1
|
Mohsin N, Khalid S, Rasool N, Aman L, Kanwal A, Imran M. Metallo-Organic Complexes Containing Transition Metals; Synthetic Approaches and Pharmaceutical Aspects. Chempluschem 2025:e202400748. [PMID: 39988561 DOI: 10.1002/cplu.202400748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/05/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Coordination compounds offer a flexible framework for the thoughtful design of novel therapeutic-metallodrugs because of the unique properties of metal ions, such as their ability to coordinate with a wide range of organic ligands, variable oxidation states, a wide range of geometries, and coordination numbers. The pharmaceutical potential of a metal ion and associated substances is validated by the prevalence of various disease states linked to a metal ion's excess or deficiency within the biological system. Researchers have sought more selective, efficacious metallodrugs that cause fewer adverse effects. Attempts have resulted in considering a large range of organic ligands, preferably polydentate ligands with demonstrated biological activity, and a large range of metals from the periodic table, primarily from the d-block. In this review, we have outlined the key coordination complexes comprising N-, O-, and S-donor ligands reported in the last six years to demonstrate the potential applications of these metallo-organic complexes. The synthetic pathways of ligands, their complexes, and their potential for therapeutic applications are highlighted.
Collapse
Affiliation(s)
- Nayab Mohsin
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Shehla Khalid
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Nasir Rasool
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Labiqa Aman
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Aqsa Kanwal
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Imran
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| |
Collapse
|
2
|
S SRS, Dhanaraj CJ, T R. Artificial Neural Network-Based Validation, DFT, Thermal and Biological Evaluation of 4-Aminoantipyrine-Derived Ru(III) Complexes. Appl Biochem Biotechnol 2025:10.1007/s12010-024-05178-w. [PMID: 39821503 DOI: 10.1007/s12010-024-05178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2024] [Indexed: 01/19/2025]
Abstract
New methodologies have been evaluated for validating analytical characterization with artificial neural networks (ANNs). Compared to previous machine learning models, these provide more accurate and automated results with high testing accuracy. The Schiff base ruthenium complexes used in the proposed study were synthesized using 4-aminoantipyrine derivatives. 4-Aminoantipyrine is a biologically active pharmacophore. The geometry of the complexes was confirmed by IR, electronic, and magnetic measurements. XRD analysis pointed out the nanocrystalline behavior of the chelates. The molecular structures have been optimized using DFT calculations. The ruthenium complexes are one of the main chemotherapeutic agents in anticancer therapy over platinum drugs due to a wide range of peculiarities. Complexes exhibit octahedral geometry as confirmed by magnetic measurements exhibiting more biological activity. The complexes are redox active depicting high biological potency. The Ru chelates also display high photocatalytic efficiency. The chelates also adhere to Lipinski's rule of five as evidenced from mole inspiration calculations. Among the chelates, RuL3 exhibits high anticancer potency suggesting a valuable candidate for the treatment of cancer. RuL5 has high antibacterial efficiency, and RuL4 complex possesses high antifungal activity. The chelates may serve as potential antimicrobial agents.
Collapse
Affiliation(s)
- Salin Raj S S
- Department of Chemistry, University College of Engineering, Nagercoil, 629004, India
| | | | - Rasappan T
- Department of Physics, Govt. Polytechnic College, Nagercoil, 629004, India
| |
Collapse
|
3
|
Tahir MN, Rashid Z, Munawar KS, Ashfaq M, Sultan A, Islam MS, Lai CH. Synthesis, characterization, and exploration of supramolecular assembly in a 4-aminophenazone derivative: A comprehensive study including hirshfeld surface analysis, computational investigation, and molecular docking. J Mol Struct 2024; 1308:137953. [DOI: 10.1016/j.molstruc.2024.137953] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
|
4
|
Fahmy HM, Abdel-Rahman FM, El-Sayed AA, El-Sherif AA. Study of novel bidentate heterocyclic amine-based metal complexes and their biological activities: cytotoxicity and antimicrobial activity evaluation. BMC Chem 2023; 17:78. [PMID: 37454081 PMCID: PMC10349454 DOI: 10.1186/s13065-023-00996-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023] Open
