased intracellular P. gingivalis viable counts, consistent with the notion that C5aR2 functions as a negative regulator of C5aR1 activity. Moreover, P. gingivalis failed to use CR3 as a phagocytic receptor in BMDC, in contrast to our earlier findings in macrophages where CR3-mediated uptake promotes P. gingivalis survival. Collectively, these data show that complement receptors mediate cell-type-specific effects on how innate leukocytes handle P. gingivalis, which appears to exploit complement to preferentially evade those cells (neutrophils and macrophages) that are most often encountered in its predominant niche, the periodontal pocket.
Collapse
Affiliation(s)
- G Hajishengallis
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - J L Krauss
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY, USA
| | - R Jotwani
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY, USA
| | - J D Lambris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
8
|
Klein D, Groh J, Weishaupt A, Martini R. Endogenous antibodies contribute to macrophage-mediated demyelination in a mouse model for CMT1B. J Neuroinflammation 2015; 12:49. [PMID: 25879857 PMCID: PMC4364634 DOI: 10.1186/s12974-015-0267-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/17/2015] [Indexed: 01/02/2023] Open
Abstract
Background We could previously identify components of both the innate and the adaptive immune system as disease modifiers in the pathogenesis of models for Charcot-Marie-Tooth (CMT) neuropathies type 1B and 1X. As part of the adaptive immune system, here we investigated the role of antibodies in a model for CMT1B. Methods Antibodies were localized and characterized in peripheral nerves of the CMT1B model by immunohistochemistry and Western blot analysis. Experimental ablation of antibodies was performed by cross breeding the CMT1B models with mutants deficient in B-lymphocytes (JHD−/− mutants). Ameliorated demyelination by antibody deficiency was reverted by intravenous injection of mouse IgG fractions. Histopathological analysis was performed by immunocytochemistry and light and quantitative electron microscopy. Results We demonstrate that in peripheral nerves of a mouse model for CMT1B, endogenous antibodies strongly decorate endoneurial tubes of peripheral nerves. These antibodies comprise IgG and IgM subtypes and are preferentially, but not exclusively, associated with nerve fiber aspects nearby the nodes of Ranvier. In the absence of antibodies, the early demyelinating phenotype is substantially ameliorated. Reverting the neuropathy by reconstitution with murine IgG fractions identified accumulating antibodies as potentially pathogenic at this early stage of disease. Conclusions Our study demonstrates that in a mouse model for CMT1B, endogenous antibodies contribute to early macrophage-mediated demyelination and disease progression. Thus, both the innate and adaptive immune system are mutually interconnected in a genetic model for demyelination. Since in Wallerian degeneration antibodies have also been shown to be involved in myelin phagocytosis, our study supports our view that inherited demyelination and Wallerian degeneration share common mechanisms, which are detrimental when activated under nonlesion conditions.
Collapse
Affiliation(s)
- Dennis Klein
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Josef-Schneider-Str 11, D-97080, Würzburg, Germany.
| | - Janos Groh
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Josef-Schneider-Str 11, D-97080, Würzburg, Germany.
| | - Andreas Weishaupt
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Josef-Schneider-Str 11, D-97080, Würzburg, Germany.
| | - Rudolf Martini
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Josef-Schneider-Str 11, D-97080, Würzburg, Germany.
| |
Collapse
|
9
|
Barth K, Remick DG, Genco CA. Disruption of immune regulation by microbial pathogens and resulting chronic inflammation. J Cell Physiol 2013; 228:1413-22. [PMID: 23255141 DOI: 10.1002/jcp.24299] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 11/27/2012] [Indexed: 12/23/2022]
Abstract
Activation of the immune response is a tightly regulated, coordinated effort that functions to control and eradicate exogenous microorganisms, while also responding to endogenous ligands. Determining the proper balance of inflammation is essential, as chronic inflammation leads to a wide array of host pathologies. Bacterial pathogens can instigate chronic inflammation via an extensive repertoire of evolved evasion strategies that perturb immune regulation. In this review, we discuss two model pathogens, Mycobacterium tuberculosis and Porphyromonas gingivalis, which efficiently escape various aspects of the immune system within professional and non-professional immune cell types to establish chronic inflammation.
