1
|
Soni D, Khan H, Chauhan S, Kaur A, Dhankhar S, Garg N, Singh TG. Exploring therapeutic potential: Targeting TRPM7 in neurodegenerative diseases. Int Immunopharmacol 2024; 142:113142. [PMID: 39298812 DOI: 10.1016/j.intimp.2024.113142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/06/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024]
Abstract
The ions Ca2+ and Mg2+, which are both present in the body, have been demonstrated to be crucial in the control of a variety of neuronal processes. Transient melastatin-7 (TRPM7) channel plays an important role in controlling Ca2+ and Mg2+ homeostasis, which is crucial for biological processes. The review will also examine how changes in TRPM7 function or expression can lead to neurodegeneration.Even though eight different TRPM channels have been found so far, the channel properties, activation mechanisms, and physiological responses exhibited by these channels can vary greatly from one another. Only TRPM6 and TRPM7 out of the eight TRPM channels were found to have a high permeability to both Ca2+ and Mg2+. In contrast to TRPM6 channels, which are not highly expressed in neuronal cells, TRPM7 channels are widely distributed throughout the nervous system, so they will be the sole focus of this article. It is possible that, in the future, for the treatment of neurodegenerative disorder new therapeutic drug targets will be developed as a direct result of research into the specific roles played by TRPM7 channels in several different neurodegenerative conditions as well as the factors that are responsible for TRPM7 channel regulation.
Collapse
Affiliation(s)
- Diksha Soni
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Sanchit Dhankhar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Nitika Garg
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| |
Collapse
|
2
|
Ulger O, Eş I, Proctor CM, Algin O. Stroke studies in large animals: Prospects of mitochondrial transplantation and enhancing efficiency using hydrogels and nanoparticle-assisted delivery. Ageing Res Rev 2024; 100:102469. [PMID: 39191353 DOI: 10.1016/j.arr.2024.102469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
One of the most frequent reasons for mortality and disability today is acute ischemic stroke, which occurs by an abrupt disruption of cerebral circulation. The intricate damage mechanism involves several factors, such as inflammatory response, disturbance of ion balance, loss of energy production, excessive reactive oxygen species and glutamate release, and finally, neuronal death. Stroke research is now carried out using several experimental models and potential therapeutics. Furthermore, studies are being conducted to address the shortcomings of clinical care. A great deal of research is being done on novel pharmacological drugs, mitochondria targeting compounds, and different approaches including brain cooling and new technologies. Still, there are many unanswered questions about disease modeling and treatment strategies. Before these new approaches may be used in therapeutic settings, they must first be tested on large animals, as most of them have been done on rodents. However, there are several limitations to large animal stroke models used for research. In this review, the damage mechanisms in acute ischemic stroke and experimental acute ischemic stroke models are addressed. The current treatment approaches and promising experimental methods such as mitochondrial transplantation, hydrogel-based interventions, and strategies like mitochondria encapsulation and chemical modification, are also examined in this work.
Collapse
Affiliation(s)
- Oner Ulger
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, Ankara 06010, Turkiye; Gulhane Training and Research Hospital, University of Health Sciences, Ankara 06010, Turkiye.
| | - Ismail Eş
- Department of Engineering Science, Institute of Biomedical Engineering (IBME), University of Oxford, Oxford OX3 7DQ, UK
| | - Christopher M Proctor
- Department of Engineering Science, Institute of Biomedical Engineering (IBME), University of Oxford, Oxford OX3 7DQ, UK
| | - Oktay Algin
- Interventional MR Clinical R&D Institute, Ankara University, Ankara 06100, Turkiye; Department of Radiology, Medical Faculty, Ankara University, Ankara 06100, Turkiye; National MR Research Center (UMRAM), Bilkent University, Ankara 06800, Turkiye
| |
Collapse
|
3
|
Köles L, Ribiczey P, Szebeni A, Kádár K, Zelles T, Zsembery Á. The Role of TRPM7 in Oncogenesis. Int J Mol Sci 2024; 25:719. [PMID: 38255793 PMCID: PMC10815510 DOI: 10.3390/ijms25020719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
This review summarizes the current understanding of the role of transient receptor potential melastatin-subfamily member 7 (TRPM7) channels in the pathophysiology of neoplastic diseases. The TRPM family represents the largest and most diverse group in the TRP superfamily. Its subtypes are expressed in virtually all human organs playing a central role in (patho)physiological events. The TRPM7 protein (along with TRPM2 and TRPM6) is unique in that it has kinase activity in addition to the channel function. Numerous studies demonstrate the role of TRPM7 chanzyme in tumorigenesis and in other tumor hallmarks such as proliferation, migration, invasion and metastasis. Here we provide an up-to-date overview about the possible role of TRMP7 in a broad range of malignancies such as tumors of the nervous system, head and neck cancers, malignant neoplasms of the upper gastrointestinal tract, colorectal carcinoma, lung cancer, neoplasms of the urinary system, breast cancer, malignant tumors of the female reproductive organs, prostate cancer and other neoplastic pathologies. Experimental data show that the increased expression and/or function of TRPM7 are observed in most malignant tumor types. Thus, TRPM7 chanzyme may be a promising target in tumor therapy.
