1
|
Zhao H, Liu G, Cao X. A seed expansion-based method to identify essential proteins by integrating protein-protein interaction sub-networks and multiple biological characteristics. BMC Bioinformatics 2023; 24:452. [PMID: 38036960 PMCID: PMC10688502 DOI: 10.1186/s12859-023-05583-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND The identification of essential proteins is of great significance in biology and pathology. However, protein-protein interaction (PPI) data obtained through high-throughput technology include a high number of false positives. To overcome this limitation, numerous computational algorithms based on biological characteristics and topological features have been proposed to identify essential proteins. RESULTS In this paper, we propose a novel method named SESN for identifying essential proteins. It is a seed expansion method based on PPI sub-networks and multiple biological characteristics. Firstly, SESN utilizes gene expression data to construct PPI sub-networks. Secondly, seed expansion is performed simultaneously in each sub-network, and the expansion process is based on the topological features of predicted essential proteins. Thirdly, the error correction mechanism is based on multiple biological characteristics and the entire PPI network. Finally, SESN analyzes the impact of each biological characteristic, including protein complex, gene expression data, GO annotations, and subcellular localization, and adopts the biological data with the best experimental results. The output of SESN is a set of predicted essential proteins. CONCLUSIONS The analysis of each component of SESN indicates the effectiveness of all components. We conduct comparison experiments using three datasets from two species, and the experimental results demonstrate that SESN achieves superior performance compared to other methods.
Collapse
Affiliation(s)
- He Zhao
- College of Computer Science and Technology, Jilin University, Changchun, China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, China
| | - Guixia Liu
- College of Computer Science and Technology, Jilin University, Changchun, China.
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, China.
| | - Xintian Cao
- College of Computer Science and Technology, Jilin University, Changchun, China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, China
| |
Collapse
|
2
|
Liu P, Liu C, Mao Y, Guo J, Liu F, Cai W, Zhao F. Identification of essential proteins based on edge features and the fusion of multiple-source biological information. BMC Bioinformatics 2023; 24:203. [PMID: 37198530 DOI: 10.1186/s12859-023-05315-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/30/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND A major current focus in the analysis of protein-protein interaction (PPI) data is how to identify essential proteins. As massive PPI data are available, this warrants the design of efficient computing methods for identifying essential proteins. Previous studies have achieved considerable performance. However, as a consequence of the features of high noise and structural complexity in PPIs, it is still a challenge to further upgrade the performance of the identification methods. METHODS This paper proposes an identification method, named CTF, which identifies essential proteins based on edge features including h-quasi-cliques and uv-triangle graphs and the fusion of multiple-source information. We first design an edge-weight function, named EWCT, for computing the topological scores of proteins based on quasi-cliques and triangle graphs. Then, we generate an edge-weighted PPI network using EWCT and dynamic PPI data. Finally, we compute the essentiality of proteins by the fusion of topological scores and three scores of biological information. RESULTS We evaluated the performance of the CTF method by comparison with 16 other methods, such as MON, PeC, TEGS, and LBCC, the experiment results on three datasets of Saccharomyces cerevisiae show that CTF outperforms the state-of-the-art methods. Moreover, our method indicates that the fusion of other biological information is beneficial to improve the accuracy of identification.
Collapse
Affiliation(s)
- Peiqiang Liu
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China.