Collapse
Affiliation(s)
- Kenneth Barth
- Department of Medicine Section of Infectious Disease, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
10
|
Hajishengallis G, Lambris JD. Complement and dysbiosis in periodontal disease. Immunobiology 2013; 217:1111-6. [PMID: 22964237 DOI: 10.1016/j.imbio.2012.07.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Revised: 07/13/2012] [Accepted: 07/14/2012] [Indexed: 12/16/2022]
Abstract
Signaling crosstalk between complement and Toll-like receptors (TLRs) normally serves to coordinate host immunity. However, the periodontal bacterium Porphyromonas gingivalis expresses C5 convertase-like enzymatic activity and adeptly exploits complement-TLR crosstalk to subvert host defenses and escape elimination. Intriguingly, this defective immune surveillance leads to the remodeling of the periodontal microbiota to a dysbiotic state that causes inflammatory periodontitis. Understanding the mechanisms by which P. gingivalis modulates complement function to cause dysbiosis offers new targets for complement therapeutics.
Collapse
Affiliation(s)
- George Hajishengallis
- University of Pennsylvania School of Dental Medicine, Department of Microbiology, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
11
|
Hajishengallis G, McIntosh ML, Nishiyama SI, Yoshimura F. Mechanism and implications of CXCR4-mediated integrin activation by Porphyromonas gingivalis. Mol Oral Microbiol 2013; 28:239-49. [PMID: 23331495 DOI: 10.1111/omi.12021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2012] [Indexed: 12/14/2022]
Abstract
In monocytes and macrophages, the interaction of Porphyromonas gingivalis with Toll-like receptor 2 (TLR2) leads to the activation of a MyD88-dependent antimicrobial pathway and a phosphatidylinositol-3 kinase (PI3K) -dependent pro-adhesive pathway, which activates the β2 -integrin complement receptor 3 (CR3). By means of its fimbriae, P. gingivalis binds CXC-chemokine receptor 4 (CXCR4) and induces crosstalk with TLR2 that inhibits the MyD88-dependent antimicrobial pathway. In this paper, we investigated the impact of the P. gingivalis-CXCR4 interaction on the pro-adhesive pathway. Using human monocytes, mouse macrophages, or receptor-transfected cell lines, we showed that the binding of P. gingivalis fimbriae to CXCR4 induces CR3 activation via PI3K, albeit in a TLR2-independent manner. An isogenic strain of P. gingivalis expressing mutant fimbriae that do not interact with CXCR4 failed to efficiently activate CR3, leading to enhanced susceptibility to killing in vivo compared with the wild-type organism. This in vivo observation is consistent with previous findings that activated CR3 mediates safe entry of P. gingivalis into macrophages. Taken together with our previous work, these results indicate that the interaction of P. gingivalis with CXCR4 leads to inhibition of antimicrobial responses and enhancement of pro-adhesive responses, thereby maximizing its adaptive fitness in the mammalian host.
Collapse
Affiliation(s)
- G Hajishengallis
- Department of Microbiology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
12
|
Hajishengallis G, Lambris JD. Microbial manipulation of receptor crosstalk in innate immunity. Nat Rev Immunol 2011; 11:187-200. [PMID: 21350579 DOI: 10.1038/nri2918] [Citation(s) in RCA: 225] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the arms race of host-microbe co-evolution, successful microbial pathogens have evolved ingenious ways to evade host immune responses. In this Review, we focus on 'crosstalk manipulation' - the microbial strategies that instigate, subvert or disrupt the molecular signalling crosstalk between receptors of the innate immune system. This proactive interference undermines host defences and contributes to microbial adaptive fitness and persistent infections. Understanding how pathogens exploit host receptor crosstalk mechanisms and infiltrate the host signalling network is essential for developing interventions to redirect the host response and achieve protective immunity.
