1
|
Klebowski B, Kosinska K, Bukowska A, Zieliński PM, Parlinska-Wojtan M, Depciuch J. Synthesis of spherical and rods-like titanium oxide nanoparticles (TiO 2 NPs) and evaluation of their cytotoxicity towards colon cells in vitro. Biochim Biophys Acta Gen Subj 2025; 1869:130743. [PMID: 39681276 DOI: 10.1016/j.bbagen.2024.130743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/05/2024] [Accepted: 12/11/2024] [Indexed: 12/18/2024]
Abstract
Titanium oxide nanoparticles (TiO2 NPs) are currently used as ingredients in medicines and sunscreens. Unfortunately, recent information about TiO2 NPs indicates their undesirable biological effect on colon cells. Therefore, the aim of this work was to synthesize and evaluate the physicochemical characterization of spherical (TiO2 NSs) and rods-like (TiO2 NRs) NPs, followed by assessment their cytotoxicity. For this purpose, both normal colon epithelial cells (CRL-1790) and cancerous colon cells (SW480) were used. Scanning transmission electron microscopy (STEM) showed that TiO2 NSs with a diameter of ≈10 nm and TiO2 NRs with the size of the longer axis ≈25 nm and shorter axis ≈3 nm were obtained. Based on the selected area electron diffraction (SAED) patterns, it was found that crystalline phases were obtained for both TiO2 NPs. The UV-Vis spectra showed no contamination of TiO2 NPs. Zeta potential values were 9.7 mV and 3.1 mV for NSs and NRs, respectively. Cytotoxicity of TiO2 NPs was assessed using the MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxy-methoxy-phenyl)-2-(4-sulfophenyl)-2H-tetrazolium) test for various concentration of NPs. The cytotoxic effect for both TiO2 NPs was visible for concentration of 75 μg/ml (for CRL-1790) and 50 μg/ml (for SW480) and higher, and it did not depend on the shape. Moreover, both types of TiO2 NPs (in higher concentration) induce the generation of reactive oxygen species (ROS) in cells cultured with these NPs. Holotomographic microscopy studies showed increased cellular uptake of TiO2 NPs by SW480. The obtained results for the synthesized TiO2 NPs are a promising prospect for their use in biomedical application.
Collapse
Affiliation(s)
- Bartosz Klebowski
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Krakow, Poland.
| | - Karolina Kosinska
- University of Information Technology and Management, 35-225 Rzeszow, Poland
| | - Agnieszka Bukowska
- Faculty of Chemistry, Rzeszow University of Technology, 35-939 Rzeszow, Poland
| | - Piotr M Zieliński
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Krakow, Poland
| | | | - Joanna Depciuch
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Krakow, Poland; Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, 20-093, Poland
| |
Collapse
|
2
|
Méndez-García A, Bravo-Vázquez LA, Sahare P, Paul S. Impact of UV-Irradiated Mesoporous Titania Nanoparticles (mTiNPs) on Key Onco- and Tumor Suppressor microRNAs of PC3 Prostate Cancer Cells. Genes (Basel) 2025; 16:148. [PMID: 40004477 PMCID: PMC11855573 DOI: 10.3390/genes16020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/15/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Mesoporous titanium dioxide nanoparticles (mTiNPs) are known for their chemical stability, non-toxicity, antimicrobial and anticancer effects, as well as for their photocatalytic properties. When this material is subjected to UV radiation, its electronic structure shifts, and during that process, reactive oxygen species are generated, which in turn exert apoptotic events on the cancer cells. OBJECTIVES We evaluated the cytotoxic effects of UV-irradiated mTiNPs on prostate cancer (PCa) cell line PC3 with the aim of demonstrating that the interaction between UV-light and mTiNPs positively impacts the nanomaterial's cytotoxic efficiency. Moreover, we assessed the differential expression of key oncomiRs and tumor suppressor (TS) miRNAs, as well as their associated target genes, in cells undergoing this treatment. METHODS PBS-suspended mTiNPs exposed to 290 nm UV light were added at different concentrations to PC3 cells. Cell viability was determined after 24 h with a crystal violet assay. Then, the obtained IC50 concentration of UV-nanomaterial was applied to a new PC3 cell culture, and the expression of a set of miRNAs and selected target genes was evaluated via qRT-PCR. RESULTS The cells exposed to photo-activated mTiNPs required 4.38 times less concentration of the nanomaterial than the group exposed to non-irradiated mTiNPs to achieve the half-maximal inhibition, demonstrating an improved cytotoxic performance of the UV-irradiated mTiNPs. Moreover, the expression of miR-18a-5p, miR-21-5p, and miR-221-5p was downregulated after the application of UV-mTiNPs, while TS miR-200a-5p and miR-200b-5p displayed an upregulated expression. Among the miRNA target genes, PTEN was found to be upregulated after the treatment, while BCL-2 and TP53 were underexpressed. CONCLUSIONS Our cytotoxic outcomes coincided with previous reports performed in other cancer cell lines, strongly suggesting UV-irradiated mTiNPs as a promising nano-therapeutic approach against PCa. On the other hand, to the best of our knowledge, this is the first report exploring the impact of UV-irradiated mTiNPs on key onco- and TS microRNAs in PCa cells.