| | - Chang Liu
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China
| | - Yanyan Mao
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China
- College of Oceanography and Space Informatics, China University of Petroleum (East China), Qingdao, China
| | - Junhong Guo
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China
| | - Fanshu Liu
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China
| | - Wangmin Cai
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China
| | - Feng Zhao
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China
| |
Collapse
|
3
|
Wu W, Yang T, Ma X, Zhang W, Li H, Huang J, Li Y, Cui J. Learning specific and conserved features of multi-layer networks. Inf Sci (N Y) 2023; 622:930-945. [DOI: 10.1016/j.ins.2022.11.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Lyu J, Yao Z, Liang B, Liu Y, Zhang Y. Small protein complex prediction algorithm based on protein-protein interaction network segmentation. BMC Bioinformatics 2022; 23:405. [PMID: 36180820 PMCID: PMC9524060 DOI: 10.1186/s12859-022-04960-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/19/2022] [Indexed: 11/23/2022] Open
Abstract
Background Identifying protein complexes from protein-protein interaction network is one of significant tasks in the postgenome era. Protein complexes, none of which exceeds 10 in size play an irreplaceable role in life activities and are also a hotspot of scientific research, such as PSD-95, CD44, PKM2 and BRD4. And in MIPS, CYC2008, SGD, Aloy and TAP06 datasets, the proportion of small protein complexes is over 75%. But up to now, protein complex identification methods do not perform well in the field of small protein complexes. Results In this paper, we propose a novel method, called BOPS. It is a three-step procedure. Firstly, it calculates the balanced weights to replace the original weights. Secondly, it divides the graphs larger than MAXP until the original PPIN is divided into small PPINs. Thirdly, it enumerates the connected subset of each small PPINs, identifies potential protein complexes based on cohesion and removes those that are similar. Conclusions In four yeast PPINs, experimental results have shown that BOPS has an improvement of about 5% compared with the SOTA model. In addition, we constructed a weighted Homo sapiens PPIN based on STRINGdb and BioGRID, and BOPS gets the best result in it. These results give new insights into the identification of small protein complexes, and the weighted Homo sapiens PPIN provides more data for related research.
Collapse
Affiliation(s)
- Jiaqing Lyu
- School of Computer Science and Technology, Dalian University of Technology, Dalian, China
| | - Zhen Yao
- School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Bing Liang
- School of Innovation and Entrepreneurship, Dalian University of Technology, Dalian, China.
| | - Yiwei Liu
- School of Innovation and Entrepreneurship, Dalian University of Technology, Dalian, China
| | - Yijia Zhang
- School of Information Science and Technology, Dalian Maritime University, Dalian, China.
| |
Collapse
|
5
|
Tang J, Feng H. Robust local-coordinate non-negative matrix factorization with adaptive graph for robust clustering. Inf Sci (N Y) 2022. [DOI: 10.1016/j.ins.2022.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Meng X, Xiang J, Zheng R, Wu FX, Li M. DPCMNE: Detecting Protein Complexes From Protein-Protein Interaction Networks Via Multi-Level Network Embedding. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:1592-1602. [PMID: 33417563 DOI: 10.1109/tcbb.2021.3050102] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Biological functions of a cell are typically carried out through protein complexes. The detection of protein complexes is therefore of great significance for understanding the cellular organizations and protein functions. In the past decades, many computational methods have been proposed to detect protein complexes. However, most of the existing methods just search the local topological information to mine dense subgraphs as protein complexes, ignoring the global topological information. To tackle this issue, we propose the DPCMNE method to detect protein complexes via multi-level network embedding. It can preserve both the local and global topological information of biological networks. First, DPCMNE employs a hierarchical compressing strategy to recursively compress the input protein-protein interaction (PPI) network into multi-level smaller PPI networks. Then, a network embedding method is applied on these smaller PPI networks to learn protein embeddings of different levels of granularity. The embeddings learned from all the compressed PPI networks are concatenated to represent the final protein embeddings of the original input PPI network. Finally, a core-attachment based strategy is adopted to detect protein complexes in the weighted PPI network constructed by the pairwise similarity of protein embeddings. To assess the efficiency of our proposed method, DPCMNE is compared with other eight clustering algorithms on two yeast datasets. The experimental results show that the performance of DPCMNE outperforms those state-of-the-art complex detection methods in terms of F1 and F1+Acc. Furthermore, the results of functional enrichment analysis indicate that protein complexes detected by DPCMNE are more biologically significant in terms of P-score.