Collapse
Affiliation(s)
- George Hajishengallis
- University of Louisville, Department of Microbiology and Immunology, Louisville, Kentucky 40292, USA.
| | | |
Collapse
|
13
|
Brown J, Wang H, Hajishengallis GN, Martin M. TLR-signaling networks: an integration of adaptor molecules, kinases, and cross-talk. J Dent Res 2010; 90:417-27. [PMID: 20940366 DOI: 10.1177/0022034510381264] [Citation(s) in RCA: 411] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Toll-like receptors play a critical role in innate immunity by detecting invading pathogens. The ability of TLRs to engage different intracellular signaling molecules and cross-talk with other regulatory pathways is an important factor in shaping the type, magnitude, and duration of the inflammatory response. The present review will cover the fundamental signaling pathways utilized by TLRs and how these pathways regulate the innate immune response to pathogens. ABBREVIATIONS TLR, Toll-like receptor; PRR, pattern recognition receptor; PAMP, pathogen-associated molecular pattern; LPS, lipopolysaccharide; APC, antigen-presenting cell; IL, interleukin; TIR, Toll/IL-1R homology; MyD88, myeloid differentiation factor 88; IFN, interferon; TRIF, TIR-domain-containing adapter-inducing interferon-β; IRAK, IL-1R-associated kinase; TAK1, TGF-β-activated kinase; TAB1, TAK1-binding protein; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B-cells; MAPK, mitogen-activated protein kinase; NLR, NOD-like receptors; LRR, leucine-rich repeats; DC, dendritic cell; PI3K, phosphoinositide 3-kinases; GSK3, glycogen synthase kinase-3; mTOR, mammalian target of rapamycin; DAF, decay-accelerating factor; IKK, IκB kinase; IRF, interferon regulatory factors; TBK1, TANK-binding kinase 1; CARD, caspase activation and recruitment domain; PYD, pyrin N-terminal homology domain; ATF, activating transcription factor; and PTEN, phosphatase and tensin homolog.
Collapse
Affiliation(s)
- J Brown
- Department of Microbiology and Immunology, University of Louisville, School of Medicine, Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
14
|
Ricklin D, Hajishengallis G, Yang K, Lambris JD. Complement: a key system for immune surveillance and homeostasis. Nat Immunol 2010; 11:785-97. [PMID: 20720586 DOI: 10.1038/ni.1923] [Citation(s) in RCA: 2709] [Impact Index Per Article: 180.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nearly a century after the significance of the human complement system was recognized, we have come to realize that its functions extend far beyond the elimination of microbes. Complement acts as a rapid and efficient immune surveillance system that has distinct effects on healthy and altered host cells and foreign intruders. By eliminating cellular debris and infectious microbes, orchestrating immune responses and sending 'danger' signals, complement contributes substantially to homeostasis, but it can also take action against healthy cells if not properly controlled. This review describes our updated view of the function, structure and dynamics of the complement network, highlights its interconnection with immunity at large and with other endogenous pathways, and illustrates its multiple roles in homeostasis and disease.