Abstract
Metallic antitumor drugs with heterocyclic ligands, such as novel AMI (amino methyl imidazole) complexes [Pd(AMI)Cl2](1), [Cu(AMI)L1](2), and [Cu(AMI)L2·2H2O](3) where L1 = oxalate and L2 = malonate, were synthesized and characterized. Assessments included elemental analyses, mass spectrometry, Fourier transform-infrared spectroscopy, ultraviolet-visible spectroscopy, and thermal analysis. The cytotoxicity of AMI complexes compared to cisplatin was assessed using MTT (3-[4,5-dimethylthiazol-2-yl] 2,5diphenyl tetrazolium bromide) assay with breast (MCF-7) and cervical (HeLa) cancer cell lines. After treating these cells with the AMI complexes' IC50 values for 48 h, malondialdehyde levels and catalase activity were used to assess oxidative stress, antioxidant activity was evaluated with DPPH radical scavenging method, comet assays assessed DNA damage, and DNA fragmentation was evaluated using the gel electrophoresis. In vitro, antimicrobial activity was assessed using a disc diffusion method. The anticancer activity results showed that IC50 (half-maximal inhibitory concentration) values of complex one, two, and three against MCF-7 and HeLa cancer cells are 0.156 ± 0.0006, 0.125 ± 0.001, 0.277 ± 0.002 μM respectively for MCF-7 cells and 0.222 ± 0.0005, 0.126 ± 0.0009, 0.152 ± 0.001 μM respectively for HeLa cells. Complex two demonstrated strong anticancer activity against MCF-7 and Hela cells. The study of oxidative stress parameters revealed that Malondialdehyde levels increased in cancer cell lines treated with complexes compared to untreated cells. Catalase activity decreased in cells treated with palladium chelate. The DPPH radical scavenging assay results identified that complex one was a more potent antioxidant in MCF-7 and Hela cells than other complexes with SC50 values of 227.5 ± 0.28 and 361 ± 1.2 μL/mL, respectively. The comet assay results showed that complex two caused significant DNA damage in MCF-7 and HeLa cancer cells treated. Antimicrobial assays identified complex three as the most effective. Copper complexes give better antifungal activity against A. flavus than the palladium complex. We conclude that complex two is the most active in both cell types and might be assessed as a clinically useful drug for breast cancer treatment. The significance of the current study is the synthesis of antitumor drugs containing heterocyclic ligands, such as novel AMI complexes, and the study of their biological activities.
Collapse
Affiliation(s)
- Heba M Fahmy
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
| | | | - Anwar A El-Sayed
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Ahmed A El-Sherif
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
5
|
Ismail BA, Abd El-Wahab ZH, Ali OAM, Nassar DA. Synthesis, structural characterization, and antimicrobial evaluation of new mononuclear mixed ligand complexes based on furfural-type imine ligand, and 2,2'-bipyridine. Sci Rep 2023; 13:9196. [PMID: 37280267 DOI: 10.1038/s41598-023-36060-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/29/2023] [Indexed: 06/08/2023] Open
Abstract
The present investigation goal was to investigate the chemistry of four new mononuclear mixed ligand Fe(III), Co(II), Cu(II), and Cd(II) complexes constructed from furfural-type imine ligand (L), and the co ligand 2,2'-bipyridine in addition to assessing their antimicrobial activity against some bacterial, and fungi strains. The structure of the complexes was interpreted by different spectroscopic techniques such as MS, IR, 1H NMR, UV-Vis, elemental analysis, TG-DTG, conductivity, and magnetic susceptibility measurements. The correlation of all results revealed that ligand (L) acts as a neutral ONNO tetradentate whereas the co ligand acts as a neutral NN bidentate. The coordination of the ligands with the metal ions in a molar ratio of 1:1:1 leads to formation of an octahedral geometry around the metal ions. The octahedral geometry has been validated and optimized by DFT analysis. Conductivity data showed the electrolytic nature of all complexes. The thermal stability of all complexes was deduced in addition to evaluating some thermodynamic, and kinetic parameters using Coats-Redfern method. Furthermore, all complexes in comparison to their parent ligands were tested for their biological potency against some pathogenic bacterial, and fungi strains using the paper disk diffusion method. [CdL(bpy)](NO3)2 complex revealed the highest antimicrobial activity.