Collapse
Affiliation(s)
- László Köles
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (L.K.); (A.S.); (K.K.); (T.Z.)
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
| | - Polett Ribiczey
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (L.K.); (A.S.); (K.K.); (T.Z.)
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
| | - Andrea Szebeni
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (L.K.); (A.S.); (K.K.); (T.Z.)
| | - Kristóf Kádár
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (L.K.); (A.S.); (K.K.); (T.Z.)
| | - Tibor Zelles
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (L.K.); (A.S.); (K.K.); (T.Z.)
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, H-1083, Budapest, Hungary
| | - Ákos Zsembery
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (L.K.); (A.S.); (K.K.); (T.Z.)
| |
Collapse
|
4
|
Yin S, Zhao Y, Chen F, Zhong Z, Lu Q, Li H, Zhang Y. DNA Sensor-Based Strategy to Visualize the TRPM7 mRNA-Mg 2+ Signaling Pathway in Cancer Cells. Anal Chem 2023; 95:18107-18113. [PMID: 38019640 DOI: 10.1021/acs.analchem.3c03323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Technological advances and methodological innovations in cell signaling pathway analysis will facilitate progress in understanding biological processes, intervening in diseases, and screening drugs. In this work, an elaborate strategy for visualizing and monitoring the transient receptor potential melastatin 7 (TRPM7)-Mg2+ signaling pathway in living cells was constructed through the logical analysis of upstream mRNA and downstream molecules by two individual DNA sensors. The DNA sensors are constructed by modifying the dye-labeled DNA sequences on the surface of gold nanoparticles. By hybridizing with upstream mRNA, Cy5-modified DNA sensor 1 can detect and silence it simultaneously, outputting a red fluorescence signal. When the upstream mRNA is silenced, the concentration of downstream molecules of Mg2+ will be affected and down-regulated. The FAM-modified DNA sensor 2 detects this change and emits a green fluorescence as a signal. Therefore, the dynamic information on TRPM7 mRNA and the Mg2+-mediated signaling pathway can be successfully obtained by fluorescence imaging methods. Furthermore, the TRPM7 mRNA-Mg2+ signaling pathway also affects cell activity and migratory function through cell scratching and other experiments. More importantly, the proposed sensor also shows potential for screening signaling pathway inhibitors. Our work provides a simple and general strategy for the visualization of signaling pathways, which helps to understand the changes in the physiological activities of cancer cells and the causes of carcinogenesis and is crucial for cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Shuhang Yin
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Yang Zhao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Feng Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Zijie Zhong
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Qiujun Lu
- College of Biological and Chemical Engineering, Changsha University, Changsha, Hunan 410022, China
| | - Haitao Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Youyu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
5
|
Erdogan MA, Ugo D, Ines F. The role of ion channels in the relationship between the immune system and cancer. CURRENT TOPICS IN MEMBRANES 2023; 92:151-198. [PMID: 38007267 DOI: 10.1016/bs.ctm.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
The immune system is capable of identifying and eliminating cancer, a complicated illness marked by unchecked cellular proliferation. The significance of ion channels in the complex interaction between the immune system and cancer has been clarified by recent studies. Ion channels, which are proteins that control ion flow across cell membranes, have variety of physiological purposes, such as regulating immune cell activity and tumor development. Immune cell surfaces contain ion channels, which have been identified to control immune cell activation, motility, and effector activities. The regulation of immune responses against cancer cells has been linked to a number of ion channels, including potassium, calcium, and chloride channels. As an example, potassium channels are essential for regulating T cell activation and proliferation, which are vital for anti-tumor immunity. Calcium channels play a crucial role when immune cells produce cytotoxic chemicals in order to eliminate cancer cells. Chloride channels also affect immune cell infiltration and invasion into malignancies. Additionally, tumor cells' own expressed ion channels have an impact on their behavior and in the interaction with the immune system. The proliferation, resistance to apoptosis, and immune evasion of cancer cells may all be impacted by changes in ion channel expression and function. Ion channels may also affect the tumor microenvironment by controlling angiogenesis, inflammatory responses, and immune cell infiltration. Ion channel function in the interaction between the immune system and cancer has important implications for cancer treatment. A possible method to improve anti-tumor immune responses and stop tumor development is to target certain ion channels. Small compounds and antibodies are among the ion channel modulators under investigation as possible immunotherapeutics. The complex interaction between ion channels, the immune system, and cancer highlights the significance of these channels for tumor immunity. The development of novel therapeutic strategies for the treatment of cancer will be made possible by unraveling the processes by which ion channels control immune responses and tumor activity. Hence, the main driving idea of the present chapter is trying to understand the possible function of ion channels in the complex crosstalk between cancer and immunoresponse. To this aim, after giving a brief journey of ion channels throughout the history, a classification of the main ion channels involved in cancer disease will be discussed. Finally, the last paragraph will focus on more recently advancements in the use of biomaterials as therapeutic strategy for cancer treatment. The hope is that future research will take advantage of the promising combination of ion channels, immunomodulation and biomaterials filed to provide better solutions in the treatment of cancer disease.