Collapse
Affiliation(s)
- Daniel Ricklin
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
15
|
Hajishengallis G. Complement and periodontitis. Biochem Pharmacol 2010; 80:1992-2001. [PMID: 20599785 DOI: 10.1016/j.bcp.2010.06.017] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2010] [Revised: 06/06/2010] [Accepted: 06/08/2010] [Indexed: 12/31/2022]
Abstract
Although the complement system is centrally involved in host defense, its overactivation or deregulation (e.g., due to inherent host genetic defects or due to pathogen subversion) may excessively amplify inflammation and contribute to immunopathology. Periodontitis is an oral infection-driven chronic inflammatory disease which exerts a systemic impact on health. This paper reviews evidence linking complement to periodontal inflammation and pathogenesis. Clinical and histological observations show a correlation between periodontal inflammatory activity and local complement activation. Certain genetic polymorphisms or deficiencies in specific complement components appear to predispose to increased susceptibility to periodontitis. Animal model studies and in vitro experiments indicate that periodontal bacteria can either inhibit or activate distinct components of the complement cascade. Porphyromonas gingivalis, a keystone species in periodontitis, subverts complement receptor 3 and C5a anaphylatoxin receptor signaling in ways that promote its adaptive fitness in the presence of non-productive inflammation. Overall, available evidence suggests that complement activation or subversion contributes to periodontal pathogenesis, although not all complement pathways or functions are necessarily destructive. Effective complement-targeted therapeutic intervention in periodontitis would require determining the precise roles of the various inductive or effector complement pathways. This information is essential as it may reveal which specific pathways need to be blocked to counteract microbial evasion and inflammatory pathology or, conversely, kept intact to promote host immunity.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Microbiology and Immunology, University of Louisville School of Dentistry, Loueisville, KY 40292, USA.
| |
Collapse
|
16
|
Endogenous antibodies promote rapid myelin clearance and effective axon regeneration after nerve injury. Proc Natl Acad Sci U S A 2010; 107:11993-8. [PMID: 20547838 DOI: 10.1073/pnas.1001948107] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Degenerating myelin inhibits axon regeneration and is rapidly cleared after peripheral (PNS) but not central nervous system (CNS) injury. To better understand mechanisms underlying rapid PNS myelin clearance, we tested the potential role of the humoral immune system. Here, we show that endogenous antibodies are required for rapid and robust PNS myelin clearance and axon regeneration. B-cell knockout JHD mice display a significant delay in macrophage influx, myelin clearance, and axon regeneration. Rapid clearance of myelin debris is restored in mutant JHD mice by passive transfer of antibodies from naïve WT mice or by an anti-PNS myelin antibody, but not by delivery of nonneural antibodies. We demonstrate that degenerating nerve tissue is targeted by preexisting endogenous antibodies that control myelin clearance by promoting macrophage entrance and phagocytic activity. These results demonstrate a role for immunoglobulin (Ig) in clearing damaged self during healing and suggest that the immune-privileged status of the CNS may contribute to failure of CNS myelin clearance and axon regeneration after injury.
Collapse
|
17
|
Hajishengallis G, Lambris JD. Crosstalk pathways between Toll-like receptors and the complement system. Trends Immunol 2010; 31:154-63. [PMID: 20153254 DOI: 10.1016/j.it.2010.01.002] [Citation(s) in RCA: 210] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 01/09/2010] [Accepted: 01/14/2010] [Indexed: 02/08/2023]
Abstract
The Toll-like receptors (TLRs) and complement are key innate defense systems that are triggered rapidly upon infection. Although both systems have been investigated primarily as separate entities, an emerging body of evidence indicates extensive crosstalk between complement and TLR signaling pathways. Analysis of these data suggests that the complement-TLR interplay reinforces innate immunity or regulates excessive inflammation, through synergistic or antagonistic interactions, respectively. However, the facility of complement and TLRs for communication is exploited by certain pathogens as a means to modify the host response in ways that favor the persistence of the pathogens. Further elucidation of regulatory links between complement and TLRs is essential for understanding their complex roles in health and disease.