Collapse
Affiliation(s)
- Andrea Méndez-García
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio González No. 500 Fracc. San Pablo, Querétaro 76130, Mexico
| | - Luis Alberto Bravo-Vázquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio González No. 500 Fracc. San Pablo, Querétaro 76130, Mexico
| | - Padmavati Sahare
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Epigmenio González No. 500 Fracc. San Pablo, Querétaro 76130, Mexico
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio González No. 500 Fracc. San Pablo, Querétaro 76130, Mexico
| |
Collapse
|
3
|
Alaizeri ZM, Alhadlaq HA, Aldawood S, Ahamed M. Chemical synthesis, characterization, and anticancer potential of CuO/ZrO 2/TiO 2/RGO nanocomposites against human breast (MCF-7) cancer cells. RSC Adv 2024; 14:37697-37708. [PMID: 39600998 PMCID: PMC11588041 DOI: 10.1039/d4ra07039a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Nanocomposites (NCs) have attractive potential applications in gas-sensing, energy, photocatalysis, and biomedicine. In the present work, the fabrication of CuO/ZrO2/TiO2/RGO nanocomposites (NCs) was done via a simple chemical route. Our aim in this work was to synthesis and investigate the selective anticancer activity of TiO2 NPs by supporting CuO, ZrO2, and RGO toward cancer and normal cells. Different analytical techniques, such as X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM) with energy dispersive X-ray (EDX), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, photoluminescence (PL) spectroscopy, and dynamic light scattering (DLS), were carefully applied to characterize the physicochemical properties of the produced samples. XRD results showed that the phase and crystal structure of TiO2 NPs were enhanced after adding CuO, ZrO2, and RGO. TEM and SEM images showed that CuO/ZrO2/TiO2/RGO NCs were similarly distributed on RGO sheets with high crystallinity, excellent quality of lattice fringes, and lower agglomeration compared with pure TiO2 NPs. EDX and XPS analysis confirmed the presence of elements Cu, Zr, Ti, O, and C in the obtained CuO/ZrO2/TiO2/RGO NCs. Raman and FTIR spectra verified the presence of functional groups and crystal structures in the produced samples. PL data showed that the optical properties of TiO2 improved after adding CuO, ZrO2, and RGO sheets owing to the reduction in the recombination rate between the electron-hole pair. DLS analysis showed that the prepared CuO/ZrO2/TiO2/RGO NCs had excellent colloidal stability and good distribution in the suspension of the media culture. Anticancer results for CuO/ZrO2/TiO2/RGO NCs exhibited about 2-fold higher toxicity for 24 h and 4-fold for 48 h against breast cancer (MCF-7) cells than pure TiO2 NPs, while their biocompatibility was excellent against HUVEC normal cells. Additionally, the IC50 values of CuO/ZrO2/TiO2/RGO NCs were 44.19 ± 1.2 μg mL-1 and 24.52 ± 0.8 μg mL-1 for 24 h and 48 h, respectively. These results indicate that adding CuO, ZrO2, and RGO plays a crucial role in enhancing the anticancer property of TiO2 NPs. This study suggests that CuO/ZrO2/TiO2/RGO NCs could be applied in cancer therapy applications in in vivo models.
