1
|
McGarry RJ, Varvarezos L, Pryce MT, Long C. Excited-State Dynamics Leading Either to Triplet Formation or Coordinative Expansion following Photolysis of Cu(II)-Porphyrins: A DFT, TD-DFT, Luminescence and Femtosecond Time-Resolved Absorbance Study. Molecules 2023; 28:6310. [PMID: 37687139 PMCID: PMC10488807 DOI: 10.3390/molecules28176310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
The photophysical properties of Cu(II) complexes with 5,10,15,20-meso-tetrakis(phenyl)porphyrin and 5,10,15,20-meso-tetrakis(N-methylpyridium-4-yl)porphyrin are examined via the luminescence and femtosecond time-resolved absorbance methods, respectively. These studies are supported by DFT and TD-DFT calculations, which highlight the important role played by ligand-to-metal charge-transfer states in directing the system toward either intersystem crossing to the triplet hypersurface or coordinative expansion to a five-coordinate quasi-stable intermediate. The latter processes occur when the porphyrin is photolyzed in the presence of suitably located Lewis bases. Femtosecond time-resolved absorbance measurements of Cu(II)-5,10,15,20-meso-tetrakis(N-methylpyridium-4-yl)porphyrin confirm that the coordinative expansion in water occurs in approximately 700 fs, while crossing to the triplet hypersurface takes approximately 140 fs in the same solvent. These processes are mutually exclusive, although both can occur simultaneously depending on the environment of the porphyrin. The ratio of the two processes depends on the relative orientation of the Lewis base with respect to the copper atom at the time of excitation. As a consequence, copper porphyrins such as these are excellent probes in the environment of the porphyrin and can be used to identify the location of the porphyrin when interacting with DNA fragments.
Collapse
Affiliation(s)
- Ross J. McGarry
- School of Chemical Sciences, Dublin City University, D09 V209 Dublin, Ireland; (R.J.M.); (M.T.P.)
| | - Lazaros Varvarezos
- School of Physical Sciences, Dublin City University, D09 V209 Dublin, Ireland;
| | - Mary T. Pryce
- School of Chemical Sciences, Dublin City University, D09 V209 Dublin, Ireland; (R.J.M.); (M.T.P.)
| | - Conor Long
- School of Chemical Sciences, Dublin City University, D09 V209 Dublin, Ireland; (R.J.M.); (M.T.P.)
| |
Collapse
|
2
|
Application of Hydrogen-Bonded Organic Frameworks in Environmental Remediation: Recent Advances and Future Trends. SEPARATIONS 2023. [DOI: 10.3390/separations10030196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
The hydrogen-bonded organic frameworks (HOFs) are a class of porous materials with crystalline frame structures, which are self-assembled from organic structures by hydrogen bonding in non-covalent bonds π-π packing and van der Waals force interaction. HOFs are widely used in environmental remediation due to their high specific surface area, ordered pore structure, pore modifiability, and post-synthesis adjustability of various physical and chemical forms. This work summarizes some rules for constructing stable HOFs and the synthesis of HOF-based materials (synthesis of HOFs, metallized HOFs, and HOF-derived materials). In addition, the applications of HOF-based materials in the field of environmental remediation are introduced, including adsorption and separation (NH3, CO2/CH4 and CO2/N2, C2H2/C2He and CeH6, C2H2/CO2, Xe/Kr, etc.), heavy metal and radioactive metal adsorption, organic dye and pesticide adsorption, energy conversion (producing H2 and CO2 reduced to CO), organic dye degradation and pollutant sensing (metal ion, aniline, antibiotic, explosive steam, etc.). Finally, the current challenges and further studies of HOFs (such as functional modification, molecular simulation, application extension as remediation of contaminated soil, and cost assessment) are discussed. It is hoped that this work will help develop widespread applications for HOFs in removing a variety of pollutants from the environment.