Collapse
Affiliation(s)
- George Hajishengallis
- University of Louisville School of Dentistry, Division of Oral Health and Systemic Disease, Louisville, KY, USA.
| | | |
Collapse
|
18
|
Shi Y, Zhang J, Mullin M, Dong B, Alberts AS, Siminovitch KA. The mDial formin is required for neutrophil polarization, migration, and activation of the LARG/RhoA/ROCK signaling axis during chemotaxis. THE JOURNAL OF IMMUNOLOGY 2009; 182:3837-45. [PMID: 19265163 DOI: 10.4049/jimmunol.0803838] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Neutrophil chemotaxis depends on actin dynamics, but the roles for specific cytoskeleton regulators in this response remain unclear. By analysis of mammalian diaphanous-related formin 1 (mDia1)-deficient mice, we have identified an essential role for this actin nucleator in neutrophil chemotaxis. Lack of mDia1 was associated with defects in chemoattractant-induced neutrophil actin polymerization, polarization, and directional migration, and also with impaired activation of RhoA, its downstream target p160-Rho-associated coil-containing protein kinase (ROCK), and the leukemia-associated RhoA guanine nucleotide exchange factor (LARG). Our data also revealed mDia1 to be associated with another cytoskeletal regulator, Wiskott-Aldrich syndrome protein (WASp), at the leading edge of chemotaxing neutrophils and revealed polarized morphology and chemotaxis to be more mildly impaired in WAS(-/-) than in mDia1(-/-) neutrophils, but essentially abrogated by combined mDia1/WASp deficiency. Thus, mDia1 roles in neutrophil chemotaxis appear to be subserved in concert with WASp and are realized at least in part by activation of the LARG/RhoA/ROCK signaling pathway.
Collapse
Affiliation(s)
- Yongquan Shi
- Department of Medicine, Samuel Lunenfeld and Toronto Hospital Research Institutes, University of Toronto, Toronto, Canada
| | | | | | | | | | | |
Collapse
|
19
|
Wang M, Hajishengallis G. Lipid raft-dependent uptake, signalling and intracellular fate of Porphyromonas gingivalis in mouse macrophages. Cell Microbiol 2008; 10:2029-42. [PMID: 18547335 DOI: 10.1111/j.1462-5822.2008.01185.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Lipid rafts are cholesterol-enriched microdomains involved in cellular trafficking and implicated as portals for certain pathogens. We sought to determine whether the oral pathogen Porphyromonas gingivalis enters macrophages via lipid rafts, and if so, to examine the impact of raft entry on its intracellular fate. Using J774A.1 mouse macrophages, we found that P. gingivalis colocalizes with lipid rafts in a cholesterol-dependent way. Depletion of cellular cholesterol using methyl-beta-cyclodextrin resulted in about 50% inhibition of P. gingivalis uptake, although this effect was reversed by cholesterol reconstitution. The intracellular survival of P. gingivalis was dramatically inhibited in cholesterol-depleted cells relative to untreated or cholesterol-reconstituted cells, even when infections were adjusted to allow equilibration of the initial intracellular bacterial load. P. gingivalis thus appeared to exploit raft-mediated uptake for promoting its survival. Consistent with this, lipid raft disruption enhanced the colocalization of internalized P. gingivalis with lysosomes. In contrast, raft disruption did not affect the expression of host receptors interacting with P. gingivalis, although it significantly inhibited signal transduction. In summary, P. gingivalis uses macrophage lipid rafts as signalling and entry platforms, which determine its intracellular fate to the pathogen's own advantage.