Collapse
Affiliation(s)
- Mumin Alper Erdogan
- Izmir Katip Celebi University Faculty of Medicine, Department of Physiology, Izmir, Turkey.
| | - D'Amora Ugo
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Naples, Italy
| | - Fasolino Ines
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Naples, Italy
| |
Collapse
|
6
|
Zong GF, Deng R, Yu SY, Wang AY, Wei ZH, Zhao Y, Lu Y. Thermo-Transient Receptor Potential Channels: Therapeutic Potential in Gastric Cancer. Int J Mol Sci 2022; 23:ijms232315289. [PMID: 36499622 PMCID: PMC9740781 DOI: 10.3390/ijms232315289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/08/2022] Open
Abstract
Over the last decade, researchers have found abnormal expression of transient receptor potential (TRP) channels. In particular, members of the thermally sensitive subclass (thermo-TRPs) are involved in many disease processes. Moreover, they have a vital role in the occurrence and development of gastric cancer (GC). Accordingly, thermo-TRPs constitute a major pharmacological target, and the elucidation of the mechanisms underlying their response to physiological stimuli or drugs is key for notable advances in GC treatment. Therefore, this paper summarizes the existing literature about thermo-TRP protein expression changes that are linked to the incidence and progression of GC. The review also discusses the implication of such association to pathology and cell physiology and identifies potential thermo-TRP protein targets for diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Gang-Fan Zong
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Rui Deng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Su-Yun Yu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, No.138 Xianlin Avenue, Nanjing 210023, China
| | - Ai-Yun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhong-Hong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yang Zhao
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, No.138 Xianlin Avenue, Nanjing 210023, China
- Correspondence: (Y.Z.); (Y.L.); Tel.: +86-025-13382098417 (Y.Z.); +86-02515605190001 (Y.L.)
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Correspondence: (Y.Z.); (Y.L.); Tel.: +86-025-13382098417 (Y.Z.); +86-02515605190001 (Y.L.)
| |
Collapse
|
7
|
Wang Y, Lu R, Chen P, Cui R, Ji M, Zhang X, Hou P, Qu Y. Promoter methylation of transient receptor potential melastatin-related 7 (TRPM7) predicts a better prognosis in patients with Luminal A breast cancers. BMC Cancer 2022; 22:951. [PMID: 36064388 PMCID: PMC9446581 DOI: 10.1186/s12885-022-10038-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022] Open
Abstract
Breast cancer is the most common female tumors arising worldwide, and genetic and epigenetic events are constantly accumulated in breast tumorigenesis. The melastatin-related transient receptor potential 7 channel (TRPM7) is a nonselective cation channel, mainly maintaining Zn2+, Ca2+ and Mg2+ homeostasis. It is also involved in regulating proliferation and migration in various cancers including breast cancer. However, epigenetic alterations (such as promoter methylation) of TRPM7 and their correlation with clinical outcomes in breast cancer patients remain largely unclear. In this study, we found that TRPM7 was highly expressed in the luminal A subtype of breast cancers but no other subtypes compared with GTEx (Genotype-Tissue Expression Rad) or normal samples by analyzing the TCGA database. Correspondingly, TRPM7 was methylated in 42.7% (93 of 219) of breast cancers. Further studies found that promoter methylation of TRPM7 were significantly associated with better clinical outcomes in breast cancer patients, especially in the Luminal A subtype. Besides, methylated TRPM7 was correlated with less number of metastatic lymph nodes and longer local failure free survival time in this subtype. In summary, our data indicate that promoter methylation of TRPM7 may predict poor prognosis in patients with luminal A breast cancer.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Endocrinology, Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Rong Lu
- Department of Endocrinology, Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Pu Chen
- Department of Endocrinology, Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Rongrong Cui
- Department of Endocrinology, Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Meiju Ji
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Xiaozhi Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Peng Hou
- Department of Endocrinology, Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China.
| | - Yiping Qu
- Department of Endocrinology, Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China.