Collapse
|
3
|
Liu Y, Chang G, Zheng F, Chen L, Yang Q, Ren Q, Bao Z. Hybrid Hydrogen-Bonded Organic Frameworks: Structures and Functional Applications. Chemistry 2023; 29:e202202655. [PMID: 36414543 DOI: 10.1002/chem.202202655] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
As a new class of porous crystalline materials, hydrogen-bonded organic frameworks (HOFs) assembled from building blocks by hydrogen bonds have gained increasing attention. HOFs benefit from advantages including mild synthesis, easy purification, and good recyclability. However, some HOFs transform into unstable frameworks after desolvation, which hinders their further applications. Nowadays, the main challenges of developing HOFs lie in stability improvement, porosity establishment, and functionalization. Recently, more and more stable and permanently porous HOFs have been reported. Of all these design strategies, stronger charge-assisted hydrogen bonds and coordination bonds have been proven to be effective for developing stable, porous, and functional solids called hybrid HOFs, including ionic and metallized HOFs. This Review discusses the rational design synthesis principles of hybrid HOFs and their cutting-edge applications in selective inclusion, proton conduction, gas separation, catalysis and so forth.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Biomass Chemical Engineering of, Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang Province, 310027, P.R. China
| | - Ganggang Chang
- State Key Laboratory of Advanced Technology for, Materials Synthesis and Processing, School of Chemistry Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei Province, 430070, P.R. China
| | - Fang Zheng
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province, 324000, P.R. China
| | - Lihang Chen
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province, 324000, P.R. China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of, Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang Province, 310027, P.R. China.,Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province, 324000, P.R. China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of, Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang Province, 310027, P.R. China.,Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province, 324000, P.R. China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of, Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang Province, 310027, P.R. China.,Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province, 324000, P.R. China
| |
Collapse
|
4
|
Fujii T, Kato C, Mahan B, Moynier F. Study on the Isotope fractionation of Zinc in Complexation with Macrocyclic Polyethers. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202000413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Toshiyuki Fujii
- Division of Sustainable Energy and Environmental Engineering Graduate School of Engineering Osaka University 2-1 Yamadaoka Suita Osaka 565-0871 Japan
| | - Chizu Kato
- Division of Sustainable Energy and Environmental Engineering Graduate School of Engineering Osaka University 2-1 Yamadaoka Suita Osaka 565-0871 Japan
| | - Brandon Mahan
- Earth and Environmental Science James Cook University Townsville Queensland 4811 Australia
| | - Frédéric Moynier
- Université de Paris Institut de Physique du Globe de Paris, CNRS F-75005 Paris France
| |
Collapse
|
5
|
Lü X, Du YX, Mele G, Li J, Ni W, Zhao Y. Impact of metalloporphyrin‐based porous coordination polymers on catalytic activities for the oxidation of alkylbenzene. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiang‐fei Lü
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of EducationSchool of Water and Environment, Chang'An University No. 126 Yanta Road, Xi'an Shaanxi 710054 P. R. China
- CCCC First Highway Consultants Co., LTD No. 205 Science and Technology Road Xi'an Shaanxi 710075 P. R. China
| | - Yan xia Du
- Shuangliu Middle School in Sichuan Province No. 39 Square Road, District Shuangliu Chengdu Sichuan 610200 P. R. China
| | - Giuseppe Mele
- Department of Engineering for InnovationUniversity of Salento via Arnesano Lecce 73100 Italy
| | - Jun Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials ScienceNorthwest University Xi'an Shaanxi 710069 P. R. China
| | - Wan‐kui Ni
- Department of Geological EngineeringCollege of Geological Engineering and Geomatics, Chang'An University No. 126 Yanta Road, Xi'an Shaanxi 710054 P. R. China
| | - Yong‐guo Zhao
- CCCC First Highway Consultants Co., LTD No. 205 Science and Technology Road Xi'an Shaanxi 710075 P. R. China
| |
Collapse
|
6
|
Rayati S, Nejabat F, Panjiali F. Aerobic oxidation of olefins in the presence of a new amine functionalized core–shell magnetic nanocatalyst. CATAL COMMUN 2019. [DOI: 10.1016/j.catcom.2019.01.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
7
|
Nejabat F, Rayati S. Surface modification of multi-walled carbon nanotubes to produce a new bimetallic Fe/Mn catalyst for the aerobic oxidation of hydrocarbons. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.09.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Yavuz O, Alcay Y, Kaya K, Sezen M, Kirlangic Atasen S, Yildirim MS, Ozkilic Y, Tuzun NŞ, Yilmaz I. Superior Sensor for Be2+ Ion Recognition via the Unprecedented Octahedral Crystal Structure of a One-Dimensional Coordination Polymer of Crown Fused Zinc Phthalocyanine. Inorg Chem 2018; 58:909-923. [DOI: 10.1021/acs.inorgchem.8b03038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ozgur Yavuz
- Istanbul Technical University, Department of Chemistry, 34469 Maslak, Istanbul, Turkey
| | - Yusuf Alcay
- Istanbul Technical University, Department of Chemistry, 34469 Maslak, Istanbul, Turkey
| | - Kerem Kaya
- Istanbul Technical University, Department of Chemistry, 34469 Maslak, Istanbul, Turkey
| | - Mustafa Sezen
- Istanbul Technical University, Department of Chemistry, 34469 Maslak, Istanbul, Turkey
| | | | | | - Yilmaz Ozkilic
- Istanbul Technical University, Department of Chemistry, 34469 Maslak, Istanbul, Turkey
| | - Nurcan Şenyurt Tuzun
- Istanbul Technical University, Department of Chemistry, 34469 Maslak, Istanbul, Turkey
| | - Ismail Yilmaz
- Istanbul Technical University, Department of Chemistry, 34469 Maslak, Istanbul, Turkey
| |
Collapse
|
9
|
Lu G, Bao L, Hu X, Liu X, Zhu W. Synthesis, spectroscopic characterization and photocatalytic properties of corrole modified GPTMS/TiO2 nanoparticles. INORG CHEM COMMUN 2018. [DOI: 10.1016/j.inoche.2018.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
10
|
Wang HH, Liu HY, Cheng F, Ali A, Shi L, Xiao XY, Chang CK. Silver(II) 5,10,15,20-tetra(ethoxycarbonyl) porphyrin: An unexpected six-coordinate linear assembled structure. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.12.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
11
|
Huang G, Yan C, Cai JL, Mo LQ, Zhao SK, Guo YA, Wei SJ, Shen YL. Practicably efficient ethylbenzene oxidation catalyzed by manganese tetrakis(4-sulfonatophenyl)porphyrin grafted to powdered chitosan. J PORPHYR PHTHALOCYA 2018. [DOI: 10.1142/s1088424618500414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Manganese tetrakis(4-sulfonatophenyl)porphyrin chloride was grafted onto powdered chitosan via an acid–base reaction and ligation. The grafted catalyst was characterized by transmission electron microscopy, ultraviolet and visible spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectrometry and thermogravimetry. Ethylbenzene oxidation with O[Formula: see text] by the catalyst in the absence of additives and solvents can achieve moderate yields (approximately 30%) of acetophenone and phenethyl alcohol. The grafted catalyst can be reused four times for oxidation reactions. The results indicate that the catalytic activity of manganese tetrakis(4-sulfonatophenyl)porphyrin chloride is promoted by the ligation and grafting function of the amino groups in the powdered chitosan.