Collapse
Affiliation(s)
- Min Wang
- Department of Periodontics/Oral Health and Systemic Disease, University of Louisville Health Sciences Center, Louisville, KY 40292, USA
| | | |
Collapse
|
20
|
Subversion of innate immunity by periodontopathic bacteria via exploitation of complement receptor-3. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 632:203-19. [PMID: 19025124 DOI: 10.1007/978-0-387-78952-1_15] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The capacity of certain pathogens to exploit innate immune receptors enables them to undermine immune clearance and persist in their host, often causing disease. Here we review subversive interactions of Porphyromonas gingivalis, a major periodontal pathogen, with the complement receptor-3 (CR3; CD11b/CD18) in monocytes/macrophages. Through its cell surface fimbriae, P. gingivalis stimulates Toll-like receptor-2 (TLR2) inside-out signaling which induces the high-affinity conformation of CR3. Although this activates CR3-dependent monocyte adhesion and transendothelial migration, P. gingivalis has co-opted this TLR2 proadhesive pathway for CR3 binding and intracellular entry. In CR3-deficient macrophages, the internalization of P. gingivalis is reduced twofold but its ability to survive intracellularly is reduced 1,000-fold, indicating that CR3 is exploited by the pathogen as a relatively safe portal of entry. The interaction of P. gingivalis fimbriae with CR3 additionally inhibits production of bioactive (p70) interleukin-12, which mediates immune clearance. In vivo blockade of CR3 leads to reduced persistence of P. gingivalis in the mouse host and diminished ability to cause periodontal bone loss, the hallmark of periodontal disease. Strikingly, the ability of P. gingivalis to interact with and exploit CR3 depends upon quantitatively minor components (FimCDE) of its fimbrial structure, which predominantly consists of polymerized fimbrillin (FimA). Indeed, isogenic mutants lacking FimCDE but expressing FimA are dramatically less persistent and virulent than the wildtype organism both in vitro and in vivo. This model of immune evasion through CR3 exploitation by P. gingivalis supports the concept that pathogens evolved to manipulate innate immune function for promoting their adaptive fitness.
Collapse
|
21
|
|
22
|
Hajishengallis G, Shakhatreh MAK, Wang M, Liang S. Complement receptor 3 blockade promotes IL-12-mediated clearance of Porphyromonas gingivalis and negates its virulence in vivo. THE JOURNAL OF IMMUNOLOGY 2007; 179:2359-67. [PMID: 17675497 DOI: 10.4049/jimmunol.179.4.2359] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The ability of certain pathogens to exploit innate immune function allows them to undermine immune clearance and thereby increase their persistence and capacity to cause disease. Porphyromonas gingivalis is a major pathogen in periodontal disease and is associated with increased risk of systemic conditions. We have previously shown that the fimbriae of P. gingivalis interact with complement receptor 3 (CR3; CD11b/CD18) in monocytes/macrophages, resulting in inhibition of IL-12p70 production in vitro. The in vivo biological implications of this observation were investigated in this study using a CR3 antagonist (XVA143). XVA143 was shown to block CR3 binding of P. gingivalis fimbriae and reverse IL-12p70 inhibition; specifically, CR3 blockade resulted in inhibition of ERK1/2 phosphorylation and up-regulation of IL-12 p35 and p40 mRNA expression. Importantly, mice pretreated with XVA143 elicited higher IL-12p70 and IFN-gamma levels in response to P. gingivalis i.p. infection and displayed enhanced pathogen clearance, compared with similarly infected controls. The notion that CR3 is associated with reduced IL-12p70 induction and impaired P. gingivalis clearance was confirmed using i.p. infected wild-type and CR3-deficient mice. Moreover, XVA143 dramatically attenuated the persistence and virulence of P. gingivalis in experimental mouse periodontitis, as evidenced by reduced induction of periodontal bone loss. Therefore, CR3 blockade may represent a promising immunomodulatory approach for controlling human periodontitis and possibly associated systemic diseases.