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China.
| |
Collapse
|
8
|
Chen TM, Huang CM, Hsieh MS, Lin CS, Lee WH, Yeh CT, Liu SC. TRPM7 via calcineurin/NFAT pathway mediates metastasis and chemotherapeutic resistance in head and neck squamous cell carcinoma. Aging (Albany NY) 2022; 14:5250-5270. [PMID: 35771152 PMCID: PMC9271301 DOI: 10.18632/aging.204154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/23/2022] [Indexed: 12/18/2022]
Abstract
The exact mechanisms of Head and neck squamous carcinoma (HNSCC) chemoresistance and metastatic transformation remain unclear. In recent decades, members of the transient receptor potential (TRP) channel family have been proposed as potential biomarkers and/or drug targets in cancer treatment. First, in a TCGA cohort of HNSCC, TRPM7 is highly expressed in cancer tissues, especially the expression in invasive cancer tissues is statistically significant (p>0.001). In GEO and TCGA cohort, patients with high expression of TRPM7 and NFATC2 have poor overall survival rates. The expression of TRPM7 and NFATC2 showed a positive correlation. Compared to human normal oral keratinocytes (hNOK), TRPM7 is overexpressed in FaDU, SAS, and TW2.6 cell lines. Similarly, patients with HNSCC exhibited higher TRPM7 expression than non-HNSCC subjects, and this high TRPM7 expression was associated with worse 5-year overall survival. Furthermore, TRPM7 inversely correlated with E-cadherin, but positively correlated with Vimentin, NANOG, and BMI-1 mRNA levels. Consistent with this, we demonstrated the overexpression of TRPM7 in cisplatin-resistant subjects, compared to the cisplatin-sensitive counterparts. Moreover, shRNA-mediated silencing of TRPM7 significantly suppressed the migration, invasion, colony formation, and tumorsphere formation of SAS cells, with associated downregulation of Snail, c-Myc, cyclin D1, SOX2, OCT4, and NANOG proteins expression. Finally, compared with the untreated wild-type SAS cells or cisplatin-treated cells, shTRPM7 alone or in combination with cisplatin significantly inhibited tumorsphere and colony formation. These findings serving as the basis for development of novel therapeutic strategies against metastasis and chemoresistance, while providing new insights into TRPM7 biology and activity in HNSCC.
Collapse
Affiliation(s)
- Tsung-Ming Chen
- Department of Otolaryngology-Head and Neck Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan.,Department of Otolaryngology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
| | - Chih-Ming Huang
- Department of Otolaryngology, Taitung Mackay Memorial Hospital, Taitung City 950408, Taiwan.,Department of Nursing, Tajen University, Yanpu 90741, Pingtung County, Taiwan
| | - Ming-Shou Hsieh
- Department of Medical Research and Education, Taipei Medical University - Shuang Ho Hospital, New Taipei City 235, Taiwan
| | - Chun-Shu Lin
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei City 114, Taiwan
| | - Wei-Hwa Lee
- Department of Pathology, Taipei Medical University-Shuang Ho Hospital, New Taipei City 235, Taiwan
| | - Chi-Tai Yeh
- Department of Medical Research and Education, Taipei Medical University - Shuang Ho Hospital, New Taipei City 235, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu City 30015, Taiwan
| | - Shao-Cheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei City 114, Taiwan
| |
Collapse
|
9
|
Alanazi R, Nakatogawa H, Wang H, Ji D, Luo Z, Golbourn B, Feng Z, Rutka JT, Sun H. Inhibition of TRPM7 with carvacrol suppresses glioblastoma functions
in vivo. Eur J Neurosci 2022; 55:1483-1491. [DOI: 10.1111/ejn.15647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Haitao Wang
- Departments of Surgery
- Departments of Surgery Physiology
| | | | - Zhengwei Luo
- Departments of Surgery
- Departments of Surgery Physiology
| | - Brian Golbourn
- Departments of Cell Biology SickKids Research Institute, The Hospital for Sick Children Toronto Canada
| | | | | | - Hong‐Shuo Sun
- Departments of Surgery
- Departments of Surgery Physiology
- Pharmacology, Temerty Faculty of Medicine
- Leslie Dan Faculty of Pharmacy University of Toronto Toronto Canada
| |
Collapse
|
10
|