Collapse
Affiliation(s)
- ZabnAllah M Alaizeri
- Department of Physics and Astronomy, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Hisham A Alhadlaq
- Department of Physics and Astronomy, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Saad Aldawood
- Department of Physics and Astronomy, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University Riyadh 11451 Saudi Arabia
| |
Collapse
|
4
|
Sedky NK, Mahdy NK, Abdel-Kader NM, Abdelhady MMM, Maged M, Allam AL, Alfaifi MY, Shamma SN, Hassan HAFM, Fahmy SA. Facile sonochemically-assisted bioengineering of titanium dioxide nanoparticles and deciphering their potential in treating breast and lung cancers: biological, molecular, and computational-based investigations. RSC Adv 2024; 14:8583-8601. [PMID: 38487521 PMCID: PMC10938292 DOI: 10.1039/d3ra08908h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/07/2024] [Indexed: 03/17/2024] Open
Abstract
Combining sonochemistry with phytochemistry is a modern trend in the biosynthesis of metallic nanoparticles (NPs), which contributes to the sustainability of chemical processes and minimizes hazardous effects. Herein, titanium dioxide (TiO2) NPs were bioengineered using a novel and facile ultrasound-assisted approach utilizing the greenly extracted essential oil of Ocimum basilicum. FTIR and UV-Vis spectrophotometry were used to confirm the formation of TiO2 NPs. The X-ray diffraction (XRD) analysis showed the crystalline nature of TiO2 NPs. TEM analysis revealed the spherical morphology of the NPs with sizes ranging from 5.55 to 13.89 nm. Energy-dispersive X-ray (EDX) confirmed the purity of the greenly synthesized NPs. TiO2 NPs demonstrated outstanding antitumor activity against breast (MCF-7) and lung (A-549) cancer cells with estimated IC50 values of 1.73 and 4.79 μg mL-1. The TiO2 NPs were cytocompatible to normal cells (MCF-10A) with a selectivity index (SI) of 8.77 for breast and 3.17 for lung cancer. Biological assays revealed a promising potential for TiO2 NPs to induce apoptosis and arrest cells at the sub-G1 phase of the cell cycle phase in both cancer cell lines. Molecular investigations showed the ability of TiO2 NPs to increase apoptotic genes' expression (Bak and Bax) and their profound ability to elevate the expression of apoptotic proteins (caspases 3 and 7). Molecular docking demonstrated strong binding interactions for TiO2 NPs with caspase 3 and EGFR-TK targets. In conclusion, the greenly synthesized TiO2 NPs exhibited potent antitumor activity and mitochondrion-based cell death against breast and lung cancer cell lines while maintaining cytocompatibility against normal cells.
Collapse
Affiliation(s)
- Nada K Sedky
- Department of Biochemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation R5 New Garden City, New Administrative Capital Cairo 11835 Egypt
| | - Noha Khalil Mahdy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University Kasr El-Aini Street Cairo 11562 Egypt
| | - Nour M Abdel-Kader
- Department of Biochemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation R5 New Garden City, New Administrative Capital Cairo 11835 Egypt
- Department of Biochemistry, Faculty of Science, Ain Shams University Cairo 11566 Egypt
| | - Manal M M Abdelhady
- Clinical Pharmacy Department, Faculty of Pharmacy, Badr University Cairo 11829 Egypt
| | - Mohamad Maged
- Faculty of Biotechnology, Nile University Giza Egypt
| | - Aya L Allam
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation New Administrative Capital Egypt
| | - Mohammad Y Alfaifi
- King Khalid University, Faculty of Science, Biology Department Abha 9004 Saudi Arabia
| | - Samir N Shamma
- Institute of Global Health and Human Ecology, School of Sciences & Engineering, The American University in Cairo AUC Avenue, P.O. Box 74 New Cairo 11835 Egypt
| | - Hatem A F M Hassan
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation New Administrative Capital Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University 11562 Cairo Egypt
| | - Sherif Ashraf Fahmy
- Department of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation R5 New Garden City, New Capital Cairo 11835 Egypt +20-1222613344
| |
Collapse
|
5
|
Roshani M, Rezaian-Isfahni A, Lotfalizadeh MH, Khassafi N, Abadi MHJN, Nejati M. Metal nanoparticles as a potential technique for the diagnosis and treatment of gastrointestinal cancer: a comprehensive review. Cancer Cell Int 2023; 23:280. [PMID: 37981671 PMCID: PMC10657605 DOI: 10.1186/s12935-023-03115-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/27/2023] [Indexed: 11/21/2023] Open
Abstract