Collapse
MESH Headings
- Alveolar Bone Loss/drug therapy
- Alveolar Bone Loss/genetics
- Alveolar Bone Loss/immunology
- Alveolar Bone Loss/metabolism
- Alveolar Bone Loss/microbiology
- Alveolar Bone Loss/pathology
- Animals
- Bacteroidaceae Infections/drug therapy
- Bacteroidaceae Infections/genetics
- Bacteroidaceae Infections/immunology
- Bacteroidaceae Infections/metabolism
- Bacteroidaceae Infections/pathology
- CD11b Antigen/genetics
- CD11b Antigen/immunology
- CD11b Antigen/metabolism
- CD18 Antigens/genetics
- CD18 Antigens/immunology
- CD18 Antigens/metabolism
- CHO Cells
- Cricetinae
- Cricetulus
- Disease Models, Animal
- Fimbriae, Bacterial/immunology
- Fimbriae, Bacterial/metabolism
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/genetics
- Gene Expression Regulation/immunology
- Humans
- Interleukin-12 Subunit p35/biosynthesis
- Interleukin-12 Subunit p35/immunology
- Interleukin-12 Subunit p40/biosynthesis
- Interleukin-12 Subunit p40/immunology
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/metabolism
- Macrophages, Peritoneal/microbiology
- Macrophages, Peritoneal/pathology
- Mice
- Mice, Knockout
- Mitogen-Activated Protein Kinase 1/immunology
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/immunology
- Mitogen-Activated Protein Kinase 3/metabolism
- Periodontitis/drug therapy
- Periodontitis/genetics
- Periodontitis/immunology
- Periodontitis/metabolism
- Periodontitis/microbiology
- Periodontitis/pathology
- Porphyromonas gingivalis/immunology
- Porphyromonas gingivalis/pathogenicity
- RNA, Messenger/biosynthesis
- RNA, Messenger/immunology
- Receptors, Complement/antagonists & inhibitors
- Receptors, Complement/deficiency
- Receptors, Complement/immunology
- Up-Regulation/drug effects
- Up-Regulation/genetics
- Up-Regulation/immunology
- Virulence/immunology
Collapse
Affiliation(s)
- George Hajishengallis
- Division of Oral Health and Systemic Disease/Department of Periodontics, University of Louisville Health Sciences Center, Louisville, KY 40292, USA.
| | | | | | | |
Collapse
|
23
|
Wang M, Shakhatreh MAK, James D, Liang S, Nishiyama SI, Yoshimura F, Demuth DR, Hajishengallis G. Fimbrial proteins of porphyromonas gingivalis mediate in vivo virulence and exploit TLR2 and complement receptor 3 to persist in macrophages. THE JOURNAL OF IMMUNOLOGY 2007; 179:2349-58. [PMID: 17675496 DOI: 10.4049/jimmunol.179.4.2349] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Porphyromonas gingivalis is an oral/systemic pathogen implicated in chronic conditions, although the mechanism(s) whereby it resists immune defenses and persists in the host is poorly understood. The virulence of this pathogen partially depends upon expression of fimbriae comprising polymerized fimbrillin (FimA) associated with quantitatively minor proteins (FimCDE). In this study, we show that isogenic mutants lacking FimCDE are dramatically less persistent and virulent in a mouse periodontitis model and express shorter fimbriae than the wild type. Strikingly, native fimbriae allowed P. gingivalis to exploit the TLR2/complement receptor 3 pathway for intracellular entry, inhibition of IL-12p70, and persistence in macrophages. This virulence mechanism also required FimCDE; indeed, mutant strains exhibited significantly reduced ability to inhibit IL-12p70, invade, and persist intracellularly, attributable to failure to interact with complement receptor 3, although not with TLR2. These results highlight a hitherto unknown mechanism of immune evasion by P. gingivalis that is surprisingly dependent upon minor constituents of its fimbriae, and support the concept that pathogens evolved to manipulate innate immunity for promoting adaptive fitness and thus their capacity to cause disease.
