1
|
Beig M, Parvizi E, Navidifar T, Bostanghadiri N, Mofid M, Golab N, Sholeh M. Geographical mapping and temporal trends of Acinetobacter baumannii carbapenem resistance: A comprehensive meta-analysis. PLoS One 2024; 19:e0311124. [PMID: 39680587 PMCID: PMC11649148 DOI: 10.1371/journal.pone.0311124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 09/04/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Carbapenem-resistant Acinetobacter baumannii (CRAB) is of critical concern in healthcare settings, leading to limited treatment options. In this study, we conducted a comprehensive meta-analysis to assess the prevalence of CRAB by examining temporal, geographic, and bias-related variations. METHODS We systematically searched prominent databases, including Scopus, PubMed, Web of Science, and EMBASE. Quality assessment was performed using the JBI checklist. Subgroup analyses were performed based on the COVID-19 timeframes, years, countries, continents, and bias levels, antimicrobial susceptivity test method and guidelines. RESULTS Our comprehensive meta-analysis, which included 795 studies across 80 countries from 1995 to 2023, revealed a surge in carbapenem resistance among A. baumannii, imipenem (76.1%), meropenem (73.5%), doripenem (73.0%), ertapenem (83.7%), and carbapenems (74.3%). Temporally, 2020-2023 witnessed significant peaks, particularly in carbapenems (81.0%) and meropenem (80.7%), as confirmed by meta-regression, indicating a steady upward trend. CONCLUSION This meta-analysis revealed an alarmingly high resistance rate to CRAB as a global challenge, emphasizing the urgent need for tailored interventions. Transparency, standardized methodologies, and collaboration are crucial for the accurate assessment and maintenance of carbapenem efficacy.
Collapse
Affiliation(s)
- Masoumeh Beig
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Elnaz Parvizi
- Department of Microbiology, Science and Research Branch, Islamic Azad University, Fars, Iran
| | - Tahereh Navidifar
- Shoushtar Faculty of Medical Sciences, Department of Basic Sciences, Shoushtar, Iran
| | - Narjes Bostanghadiri
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Mofid
- School of Medicine, Hamadan University of Medical Science, Hamadan, Iran
| | - Narges Golab
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sholeh
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
- Student Research Committee, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
2
|
Mohamed RAE, Moustafa NM, Mahmoud FM, Elsaadawy YS, Aziz HSA, Gaber SAB, Hussin AM, Seadawy MG. Whole-genome sequencing of two multidrug-resistant acinetobacter baumannii strains isolated from a neonatal intensive care unit in Egypt: a prospective cross-sectional study. BMC Microbiol 2024; 24:362. [PMID: 39306657 PMCID: PMC11415996 DOI: 10.1186/s12866-024-03482-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND Acinetobacter baumannii (A. baumannii) is a life-threatening and challenging pathogen. In addition, it accounts for numerous serious infections, particularly among immunocompromised patients. Resistance to nearly all clinically used antibiotics and their ability to spread this resistance is one of the most important concerns related to this bacterium. OBJECTIVES This study describes different molecular mechanisms of two multidrug-resistant A. baumannii isolates obtained from endotracheal aspirates collected from the neonatal intensive care unit (NICU), Ain Shams University Hospital, Egypt. METHODS Following the identification of two isolates, they were examined for susceptibility to antimicrobial agents. This was followed by multilocus sequence typing as well as whole-genome sequence (WGS). Additionally, a Pathosystems Resources Integration Center (PATRIC) analysis was performed. RESULTS Two isolates, Ab119 and Ab123, exhibited resistance to all tested antibiotics except for tigecycline and colistin. The WGS analysis of antimicrobial resistance genes (AMR) indicated that both isolates shared beta-lactam, aminoglycoside, macrolides, and sulfonamide resistance genes. Furthermore, each strain revealed different resistance genes such as blaNDM-1, blaNDM-10, OXA-64, aph (3')-VI, Tet-B in Ab119 strain and blaOXA-68, blaPER-1, blaPER-7, Tet-39 in Ab123 strain. Multiple efflux pump genes were detected. Multilocus sequence typing indicated that both isolates belong to the same sequence type (ST931), which belongs to international clone (IC3). Both isolates exhibited the presence of multiple mobile genetic elements (MGEs), but no plasmid was detected in either of them. CONCLUSIONS A low prevalence of the IC3 sequence type was identified among two A. baumannii isolates obtained from the NICU in Egypt, exhibiting a high resistance level. Healthcare workers must have knowledge regarding the prevalence of A. baumannii among different populations in order to administer suitable treatment, improve patient outcomes, and apply effective infection control practices.