Collapse
Affiliation(s)
- Basma A Ismail
- Chemistry Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Zeinab H Abd El-Wahab
- Chemistry Department, Faculty of Science (Girl's), Al-Azhar University, Youssif Abbas St., P.O. Box 11754, Nasr City, Cairo, Egypt.
| | - Omyma A M Ali
- Chemistry Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Doaa A Nassar
- Chemistry Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| |
Collapse
|
6
|
Dinuclear Zn(II) complexes with Schiff base ligands derived from 4-aminoantipyrine; crystal structure and catalytic activity in the synthesis of tetrazoles. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
7
|
Alka, Gautam S, Kumar R, Singh P, Gandhi N, Jain P. Pharmacological aspects of Co(II), Ni(II) and Cu(II) schiff base complexes: An insight. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
|
8
|
Kanwal A, Parveen B, Ashraf R, Haider N, Ali KG. A review on synthesis and applications of some selected Schiff bases with their transition metal complexes. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2138364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Attia Kanwal
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Bushra Parveen
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Rizwan Ashraf
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Noman Haider
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Kulsoom Ghulam Ali
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| |
Collapse
|
9
|
Aleshahidi M, Gholizadeh M, Seyedi SM. Bivalent metal complexes of a novel Schiff base of vitamin B6: green synthesis, characterization, DFT studies, AIM analysis and antibacterial studies. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04833-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Hojjati A, Mansournia M. Synthesis, characterization, theoretical study and anticancer application of a new asymmetric ligand, N‐trans‐cinnamylidene‐1,2‐phenylenediamine, and its complexes. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Ahmad Hojjati
- Department of Inorganic Chemistry, Faculty of Chemistry University of Kashan Kashan I. R. Iran
| | - Mohammadreza Mansournia
- Department of Inorganic Chemistry, Faculty of Chemistry University of Kashan Kashan I. R. Iran
| |
Collapse
|
11
|
Thangarasu S, Chitradevi A, Siva V, Shameem A, Murugan A, Viswanathan TM, Athimoolam S, Bahadur SA. Structural, Spectroscopic, Cytotoxicity and Molecular Docking Studies of Charge Transfer Salt: 4-Aminiumantipyrine Salicylate. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2064883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- S. Thangarasu
- Department of Physics, School of Advanced Sciences, Kalasalingam Academy of Research and Education, Krishnankoil, India
- Condensed Matter Physics Laboratory, International Research Centre, Kalasalingam Academy of Research and Education, Krishnankoil, India
| | - A. Chitradevi
- Department of Physics, Sri Subramanya College of Engineering and Technology, Palani, India
| | - V. Siva
- Department of Physics, Karpagam Academy of Higher Education, Coimbatore, India
| | - A. Shameem
- Department of Physics, School of Advanced Sciences, Kalasalingam Academy of Research and Education, Krishnankoil, India
- Condensed Matter Physics Laboratory, International Research Centre, Kalasalingam Academy of Research and Education, Krishnankoil, India
| | - A. Murugan
- Department of Physics, School of Advanced Sciences, Kalasalingam Academy of Research and Education, Krishnankoil, India
- Condensed Matter Physics Laboratory, International Research Centre, Kalasalingam Academy of Research and Education, Krishnankoil, India
| | - T. M. Viswanathan
- Department of Biotechnology, School of Bio and Chemical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, India
| | - S. Athimoolam
- Department of Physics, University College of Engineering Nagercoil, Anna University, Nagercoil, India
| | - S. Asath Bahadur
- Department of Physics, School of Advanced Sciences, Kalasalingam Academy of Research and Education, Krishnankoil, India
- Condensed Matter Physics Laboratory, International Research Centre, Kalasalingam Academy of Research and Education, Krishnankoil, India
| |
Collapse
|
12
|
Marimuthu B, Saravanaselvam S, Michael S, Jeyaraman P, Arulannandham X. Synthesis, characterization, in vitro, in silico and in vivo investigations and biological assessment of Knoevenagel condensate β-diketone Schiff base transition metal complexes. J Biomol Struct Dyn 2022; 41:3800-3820. [PMID: 35403564 DOI: 10.1080/07391102.2022.2056509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A novel Schiff base ligand was synthesized by the Knoevenagel condensation of β-diketone (obtained from substituted Curcumin and Cuminaldehyde) and 4-amino antipyrine. Metal complexes were made from this Schiff base by reacting with metal salts such as Cu(II), Ni(II), Ru(III), VO(IV), and Ce(IV). Physicochemical approaches such as UV-Vis, FT-IR, NMR, EPR, and Mass spectroscopy were used to determine the geometry of the complexes. The thermodynamic stability and biological accessibility of the complexes were investigated using density functional theory (DFT) calculations at the B3LYP/6-31G(d) level. A molecular docking analysis was also performed on 1BNA receptor. Both the Schiff base ligand and metal complexes interacted well to this protein receptor. All metal complexes have a significant potential to bind to CT DNA via the intercalation mechanism. All the in vivo and in vitro screening studies showed that the complexes exhibit higher activities than the free Schiff base.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Samuel Michael