Collapse
MESH Headings
- Adaptation, Biological/genetics
- Adaptation, Biological/immunology
- Animals
- Bacterial Proteins/immunology
- Bacteroidaceae Infections/genetics
- Bacteroidaceae Infections/immunology
- Bacteroidaceae Infections/pathology
- Biological Evolution
- CD11b Antigen/genetics
- CD11b Antigen/immunology
- Cells, Cultured
- Chronic Disease
- Disease Models, Animal
- Fimbriae Proteins/deficiency
- Fimbriae Proteins/genetics
- Fimbriae Proteins/immunology
- Immunity, Innate/genetics
- Interleukin-12/genetics
- Interleukin-12/immunology
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/microbiology
- Macrophages, Peritoneal/pathology
- Mice
- Mice, Knockout
- Periodontitis/genetics
- Periodontitis/immunology
- Periodontitis/pathology
- Porphyromonas gingivalis/genetics
- Porphyromonas gingivalis/immunology
- Porphyromonas gingivalis/pathogenicity
- Receptors, Complement/deficiency
- Receptors, Complement/immunology
- Toll-Like Receptor 2/deficiency
- Toll-Like Receptor 2/immunology
Collapse
Affiliation(s)
- Min Wang
- Department of Periodontics/Oral Health and Systemic Disease, University of Louisville Health Sciences Center, Louisville, KY 40292, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Affiliation(s)
- Denis F Kinane
- Center for Oral Health and Systemic Disease, University of Louisville School of Dentistry, Louisville, KY, USA
| | | | | | | | | |
Collapse
|
25
|
Abstract
Wallerian degeneration (WD) is the set of molecular and cellular events by which degenerating axons and myelin are cleared after injury. Why WD is rapid and robust in the PNS but slow and incomplete in the CNS is a longstanding mystery. Here we review current work on the mechanisms of WD with an emphasis on deciphering this mystery and on understanding whether slow WD in the CNS could account for the failure of CNS axons to regenerate.
Collapse
Affiliation(s)
- Mauricio E Vargas
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California 94305, USA.
| | | |
Collapse
|
26
|
Hajishengallis G. Potential for Immunological and Microbiological Intervention against Porphyromonas gingivalis Infection. J Oral Biosci 2007. [DOI: 10.1016/s1349-0079(07)80009-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
27
|
Hajishengallis G, Wang M, Harokopakis E, Triantafilou M, Triantafilou K. Porphyromonas gingivalis fimbriae proactively modulate beta2 integrin adhesive activity and promote binding to and internalization by macrophages. Infect Immun 2006; 74:5658-66. [PMID: 16988241 PMCID: PMC1594907 DOI: 10.1128/iai.00784-06] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In monocytes, the fimbriae of the oral pathogen Porphyromonas gingivalis activate cross talk signaling from Toll-like receptor 2 (TLR2) to the beta2 integrin CD11b/CD18, leading to the induction of the high-affinity state of the latter receptor. CD14 plays an important role in this "inside-out" proadhesive pathway by binding fimbriae and facilitating the activation of TLR2 and phosphatidylinositol 3-kinase signaling. In its high-affinity state, CD11b/CD18 mediates monocyte adhesion to endothelial cells and transmigration to sites of infection. We have now shown that P. gingivalis fimbriae function as both an activator and a ligand of CD11b/CD18; thus, fimbriae proactively promote their own binding to monocytes. Indeed, treatments that interfered with fimbria-induced activation of CD11b/CD18 (i.e., blockade of CD14, TLR2, or phosphatidylinositol 3-kinase signaling) also suppressed the cell binding activity of fimbriae, which was largely inducible and CD11b/CD18 dependent. Development of a recombinant inside-out signaling system in Chinese hamster ovary cells confirmed the ability of fimbriae to activate CD14/TLR2 signaling and induce their own CD11b/CD18-dependent binding. Induction of this proadhesive pathway by P. gingivalis fimbriae appeared to take place in lipid rafts. Indeed, methyl-beta-cyclodextrin, a cholesterol-sequestering agent that disrupts lipid raft organization, was found to inhibit the fimbria-induced assembly of CD14/TLR2 signaling complexes and the activation of the high-affinity state of CD11b/CD18. Experiments using macrophages from mice deficient in various pattern recognition receptors indicated that the receptors involved in the inside-out proadhesive pathway (CD14, TLR2, and CD11b/CD18) are important for mediating P. gingivalis internalization within macrophages. It therefore appears that P. gingivalis proactively modulates beta2 integrin adhesive activity for intracellular uptake.
Collapse
Affiliation(s)
- George Hajishengallis
- University of Louisville Health Sciences Center, 501 South Preston Street, Room 206, Louisville, KY 40292, USA.
| | | | | | | | | |
Collapse
|