TRPM7 Ion Channel: Oncogenic Roles and Therapeutic Potential in Breast Cancer. Cancers (Basel) 2021; 13:cancers13246322. [PMID: 34944940 PMCID: PMC8699295 DOI: 10.3390/cancers13246322] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Breast cancer is the most frequently diagnosed malignant tumor and the second leading cause of cancer death in women worldwide. The risk of developing breast cancer is 12.8%, i.e., 1 in 8 people, and a woman’s risk of dying is approximately 1 in 39. Calcium signals play an important role in various cancers and transport calcium ions may have altered expression in breast cancer, such as the TRPM7 calcium permeant ion channel, where overexpression may be associated with a poor prognosis. This review focuses on the TRPM7 channel, and the oncogenic roles studied so far in breast cancer. The TRPM7 ion channel is suggested as a potential and prospective target in the diagnosis and treatment of breast cancer. Abstract The transient receptor potential melastatin-subfamily member 7 (TRPM7) is a divalent cations permeant channel but also has intrinsic serine/threonine kinase activity. It is ubiquitously expressed in normal tissues and studies have indicated that it participates in important physiological and pharmacological processes through its channel-kinase activity, such as calcium/magnesium homeostasis, phosphorylation of proteins involved in embryogenesis or the cellular process. Accumulating evidence has shown that TRPM7 is overexpressed in human pathologies including breast cancer. Breast cancer is the second leading cause of cancer death in women with an incidence rate increase of around 0.5% per year since 2004. The overexpression of TRPM7 may be associated with a poor prognosis in breast cancer patients, so more efforts are needed to research a new therapeutic target. TRPM7 regulates the levels of Ca2+, which can alter the signaling pathways involved in survival, cell cycle progression, proliferation, growth, migration, invasion, epithelial-mesenchymal transition and thus determines cell behavior, promoting tumor development. This work provides a complete overview of the TRPM7 ion channel and its main involvements in breast cancer. Special consideration is given to the modulation of the channel as a potential target in breast cancer treatment by inhibition of proliferation, migration and invasion. Taken together, these data suggest the potential exploitation of TRPM7 channel-kinase as a therapeutic target and a diagnostic biomarker.
Collapse
|
11
|
Low serum magnesium concentration is associated with the presence of viable hepatocellular carcinoma tissue in cirrhotic patients. Sci Rep 2021; 11:15184. [PMID: 34312420 PMCID: PMC8313704 DOI: 10.1038/s41598-021-94509-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/17/2021] [Indexed: 12/03/2022] Open
Abstract
This study aimed to ascertain, for the first time, whether serum magnesium (Mg) concentration is affected by the presence of hepatocellular carcinoma (HCC). We retrospectively enrolled consecutive cirrhotic patients with a diagnosis of HCC (n = 130) or without subsequent evidence of HCC during surveillance (n = 161). Serum levels of Mg were significantly (P < 0.001) lower in patients with HCC than in those without (median [interquartile range]: 1.80 [1.62–1.90] mg/dl vs. 1.90 [1.72–2.08] mg/dl). On multivariate logistic regression, low serum Mg was associated with the presence of HCC (OR 0.047, 95% CI 0.015–0.164; P < 0.0001), independently from factors that can influence magnesaemia and HCC development. In a subset of 94 patients with HCC, a linear mixed effects model adjusted for confounders showed that serum Mg at diagnosis of HCC was lower than before diagnosis of the tumor (β = 0.117, 95% CI 0.039–0.194, P = 0.0035) and compared to after locoregional treatment of HCC (β = 0.079, 95% CI 0.010–0.149, P = 0.0259), with two thirds of patients experiencing these changes of serum Mg over time. We hypothesize that most HCCs, like other cancers, may be avid for Mg and behave like a Mg trap, disturbing the body’s Mg balance and resulting in lowering of serum Mg levels.
Collapse
|
12
|
Kwon MJ, Kim JN, Park J, Kim YT, Lee MJ, Kim BJ. Alisma canaliculatum Extract Affects AGS Gastric Cancer Cells by Inducing Apoptosis. Int J Med Sci 2021; 18:2155-2161. [PMID: 33859522 PMCID: PMC8040414 DOI: 10.7150/ijms.55212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
The anti-cancer effects of Alisma canaliculatum extracts (ACE) were identified in AGS gastric cancer cells. Our results showed that ACE inhibited the growth of AGS cells, increased the proportion of sub-G1 phase cells, and depolarized the membrane potential of mitochondria. ACE-induced gastric cancer cell death was associated with Bcl-2, survivin and Bax level changes, and it activated caspase-3 and -9. In addition, it was involved in the activation of MAPKs and increased the reactive oxygen species (ROS). These results suggest that ACE induces apoptosis in AGS gastric cancer cells, and therefore, ACE may have the potential to treat gastric cancer.