Gastrointestinal (GI) cancer is a major health problem worldwide, and current diagnostic and therapeutic approaches are often inadequate. Various metallic nanoparticles (MNPs) have been widely studied for several biomedical applications, including cancer. They may potentially overcome the challenges associated with conventional chemotherapy and significantly impact the overall survival of GI cancer patients. Functionalized MNPs with targeted ligands provide more efficient localization of tumor energy deposition, better solubility and stability, and specific targeting properties. In addition to enhanced therapeutic efficacy, MNPs are also a diagnostic tool for molecular imaging of malignant lesions, enabling non-invasive imaging or detection of tumor-specific or tumor-associated antigens. MNP-based therapeutic systems enable simultaneous stability and solubility of encapsulated drugs and regulate the delivery of therapeutic agents directly to tumor cells, which improves therapeutic efficacy and minimizes drug toxicity and leakage into normal cells. However, metal nanoparticles have been shown to have a cytotoxic effect on cells in vitro. This can be a concern when using metal nanoparticles for cancer treatment, as they may also kill healthy cells in addition to cancer cells. In this review, we provide an overview of the current state of the field, including preparation methods of MNPs, clinical applications, and advances in their use in targeted GI cancer therapy, as well as the advantages and limitations of using metal nanoparticles for the diagnosis and treatment of gastrointestinal cancer such as potential toxicity. We also discuss potential future directions and areas for further research, including the development of novel MNP-based approaches and the optimization of existing approaches.
Collapse
Affiliation(s)
- Mohammad Roshani
- Internal Medicine and Gastroenterology, Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Arya Rezaian-Isfahni
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Negar Khassafi
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Hassan Jafari Najaf Abadi
- Research Center for Health Technology Assessment and Medical Informatics, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Majid Nejati
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
6
|
Kumar S, Shukla MK, Sharma AK, Jayaprakash GK, Tonk RK, Chellappan DK, Singh SK, Dua K, Ahmed F, Bhattacharyya S, Kumar D. Metal-based nanomaterials and nanocomposites as promising frontier in cancer chemotherapy. MedComm (Beijing) 2023; 4:e253. [PMID: 37025253 PMCID: PMC10072971 DOI: 10.1002/mco2.253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 04/07/2023] Open
Abstract
Cancer is a disease associated with complex pathology and one of the most prevalent and leading reasons for mortality in the world. Current chemotherapy has challenges with cytotoxicity, selectivity, multidrug resistance, and the formation of stemlike cells. Nanomaterials (NMs) have unique properties that make them useful for various diagnostic and therapeutic purposes in cancer research. NMs can be engineered to target cancer cells for early detection and can deliver drugs directly to cancer cells, reducing side effects and improving treatment efficacy. Several of NMs can also be used for photothermal therapy to destroy cancer cells or enhance immune response to cancer by delivering immune-stimulating molecules to immune cells or modulating the tumor microenvironment. NMs are being modified to overcome issues, such as toxicity, lack of selectivity, increase drug capacity, and bioavailability, for a wide spectrum of cancer therapies. To improve targeted drug delivery using nano-carriers, noteworthy research is required. Several metal-based NMs have been studied with the expectation of finding a cure for cancer treatment. In this review, the current development and the potential of plant and metal-based NMs with their effects on size and shape have been discussed along with their more effective usage in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Pharmaceutical ChemistrySchool of Pharmaceutical SciencesShoolini UniversitySolanHimachal PradeshIndia
| | - Monu Kumar Shukla
- Department of Pharmaceutical ChemistrySchool of Pharmaceutical SciencesShoolini UniversitySolanHimachal PradeshIndia
| | | | | | - Rajiv K. Tonk
- School of Pharmaceutical SciencesDelhi Pharmaceutical Sciences and Research UniversityNew DelhiDelhiIndia
| | | | - Sachin Kumar Singh
- School of Pharmaceutical SciencesLovely Professional UniversityPhagwaraPunjabIndia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneyUltimoNew South WalesAustralia
- Discipline of Pharmacy, Graduate School of Health, University of Technology SydneySydneyAustralia
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneySydneyAustralia
| | - Faheem Ahmed
- Department of PhysicsCollege of ScienceKing Faisal UniversityAl‐HofufAl‐AhsaSaudi Arabia
| | | | - Deepak Kumar
- Department of Pharmaceutical ChemistrySchool of Pharmaceutical SciencesShoolini UniversitySolanHimachal PradeshIndia
| |
Collapse
|
7
|
Naseer F, Ahmed M, Majid A, Kamal W, Phull AR. Green nanoparticles as multifunctional nanomedicines: Insights into anti-inflammatory effects, growth signaling and apoptosis mechanism in cancer. Semin Cancer Biol 2022; 86:310-324. [PMID: 35787941 DOI: 10.1016/j.semcancer.2022.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/03/2022] [Accepted: 06/28/2022] [Indexed: 02/06/2023]
Abstract
Recently, green nanotechnology got great attention due to their reliable, sustainable, and eco-friendly synthesis protocols. The green nanoparticles (GNPs) are preferred over chemically synthesized nanoparticles owing to less destructive effects associated with the synthesis procedures as well as therapeutic involvement. In this review, we have discussed the applications of GNPs in inflammation-mediated disorders, with special emphasis on cancer, initiated due to oxidative stress and inflammatory cascade. Real-time mechanism based studies on GNPs have suggested their anticancer effects through inducing apoptosis, inhibiting angiogenesis, tissue invasion metastasis, reduced replicative capabilities in addition to target specific different signaling molecules and cascades involved in the development or progression of cancer. Moreover, the association of GNPs with the inhibition or induction of autophagy for the management of cancer has also been discussed. A large number of studies showed the GNPs have multifunctional biomedical properties of theranostic prominence. Therefore, the development of GNPs with naturally established systems could upsurge their definite applications as biomedicines including target specific destruction of the cancerous cells.
Collapse
Affiliation(s)
- Faiza Naseer
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan; Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences, NUST, Islamabad, Pakistan
| | - Madiha Ahmed
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Abdul Majid
- Department of Biochemistry, Shah Abdul Latif University, Khairpur, Pakistan
| | - Warda Kamal
- Biomediotronics, Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia
| | - Abdul Rehman Phull
- Department of Food Science and Biotechnology, Gachon University, Seongnam, Gyeong gi-do, Republic of Korea.
| |
Collapse
|
8
|
Choukaife H, Seyam S, Alallam B, Doolaanea AA, Alfatama M. Current Advances in Chitosan Nanoparticles Based Oral Drug Delivery for Colorectal Cancer Treatment. Int J Nanomedicine 2022; 17:3933-3966. [PMID: 36105620 PMCID: PMC9465052 DOI: 10.2147/ijn.s375229] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
As per the WHO, colorectal cancer (CRC) caused around 935,173 deaths worldwide in 2020 in both sexes and at all ages. The available anticancer therapies including chemotherapy, radiotherapy and anticancer drugs are all associated with limited therapeutic efficacy, adverse effects and low chances. This has urged to emerge several novel therapeutic agents as potential therapies for CRC including synthetic and natural materials. Orally administrable and targeted drug delivery systems are attractive strategies for CRC therapy as they minimize the side effects, enhance the efficacy of anticancer drugs. Nevertheless, oral drug delivery till today faces several challenges like poor drug solubility, stability, and permeability. Various oral nano-based approaches and targeted drug delivery systems have been developed recently, as a result of the ability of nanoparticles to control the release of the encapsulant, drug targeting and reduce the number of dosages administered. The unique physicochemical properties of chitosan polymer assist to overcome oral drug delivery barriers and target the colon tumour cells. Chitosan-based nanocarriers offered additional improvements by enhancing the stability, targeting and bioavailability of several anti-colorectal cancer agents. Modified chitosan derivatives also facilitated CRC targeting through strengthening the protection of encapsulant against acidic and enzyme degradation of gastrointestinal track (GIT). This review aims to provide an overview of CRC pathology, therapy and the barriers against oral drug delivery. It also emphasizes the role of nanotechnology in oral drug targeted delivery system and the growing interest towards chitosan and its derivatives. The present review summarizes the relevant works to date that have studied the potential applications of chitosan-based nanocarrier towards CRC treatment.