Collapse
Affiliation(s)
- Guan Huang
- College of Chemistry and Chemical Engineering, Guangxi University, No.100 Daxue Road, Xixiangtang District, Nanning, 530004, P. R. China
| | - Chao Yan
- College of Chemistry and Chemical Engineering, Guangxi University, No.100 Daxue Road, Xixiangtang District, Nanning, 530004, P. R. China
| | - Jing Li Cai
- College of Chemistry and Chemical Engineering, Guangxi University, No.100 Daxue Road, Xixiangtang District, Nanning, 530004, P. R. China
| | - Lin Qiang Mo
- College of Chemistry and Chemical Engineering, Guangxi University, No.100 Daxue Road, Xixiangtang District, Nanning, 530004, P. R. China
| | - Shu Kai Zhao
- College of Chemistry and Chemical Engineering, Guangxi University, No.100 Daxue Road, Xixiangtang District, Nanning, 530004, P. R. China
| | - Yong An Guo
- College of Chemistry and Chemical Engineering, Guangxi University, No.100 Daxue Road, Xixiangtang District, Nanning, 530004, P. R. China
| | - Su Juan Wei
- College of Chemistry and Chemical Engineering, Guangxi University, No.100 Daxue Road, Xixiangtang District, Nanning, 530004, P. R. China
| | - Yan Ling Shen
- College of Chemistry and Chemical Engineering, Guangxi University, No.100 Daxue Road, Xixiangtang District, Nanning, 530004, P. R. China
| |
Collapse
|
12
|
Effect of Mesoporous Chitosan Action and Coordination on the Catalytic Activity of Mesoporous Chitosan-Grafted Cobalt Tetrakis(p-Sulfophenyl)Porphyrin for Ethylbenzene Oxidation. Catalysts 2018. [DOI: 10.3390/catal8050199] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
13
|
Chen Y, Guo Y, Hu H, Wang S, Lin Y, Huang Y. Achieving low temperature formaldehyde oxidation: A case study of NaBH 4 reduced cobalt oxide nanowires. INORG CHEM COMMUN 2017. [DOI: 10.1016/j.inoche.2017.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
14
|
Hou J, Dai H, Zhang Z, Li J, Li X, Deng K, Zeng Q. Self-Assembly and External Modulation of a Flexible Porphyrin Derivative on Highly Oriented Pyrolytic Graphite. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:400-406. [PMID: 27936803 DOI: 10.1021/acs.langmuir.6b03567] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
With the aid of scanning tunneling microscopy, we have examined the two-dimensional hydrogen-bonded networks of carboxyl-functionalized porphyrin derivative H2TCPp molecules at the heptanoic acid/HOPG interface. Moreover, we have successfully modulated the self-assembly structure of H2TCPp by introducing 1,2-di(4-pyridyl)ethylene molecules into the assembled system. By performing density functional theory calculations, we also revealed the formation mechanisms of the different assemblies and the modulation process. Comparing the self-assembly structures at the liquid/solid interface with those in bulk crystals, we have obtained deep insight into the differences in H2TCPp assemblies between 2D and 3D networks. Furthermore, this research is expected to deepen our understanding of on-surface phenomena and to provide a feasible process toward 2D assembly regulation.
Collapse
Affiliation(s)
- Jingfei Hou
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Hongliang Dai
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Zengqi Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University , Xi'an 710069, P. R. China
| | - Jun Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University , Xi'an 710069, P. R. China
| | - Xiaokang Li
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University , Ganzhou 34100, Jiangxi, P. R. China
| | - Ke Deng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Qingdao Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| |
Collapse
|
15
|
Du YX, Zhang ZQ, Yao YH, Li J. Synthesis, structures and properties of a meso -substituted pyrazolyl porphyrin and its Co(II) porphyrin complex. INORG CHEM COMMUN 2016. [DOI: 10.1016/j.inoche.2015.12.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|