Collapse
Affiliation(s)
- Min Ji Kwon
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea
| | - Jeong Nam Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea
| | - Joon Park
- Division of Food Functionality, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
- Department of Food Biotechnology, Korea University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Yun Tai Kim
- Division of Food Functionality, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
- Department of Food Biotechnology, Korea University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Min Jae Lee
- College of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Byung Joo Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea
| |
Collapse
|
13
|
N Rosalez M, Estevez-Fregoso E, Alatorre A, Abad-García A, A Soriano-Ursúa M. 2-Aminoethyldiphenyl Borinate: A Multitarget Compound with Potential as a Drug Precursor. Curr Mol Pharmacol 2020; 13:57-75. [PMID: 31654521 DOI: 10.2174/1874467212666191025145429] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Boron is considered a trace element that induces various effects in systems of the human body. However, each boron-containing compound exerts different effects. OBJECTIVE To review the effects of 2-Aminoethyldiphenyl borinate (2-APB), an organoboron compound, on the human body, but also, its effects in animal models of human disease. METHODS In this review, the information to showcase the expansion of these reported effects through interactions with several ion channels and other receptors has been reported. These effects are relevant in the biomedical and chemical fields due to the application of the reported data in developing therapeutic tools to modulate the functions of the immune, cardiovascular, gastrointestinal and nervous systems. RESULTS Accordingly, 2-APB acts as a modulator of adaptive and innate immunity, including the production of cytokines and the migration of leukocytes. Additionally, reports show that 2-APB exerts effects on neurons, smooth muscle cells and cardiomyocytes, and it provides a cytoprotective effect by the modulation and attenuation of reactive oxygen species. CONCLUSION The molecular pharmacology of 2-APB supports both its potential to act as a drug and the desirable inclusion of its moieties in new drug development. Research evaluating its efficacy in treating pain and specific maladies, such as immune, cardiovascular, gastrointestinal and neurodegenerative disorders, is scarce but interesting.
Collapse
Affiliation(s)
- Melvin N Rosalez
- Department of Physiology, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Diaz Miron S/N, Mexico City, 11340, Mexico
| | - Elizabeth Estevez-Fregoso
- Department of Physiology, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Diaz Miron S/N, Mexico City, 11340, Mexico
| | - Alberto Alatorre
- Department of Physiology, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Diaz Miron S/N, Mexico City, 11340, Mexico
| | - Antonio Abad-García
- Department of Physiology, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Diaz Miron S/N, Mexico City, 11340, Mexico
| | - Marvin A Soriano-Ursúa
- Department of Physiology, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Diaz Miron S/N, Mexico City, 11340, Mexico
| |
Collapse
|
14
|
Anderson KJ, Cormier RT, Scott PM. Role of ion channels in gastrointestinal cancer. World J Gastroenterol 2019; 25:5732-5772. [PMID: 31636470 PMCID: PMC6801186 DOI: 10.3748/wjg.v25.i38.5732] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/26/2019] [Accepted: 09/27/2019] [Indexed: 02/06/2023] Open
Abstract
In their seminal papers Hanahan and Weinberg described oncogenic processes a normal cell undergoes to be transformed into a cancer cell. The functions of ion channels in the gastrointestinal (GI) tract influence a variety of cellular processes, many of which overlap with these hallmarks of cancer. In this review we focus on the roles of the calcium (Ca2+), sodium (Na+), potassium (K+), chloride (Cl-) and zinc (Zn2+) transporters in GI cancer, with a special emphasis on the roles of the KCNQ1 K+ channel and CFTR Cl- channel in colorectal cancer (CRC). Ca2+ is a ubiquitous second messenger, serving as a signaling molecule for a variety of cellular processes such as control of the cell cycle, apoptosis, and migration. Various members of the TRP superfamily, including TRPM8, TRPM7, TRPM6 and TRPM2, have been implicated in GI cancers, especially through overexpression in pancreatic adenocarcinomas and down-regulation in colon cancer. Voltage-gated sodium channels (VGSCs) are classically associated with the initiation and conduction of action potentials in electrically excitable cells such as neurons and muscle cells. The VGSC NaV1.5 is abundantly expressed in human colorectal CRC cell lines as well as being highly expressed in primary CRC samples. Studies have demonstrated that conductance through NaV1.5 contributes significantly to CRC cell invasiveness and cancer progression. Zn2+ transporters of the ZIP/SLC39A and ZnT/SLC30A families are dysregulated in all major GI organ cancers, in particular, ZIP4 up-regulation in pancreatic cancer (PC). More than 70 K+ channel genes, clustered in four families, are found expressed in the GI tract, where they regulate a range of cellular processes, including gastrin secretion in the stomach and