Collapse
Affiliation(s)
- Rania Alam Eldin Mohamed
- Medical Microbiology and Immunology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nouran Magdy Moustafa
- Medical Microbiology and Immunology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Basic Medical Science Department, College of Medicine, Dar Al Uloom University, Riyadh, Saudi Arabia
| | - Fatma Mostafa Mahmoud
- Medical Microbiology and Immunology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Yara Said Elsaadawy
- Medical Microbiology and Immunology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Heba Sherif Abdel Aziz
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | | | | | - Mohamed G Seadawy
- Biodefense Center for Infectious and Emerging Diseases, Ministry of Defense, Cairo, Egypt
| |
Collapse
|
3
|
Ahuatzin-Flores OE, Torres E, Chávez-Bravo E. Acinetobacter baumannii, a Multidrug-Resistant Opportunistic Pathogen in New Habitats: A Systematic Review. Microorganisms 2024; 12:644. [PMID: 38674589 PMCID: PMC11051781 DOI: 10.3390/microorganisms12040644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 04/28/2024] Open
Abstract
In recent years, humanity has begun to face a growing challenge posed by a rise in the prevalence of antibiotic-resistant bacteria. This has resulted in an alarming surge in fatalities and the emergence of increasingly hard-to-manage diseases. Acinetobacter baumannii can be seen as one of these resilient pathogens due to its increasing prevalence in hospitals, its resistance to treatment, and its association with elevated mortality rates. Despite its clinical significance, the scientific understanding of this pathogen in non-hospital settings remains limited. Knowledge of its virulence factors is also lacking. Therefore, in this review, we seek to shed light on the latest research regarding the ecological niches, microbiological traits, and antibiotic resistance profiles of Acinetobacter baumannii. Recent studies have revealed the presence of this bacterium in a growing range of environmental niches, including rivers, treatment plants, and soils. It has also been discovered in diverse food sources such as meat and vegetables, as well as in farm animals and household pets such as dogs and cats. This broader presence of Acinetobacter baumannii, i.e., outside of hospital environments, indicates a significant risk of environmental contamination. As a result, greater levels of awareness and new preventive measures should be promoted to address this potential threat to public health.
Collapse
Affiliation(s)
- Omar E. Ahuatzin-Flores
- Posgrado en Ciencias Ambientales, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Edificio IC 6. Ciudad Universitaria, Puebla 72570, Mexico;
| | - Eduardo Torres
- Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico;
| | - Edith Chávez-Bravo
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico
| |
Collapse
|
4
|
Multidrug-Resistant Acinetobacter baumannii Infections in the United Kingdom versus Egypt: Trends and Potential Natural Products Solutions. Antibiotics (Basel) 2023; 12:antibiotics12010077. [PMID: 36671278 PMCID: PMC9854726 DOI: 10.3390/antibiotics12010077] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/03/2023] Open
Abstract
Acinetobacter baumannii is a problematic pathogen of global concern. It causes multiple types of infection, especially among immunocompromised individuals in intensive care units. One of the most serious concerns related to this pathogen is its ability to become resistant to almost all the available antibiotics used in clinical practice. Moreover, it has a great tendency to spread this resistance at a very high rate, crossing borders and affecting healthcare settings across multiple economic levels. In this review, we trace back the reported incidences in the PubMed and the Web of Science databases of A. baumannii infections in both the United Kingdom and Egypt as two representative examples for countries of two different economic levels: high and low-middle income countries. Additionally, we compare the efforts made by researchers from both countries to find solutions to the lack of available treatments by looking into natural products reservoirs. A total of 113 studies reporting infection incidence were included, with most of them being conducted in Egypt, especially the recent ones. On the one hand, this pathogen was detected in the UK many years before it was reported in Egypt; on the other hand, the contribution of Egyptian researchers to identifying a solution using natural products is more notable than that of researchers in the UK. Tracing the prevalence of A. baumannii infections over the years showed that the infections are on the rise, especially in Egypt vs. the UK. Further concerns are linked to the spread of antibiotic resistance among the isolates collected from Egypt reaching very alarming levels. Studies conducted in the UK showed earlier inclusion of high-throughput technologies in the tracking and detection of A. baumannii and its resistance than those conducted in Egypt. Possible explanations for these variations are analyzed and discussed.