Collapse
|
7
|
Wang R, Ma H, Wang C. An Ensemble Learning Framework for Detecting Protein Complexes From PPI Networks. Front Genet 2022; 13:839949. [PMID: 35281831 PMCID: PMC8908451 DOI: 10.3389/fgene.2022.839949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/31/2022] [Indexed: 11/14/2022] Open
Abstract
Detecting protein complexes is one of the keys to understanding cellular organization and processes principles. With high-throughput experiments and computing science development, it has become possible to detect protein complexes by computational methods. However, most computational methods are based on either unsupervised learning or supervised learning. Unsupervised learning-based methods do not need training datasets, but they can only detect one or several topological protein complexes. Supervised learning-based methods can detect protein complexes with different topological structures. However, they are usually based on a type of training model, and the generalization of a single model is poor. Therefore, we propose an Ensemble Learning Framework for Detecting Protein Complexes (ELF-DPC) within protein-protein interaction (PPI) networks to address these challenges. The ELF-DPC first constructs the weighted PPI network by combining topological and biological information. Second, it mines protein complex cores using the protein complex core mining strategy we designed. Third, it obtains an ensemble learning model by integrating structural modularity and a trained voting regressor model. Finally, it extends the protein complex cores and forms protein complexes by a graph heuristic search strategy. The experimental results demonstrate that ELF-DPC performs better than the twelve state-of-the-art approaches. Moreover, functional enrichment analysis illustrated that ELF-DPC could detect biologically meaningful protein complexes. The code/dataset is available for free download from https://github.com/RongquanWang/ELF-DPC.
Collapse
Affiliation(s)
- Rongquan Wang
- School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, China
| | - Huimin Ma
- School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, China
- *Correspondence: Huimin Ma,
| | - Caixia Wang
- School of International Economics, China Foreign Affairs University, Beijing, China
| |
Collapse
|
8
|
Wang R, Ma H, Wang C. An Improved Memetic Algorithm for Detecting Protein Complexes in Protein Interaction Networks. Front Genet 2022; 12:794354. [PMID: 34970305 PMCID: PMC8712950 DOI: 10.3389/fgene.2021.794354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Identifying the protein complexes in protein-protein interaction (PPI) networks is essential for understanding cellular organization and biological processes. To address the high false positive/negative rates of PPI networks and detect protein complexes with multiple topological structures, we developed a novel improved memetic algorithm (IMA). IMA first combines the topological and biological properties to obtain a weighted PPI network with reduced noise. Next, it integrates various clustering results to construct the initial populations. Furthermore, a fitness function is designed based on the five topological properties of the protein complexes. Finally, we describe the rest of our IMA method, which primarily consists of four steps: selection operator, recombination operator, local optimization strategy, and updating the population operator. In particular, IMA is a combination of genetic algorithm and a local optimization strategy, which has a strong global search ability, and searches for local optimal solutions effectively. The experimental results demonstrate that IMA performs much better than the base methods and existing state-of-the-art techniques. The source code and datasets of the IMA can be found at https://github.com/RongquanWang/IMA.
Collapse
Affiliation(s)
- Rongquan Wang
- School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, China
| | - Huimin Ma
- School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, China
| | - Caixia Wang
- School of International Economics, China Foreign Affairs University, Beijing, China
| |
Collapse
|
9
|
Meng X, Li W, Peng X, Li Y, Li M. Protein interaction networks: centrality, modularity, dynamics, and applications. FRONTIERS OF COMPUTER SCIENCE 2021; 15:156902. [DOI: 10.1007/s11704-020-8179-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/12/2020] [Indexed: 01/03/2025]
|
10
|
Su Y, Zhou K, Zhang X, Cheng R, Zheng C. A parallel multi-objective evolutionary algorithm for community detection in large-scale complex networks. Inf Sci (N Y) 2021. [DOI: 10.1016/j.ins.2021.06.089] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
de Amorim RC, Makarenkov V. Improving cluster recovery with feature rescaling factors. APPL INTELL 2021. [DOI: 10.1007/s10489-020-02108-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|