anion secretion and fluid balance in the intestinal tract. Several distinct types of K+ channels are found dysregulated in the GI tract. Notable are hERG1 upregulation in PC, gastric cancer (GC) and CRC, leading to enhanced cancer angiogenesis and invasion, and KCNQ1 down-regulation in CRC, where KCNQ1 expression is associated with enhanced disease-free survival in stage II, III, and IV disease. Cl- channels are critical for a range of cellular and tissue processes in the GI tract, especially fluid balance in the colon. Most notable is CFTR, whose deficiency leads to mucus blockage, microbial dysbiosis and inflammation in the intestinal tract. CFTR is a tumor suppressor in several GI cancers. Cystic fibrosis patients are at a significant risk for CRC and low levels of CFTR expression are associated with poor overall disease-free survival in sporadic CRC. Two other classes of chloride channels that are dysregulated in GI cancers are the chloride intracellular channels (CLIC1, 3 & 4) and the chloride channel accessory proteins (CLCA1,2,4). CLIC1 & 4 are upregulated in PC, GC, gallbladder cancer, and CRC, while the CLCA proteins have been reported to be down-regulated in CRC. In summary, it is clear, from the diverse influences of ion channels, that their aberrant expression and/or activity can contribute to malignant transformation and tumor progression. Further, because ion channels are often localized to the plasma membrane and subject to multiple layers of regulation, they represent promising clinical targets for therapeutic intervention including the repurposing of current drugs.
Collapse
Affiliation(s)
- Kyle J Anderson
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, United States
| | - Robert T Cormier
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, United States
| | - Patricia M Scott
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, United States
| |
Collapse
|
15
|
Yu S, Huang S, Ding Y, Wang W, Wang A, Lu Y. Transient receptor potential ion-channel subfamily V member 4: a potential target for cancer treatment. Cell Death Dis 2019; 10:497. [PMID: 31235786 PMCID: PMC6591233 DOI: 10.1038/s41419-019-1708-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 05/13/2019] [Accepted: 05/28/2019] [Indexed: 12/29/2022]
Abstract
The transient receptor potential ion-channel superfamily consists of nonselective cation channels located mostly on the plasma membranes of numerous animal cell types, which are closely related to sensory information transmission (e.g., vision, pain, and temperature perception), as well as regulation of intracellular Ca2+ balance and physiological activities of growth and development. Transient receptor potential ion channel subfamily V (TRPV) is one of the largest and most diverse subfamilies, including TRPV1-TRPV6 involved in the regulation of a variety of cellular functions. TRPV4 can be activated by various physical and chemical stimuli, such as heat, mechanical force, and phorbol ester derivatives participating in the maintenance of normal cellular functions. In recent years, the roles of TRPV4 in cell proliferation, differentiation, apoptosis, and migration have been extensively studied. Its abnormal expression has also been closely related to the onset and progression of multiple tumors, so TRPV4 may be a target for cancer diagnosis and treatment. In this review, we focused on the latest studies concerning the role of TRPV4 in tumorigenesis and the therapeutic potential. As evidenced by the effects on cancerogenesis, TRPV4 is a potential target for anticancer therapy.
Collapse
Affiliation(s)
- Suyun Yu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Shuai Huang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Yushi Ding
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Wei Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China.
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, P. R. China.
| |
Collapse
|
16
|
Sterea AM, Egom EE, El Hiani Y. TRP channels in gastric cancer: New hopes and clinical perspectives. Cell Calcium 2019; 82:102053. [PMID: 31279156 DOI: 10.1016/j.ceca.2019.06.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 02/07/2023]
Abstract
Gastric cancer is a multifactorial disease associated with a combination of and environmental factors. Each year, one million new gastric cancer cases are diagnosed worldwide and two-thirds end up losing the battle with this devastating disease. Currently, surgery represents the only effective treatment option for patients with early stage tumors. However, the asymptomatic phenotype of this disease during the early stages poses as a significant limiting factor to diagnosis and often renders treatments ineffective. To address these issues, scientists are focusing on personalized medicine and discovering new ways to treat cancer patients. Emerging therapeutic options include the transient receptor potential (TRP) channels. Since their discovery, TRP channels have been shown to contribute significantly to the pathophysiology of various cancers, including gastric cancer. This review will summarize the current knowledge about gastric cancer and provide a synopsis of recent advancements on the role and involvement of TRP channels in gastric cancer as well as a discussion of the benefits of targeting TPR channel in the clinical management of gastric cancer.