Collapse
Affiliation(s)
- Hazem Choukaife
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Terengganu, 22200, Malaysia
| | - Salma Seyam
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Terengganu, 22200, Malaysia
| | - Batoul Alallam
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, 13200, Malaysia
| | - Abd Almonem Doolaanea
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, 25200, Malaysia
| | - Mulham Alfatama
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Terengganu, 22200, Malaysia
| |
Collapse
|
9
|
Karthika C, Sureshkumar R, Sajini DV, Ashraf GM, Rahman MH. 5-fluorouracil and curcumin with pectin coating as a treatment regimen for titanium dioxide with dimethylhydrazine-induced colon cancer model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:63202-63215. [PMID: 35459988 DOI: 10.1007/s11356-022-20208-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Colorectal cancer was inducted in Wister rats using titanium dioxide nanoparticles (TiO2NPs) and dimethylhydrazine (DMH) and treatment using 5-fluorouracil (5-FU) and curcumin (CUR), individually and following a synergistic approach. Compatibility studies are evaluated by using FT-IR spectra analysis, and Vero cell lines as well as HCT-116 cell lines are used for evaluating the synergistic approach. It was then followed by induction of colorectal cancer in rats for 70 days and treatment using 5-FU and CUR with pectin coating (individually and in combination) for 28 days. The reports state that 5-FU and CUR combination was found to be compatible. The synergistic effect was evaluated for1:1, 1:2, 1:4, and 2:1 ratio of 5-FU:CUR, where 1:4 ratio shows a CI50 value of 0.853, selected further for the animal studies. The 1:4 ratio of 5-FU and CUR (50:200) shows to be effective for the treatment of colorectal cancer within 28 days, proven using histopathology report, bodyweight analysis, and hematological reports. 5-FU and CUR (1:4) ratio with pectin coating was proven effective for the treatment of colorectal cancer induced by TiO2NPs with DMH and was found to produce a synergistic effect.
Collapse
Affiliation(s)
- Chenmala Karthika
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Raman Sureshkumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India.
| | - Deepak Vasudevan Sajini
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Md Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Gangwon-do, Wonju, 26426, Korea.
- Department of Pharmacy, Southeast University, Banani Street, Dhaka, 1213, Bangladesh.
| |
Collapse
|
10
|
Chahardoli A, Qalekhani F, Shokoohinia Y, Fattahi A. Luteolin mediated synthesis of rod-shaped rutile titanium dioxide nanoparticles: Assay of their biocompatibility. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.03.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Păduraru DN, Ion D, Niculescu AG, Mușat F, Andronic O, Grumezescu AM, Bolocan A. Recent Developments in Metallic Nanomaterials for Cancer Therapy, Diagnosing and Imaging Applications. Pharmaceutics 2022; 14:435. [PMID: 35214167 PMCID: PMC8874382 DOI: 10.3390/pharmaceutics14020435] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer continues to represent a global health concern, imposing an ongoing need to research for better treatment alternatives. In this context, nanomedicine seems to be the solution to existing problems, bringing unprecedented results in various biomedical applications, including cancer therapy, diagnosing, and imaging. As numerous studies have uncovered the advantageous properties of various nanoscale metals, this review aims to present metal-based nanoparticles that are most frequently employed for cancer applications. This paper follows the description of relevant nanoparticles made of metals, metal derivatives, hybrids, and alloys, further discussing in more detail their potential applications in cancer management, ranging from the delivery of chemotherapeutics, vaccines, and genes to ablative hyperthermia therapies and theranostic platforms.
Collapse
Affiliation(s)
- Dan Nicolae Păduraru
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.N.P.); (D.I.); (F.M.); (O.A.); (A.B.)
- Emergency University Hospital of Bucharest, 050098 Bucharest, Romania
| | - Daniel Ion
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.N.P.); (D.I.); (F.M.); (O.A.); (A.B.)
- Emergency University Hospital of Bucharest, 050098 Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Florentina Mușat
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.N.P.); (D.I.); (F.M.); (O.A.); (A.B.)
- Emergency University Hospital of Bucharest, 050098 Bucharest, Romania
| | - Octavian Andronic
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.N.P.); (D.I.); (F.M.); (O.A.); (A.B.)
- Emergency University Hospital of Bucharest, 050098 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 50044 Bucharest, Romania
| | - Alexandra Bolocan
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.N.P.); (D.I.); (F.M.); (O.A.); (A.B.)
- Emergency University Hospital of Bucharest, 050098 Bucharest, Romania
| |
Collapse
|
12
|
Green synthesis of nanoparticles by probiotics and their application. ADVANCES IN APPLIED MICROBIOLOGY 2022; 119:83-128. [DOI: 10.1016/bs.aambs.2022.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|