- Research Department of Chemistry, VHNSN College, Virudhunagar, India
| | - Porkodi Jeyaraman
- Research Department of Chemistry, The Standard Fireworks Rajarathinam College for Women, Sivakasi, India
| | | |
Collapse
|
13
|
Siva V, Chitra Devi A, Thangarasu S, Viswanathan T, Athimoolam S, Bahadur SA. Design, structural, DFT, molecular docking studies and biological evaluation of 4-aminiumantipyrine dihydrogenphosphate monohydrate. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
14
|
Hashem HE, Nath A, Kumer A. Synthesis, molecular docking, molecular dynamic, quantum calculation, and antibacterial activity of new Schiff base-metal complexes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Jayathuna MA, Ahmed S, Kim YG, Gajendiran M, Kim K, Rahiman AK. Ferrocenylimine-based homoleptic metal(II) complexes: Theoretical, biocompatibility, in vitro anti-proliferative, and in silico molecular docking and pharmacokinetics studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Adhikari J, Bhattarai A, Chaudhary NK. Synthesis, characterization, physicochemical studies, and antibacterial evaluation of surfactant-based Schiff base transition metal complexes. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02062-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
17
|
Wang Y. SYNTHESIS, CRYSTAL STRUCTURES, AND UREASE INHIBITORY ACTIVITY OF SCHIFF BASE COPPER AND NICKEL COMPLEXES. J STRUCT CHEM+ 2021. [DOI: 10.1134/s0022476621110020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Omar (Al-Ahdal) ZT, Jadhav S, Pathrikar R, Shejul S, Rai M. Synthesis, Magnetic Susceptibility, Thermodynamic Study and Bio-Evaluation of Transition Metal Complexes of New Schiff Base Incorporating INH Pharmacophore. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.2015397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Shivaji Jadhav
- Department of Chemistry, Tarai College Arts and Science, Aurangabad, Maharashtra, India
| | - Rashmi Pathrikar
- Department of Chemistry, Rajshri Shahu College, Aurangabad, Maharashtra, India
| | - Sumit Shejul
- Department of Chemistry, Dr. Rafiq Zakaria College for Women, Aurangabad, Maharashtra, India
| | - Megha Rai
- Department of Chemistry, Dr. Rafiq Zakaria College for Women, Aurangabad, Maharashtra, India
| |
Collapse
|
19
|
Chitra Devi A, Siva V, Thangarasu S, Athimoolam S, Asath Bahadur S. Supramolecular architecture, thermal, Quantum chemical analysis and in vitro biological properties on sulfate salt of 4-aminoantipyrine. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Guadouri HA, Merzougui M, Hannachi D, Ali MA, Ouari K. Unsymmetrical salen nickel (II) complex embracing phenol bridge: X-ray structure, redox investigation, computational calculations, antimicrobial and catalytic activities. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
21
|
Deghadi RG, Elsharkawy AE, Ashmawy AM, Mohamed GG. Can One Novel Series of Transition Metal Complexes of Oxy-dianiline Schiff Base Afford Advances in Both Biological Inorganic Chemistry and Materials Science? COMMENT INORG CHEM 2021. [DOI: 10.1080/02603594.2021.1962310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Reem G. Deghadi
- Chemistry Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | - Ahmed E. Elsharkawy
- Chemical Treatment Department, Qarun Petroleum Company, 1160, Cairo, Maadi, Egypt
| | - Ashraf M. Ashmawy
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University, 11884, Egypt
| | - Gehad G. Mohamed
- Chemistry Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
| |
Collapse
|
22
|
Hashem HE, Mohamed EA, Farag AA, Negm NA, Azmy EAM. New heterocyclic Schiff base‐metal complex: Synthesis, characterization, density functional theory study, and antimicrobial evaluation. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6322] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Heba E. Hashem
- Chemistry Department, Faculty of Women Ain Shams University Heliopolis Egypt
| | - Eslam A. Mohamed
- Chemistry Department Egyptian Petroleum Research Institute Nasr City Egypt
| | - Ahmed A. Farag
- Chemistry Department Egyptian Petroleum Research Institute Nasr City Egypt
| | - Nabel A. Negm
- Chemistry Department Egyptian Petroleum Research Institute Nasr City Egypt
| | - Eman A. M. Azmy
- Chemistry Department, Faculty of Women Ain Shams University Heliopolis Egypt
| |
Collapse
|