Collapse
Affiliation(s)
- Andra M Sterea
- Departments of Physiology & Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Emmanuel E Egom
- Egom Clinical & Translational Research Services Ltd, Halifax, Nova Scotia, Canada
| | - Yassine El Hiani
- Departments of Physiology & Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
17
|
Hantute-Ghesquier A, Haustrate A, Prevarskaya N, Lehen'kyi V. TRPM Family Channels in Cancer. Pharmaceuticals (Basel) 2018; 11:ph11020058. [PMID: 29875336 PMCID: PMC6027338 DOI: 10.3390/ph11020058] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/28/2018] [Accepted: 06/01/2018] [Indexed: 12/11/2022] Open
Abstract
Members of the TRPM ("Melastatin") family fall into the subclass of the TRP channels having varying permeability to Ca2+ and Mg2+, with three members of the TRPM family being chanzymes, which contain C-terminal enzyme domains. The role of different TRPM members has been shown in various cancers such as prostate cancer for mostly TRPM8 and TRPM2, breast cancer for mostly TRPM2 and TRPM7, and pancreatic cancer for TRPM2/7/8 channels. The role of TRPM5 channels has been shown in lung cancer, TRPM1 in melanoma, and TRPM4 channel in prostate cancer as well. Thus, the TRPM family of channels may represent an appealing target for the anticancer therapy.
Collapse
Affiliation(s)
- Aline Hantute-Ghesquier
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channels Science and Therapeutics, Department of Biology, Faculty of Science and Technologies, University of Lille, 59650 Villeneuve d'Ascq, France.
| | - Aurélien Haustrate
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channels Science and Therapeutics, Department of Biology, Faculty of Science and Technologies, University of Lille, 59650 Villeneuve d'Ascq, France.
- FONDATION ARC, 9 rue Guy Môquet 94830 Villejuif, France.
| | - Natalia Prevarskaya
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channels Science and Therapeutics, Department of Biology, Faculty of Science and Technologies, University of Lille, 59650 Villeneuve d'Ascq, France.
| | - V'yacheslav Lehen'kyi
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channels Science and Therapeutics, Department of Biology, Faculty of Science and Technologies, University of Lille, 59650 Villeneuve d'Ascq, France.
- FONDATION ARC, 9 rue Guy Môquet 94830 Villejuif, France.
| |
Collapse
|
18
|
Kim HJ, Kim BJ. Naringenin inhibits pacemaking activity in interstitial cells of Cajal from murine small intestine. Integr Med Res 2017; 6:149-155. [PMID: 28664138 PMCID: PMC5478266 DOI: 10.1016/j.imr.2017.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Naringenin (NRG) is a common dietary polyphenolic constituent of fruits. NRG has diverse pharmacological activities, and is used in traditional medicine to treat various diseases including gastrointestinal (GI) disorders. Interstitial cells of Cajal (ICCs) are pacemaker cells of the GI tract. In this study, the authors investigated the effects of NRG on ICCs and on GI motility in vitro and in vivo. METHODS ICCs were dissociated from mouse small intestines by enzymatic digestion. The whole-cell patch clamp configuration was used to record pacemaker potentials in cultured ICC clusters. The effects of NRG on GI motility were investigated by calculating percent intestinal transit rates (ITR) using Evans blue in normal mice. RESULTS NRG inhibited ICC pacemaker potentials in a dose-dependent manner. In the presence of tetraethylammonium chloride or iberiotoxin, NRG had no effect on pacemaker potentials, but it continued to block pacemaker potentials in the presence of glibenclamide. Preincubation with SQ-22536 had no effect on pacemaker potentials or on their inhibition by NRG. However, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one blocked pacemaker potential inhibition by NRG. In addition, L-NG-nitroarginine methyl ester blocked pacemaker potential inhibition by NRG. Furthermore, NRG significantly suppressed murine ITR enhancement by neostigmine in vivo. CONCLUSION This study shows NRG dose-dependently inhibits ICC pacemaker potentials via a cyclic guanosine monophosphate/nitric oxide-dependent pathway and Ca2+-activated K+ channels in vitro. In addition, NRG suppressed neostigmine enhancement of ITR in vivo.
Collapse
Affiliation(s)
| | - Byung Joo Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, Korea
| |
Collapse
|