Collapse
|
5
|
Al-Madboly LA. A Novel Triple Combination To Combat Serious Infections with Carbapenem-Resistant Acinetobacter baumannii in a Mouse Pneumonia Model. Microbiol Spectr 2022; 10:e0271021. [PMID: 35975993 PMCID: PMC9603289 DOI: 10.1128/spectrum.02710-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 07/17/2022] [Indexed: 01/04/2023] Open
Abstract
The ongoing crisis of antimicrobial resistance demands novel combinations between antimicrobials and nonantimicrobials to manage infections caused by highly resistant pathogens. This study aimed to evaluate the effect of combining sodium ascorbate and/or apo-transferrin with imipenem, forming double and triple combinations, against 20 multiple-carbapenemase-producing Acinetobacter baumannii strains using the checkerboard test, time-kill assay, and disc diffusion test. The results of the checkerboard assay revealed that all double combinations showed indifference, while only triple combination recorded a synergistic effect (fractional inhibitory concentration index [FICI] < 0.8) in 95% the test isolates. Moreover, the MIC of imipenem (MICimp) was strongly reduced (up to 128-fold reduction) after treatment with the triple combination against highly resistant isolates and reached the susceptible range. The time-kill assay revealed that the triple combination led to a 4-log10 reduction in the CFU at 8 h compared with the initial bacterial count, and no viable count was recorded at 10 h. The mouse pneumonia model showed restoration of lung function and structure, with mild to moderate residual inflammation and moderately congested vessels observed 8 h following administration of the triple rescue therapy. Additionally, normal lungs with normal patent alveoli were detected 72 h following treatment. Accordingly, sodium ascorbate and apo-transferrin are promising adjunct biological agents with the potential to restore the effectiveness of critically essential antibiotics like imipenem, commonly used for the treatment of A. baumannii infections. IMPORTANCE Combination therapy provides a perspective to threat multidrug-resistant (MDR) strains. The present study sheds light on a novel and effective triple combination against carbapenem-resistant A. baumannii. Our in vitro results showed that combining imipenem with apo-transferrin and sodium ascorbate yielded synergism in 95% of test isolates, and this was associated with a marked reduction in imipenem MIC, shifting it below the breakpoint. Furthermore, a bactericidal effect was recorded, with no viable count detected at 10 h. An in vivo murine model of pneumonia was induced to mimic human disease. The triple combination therapy restored lung function and structure, with mild to moderate residual inflammation and moderately congested vessels observed 8 h following the initiation of therapy. Therefore, our findings suggest novel insights about a promising new combination therapy against highly resistant carbapenemase-producing A. baumannii to restore the effectiveness of imipenem.
Collapse
Affiliation(s)
- Lamiaa A. Al-Madboly
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
6
|
Prevalence of Extended-Spectrum β-Lactamase Genes and Antibiotic Resistance Pattern in Clinical Isolates of Acinetobacter baumannii from Patients Hospitalized in Mashhad, Iran. Jundishapur J Microbiol 2022. [DOI: 10.5812/jjm-118944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Carbapenem-resistant Acinetobacter baumannii strains are one of the most severe factors in hospital infection worldwide, in which the beta-lactamase enzyme is one of the main resistance mechanisms. Objectives: This study aimed to evaluate the presence of carbapenem-resistant beta-lactamase genes and determine antibiotic resistance patterns in the clinical isolates of A. baumannii from patients hospitalized in the Shahid Kamyab Hospital, Mashhad, Iran. Methods: Out of 286 collected isolates from patients hospitalized in Shahid Kamyab Hospital (from March 2017 to June 2017), 31 isolates were confirmed to be A. baumannii using biochemical tests. Antibiotic susceptibility testing was conducted using the disc diffusion method according to the CLSI standard protocols. The presence of beta-lactamase genes, namely blaVEB, blaPER, blaAmpC, blaVIM, blaIMP, blaSHV, and blaTEM, was detected using polymerase chain reaction. Results: In this study, 31 isolates were identified as Acinetobacter baumannii, all of which revealed high resistance to ceftazidime, cefixime, ceftriaxone, meropenem, imipenem, cefotaxime and cephalexin. In this case, the lowest resistance (19.35%) was observed against polymixin B. Moreover, blaAmpC, blaTEM, blaSHV, blaPER, and blaVIM were observed in 93.54% (29), 51.61% (16), 48.38% (15), 41.93% (13), and 77% (24) of the isolates, respectively. However, blaVEB and blaIMP were observed in none of the isolates. Conclusions: The results showed high carbapenem resistance and high frequency of beta-lactamase resistance genes among the clinical isolates of A. baumannii.
Collapse
|
7
|
Wasfi R, Rasslan F, Hassan SS, Ashour HM, Abd El-Rahman OA. Co-Existence of Carbapenemase-Encoding Genes in Acinetobacter baumannii from Cancer Patients. Infect Dis Ther 2021; 10:291-305. [PMID: 33180321 PMCID: PMC7954895 DOI: 10.1007/s40121-020-00369-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 10/24/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Acinetobacter baumannii is an opportunistic pathogen, which can acquire new resistance genes. Infections by carbapenem-resistant A. baumannii (CRAB) in cancer patients cause high mortality. METHODS CRAB isolates from cancer patients were screened for carbapenemase-encoding genes that belong to Ambler classes (A), (B), and (D), followed by genotypic characterization by enterobacterial-repetitive-Intergenic-consensus-polymerase chain reaction (ERIC-PCR) and multilocus-sequence-typing (MLST). RESULTS A total of 94.1% of CRAB isolates co-harbored more than one carbapenemase-encoding gene. The genes blaNDM, blaOXA-23-like, and blaKPC showed the highest prevalence, with rates of 23 (67.7%), 19 (55.9%), and 17 (50%), respectively. ERIC-PCR revealed 19 patterns (grouped into 9 clusters). MLST analysis identified different sequence types (STs) (ST-268, ST-195, ST-1114, and ST-1632) that belong to the highly resistant easily spreadable International clone II (IC II). Genotype diversity indicated the dissemination of carbapenem-hydrolyzing, β-lactamase-encoding genes among genetically unrelated isolates. We observed a high prevalence of metallo-β-lactamase (MBL)-encoding genes (including the highly-resistant blaNDM gene that is capable of horizontal gene transfer) and of isolates harboring multiple carbapenemase-encoding genes from different classes. CONCLUSION The findings are alarming and call for measures to prevent and control the spread of MBL-encoding genes among bacteria causing infections in cancer patients and other immunocompromised patient populations.
Collapse
Affiliation(s)
- Reham Wasfi
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Fatma Rasslan
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Safaa S Hassan
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Hossam M Ashour
- Department of Integrative Biology, College of Arts and Sciences, University of South Florida, St. Petersburg, FL, USA.
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Ola A Abd El-Rahman
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
8
|
Al-Hassan L, Elbadawi H, Osman E, Ali S, Elhag K, Cantillon D, Wille J, Seifert H, Higgins PG. Molecular Epidemiology of Carbapenem-Resistant Acinetobacter baumannii From Khartoum State, Sudan. Front Microbiol 2021; 12:628736. [PMID: 33717019 PMCID: PMC7952628 DOI: 10.3389/fmicb.2021.628736] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/10/2021] [Indexed: 12/16/2022] Open
Abstract
Carbapenem resistant Acinetobacter baumannii (CRAb) is an important global pathogen contributing to increased morbidity and mortality in hospitalized patients, due to limited alternative treatment options. Nine international clonal (IC) lineages have been identified in many countries worldwide, however, data still lacks from some parts of the world, particularly in Africa. We hereby present the molecular epidemiology of MDR A. baumannii from four hospitals in Khartoum, Sudan, collected from 2017 to 2018. Forty-two isolates were whole-genome sequenced, and subsequent molecular epidemiology was determined by core genome MLST (cgMLST), and their resistomes identified. All isolates had an array of diverse antibiotic resistance mechanisms conferring resistance to multiple classes of antibiotics. We found a predominance (88%) of IC2 (with the intrinsic OXA-66 and acquired OXA-23), and some with NDM-1. IC2 isolates were sub-divided into 4 STs separated by 5 to 431 allelic differences, and with evidence of seven transmission clusters. Isolates belonging to IC1, IC5, and IC9 were also identified. These data illustrate that MDR IC2 A. baumannii are widely distributed in Khartoum hospitals and are in possession of multiple antibiotic resistance determinants.
Collapse
Affiliation(s)
- Leena Al-Hassan
- Department of Global Health and Infection, Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Hana Elbadawi
- Department of Microbiology, Soba University Hospital, University of Khartoum, Khartoum, Sudan
| | - Einas Osman
- Faculty of Medical Laboratories, Microbiology Department, Ibn Sina University, Khartoum, Sudan
- Bioscience Research Institute, Ibn Sina University, Khartoum, Sudan
| | - Sara Ali
- College of Health Sciences, Medical Laboratory Sciences Program, Gulf Medical University, Ajman, United Arab Emirates
| | - Kamal Elhag
- Department of Microbiology, Soba University Hospital, University of Khartoum, Khartoum, Sudan
| | - Daire Cantillon
- Department of Global Health and Infection, Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Julia Wille
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
- German Centre for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
| | - Harald Seifert
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
- German Centre for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
| | - Paul G. Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
- German Centre for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
| |
Collapse
|