1
|
Wu H, Xu H, Shi Y, Yuan T, Meng T, Zhang Y, Xie W, Li X, Li Y, Fan L. Recent Advance in Carbon Dots: From Properties to Applications. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000609] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hao Wu
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 China
| | - Huimin Xu
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 China
| | - Yuxin Shi
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 China
| | - Ting Yuan
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 China
| | - Ting Meng
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 China
| | - Yang Zhang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 China
| | - Wenjing Xie
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 China
| | - Xiaohong Li
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 China
| | - Yunchao Li
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 China
| | - Louzhen Fan
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 China
| |
Collapse
|
2
|
Das P, Ganguly S, Maity PP, Srivastava HK, Bose M, Dhara S, Bandyopadhyay S, Das AK, Banerjee S, Das NC. Converting waste Allium sativum peel to nitrogen and sulphur co-doped photoluminescence carbon dots for solar conversion, cell labeling, and photobleaching diligences: A path from discarded waste to value-added products. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 197:111545. [DOI: 10.1016/j.jphotobiol.2019.111545] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 06/16/2019] [Accepted: 06/28/2019] [Indexed: 02/07/2023]
|
3
|
Abstract
The availability of noninvasive high-resolution imaging technology, the immune-suppressive nature of the subretinal space, and the existence of surgical techniques that permit transplantation surgery to be a safe procedure all render the eye an ideal organ in which to begin cell-based therapy in the central nervous system. A number of early stage clinical trials are underway to assess the safety and feasibility of cell-based therapy for retinal blindness. Cell-based therapy using embryonic stem cell-derived differentiated cells (e.g., retinal pigment epithelium (RPE)), neural progenitor cells, photoreceptor precursors, and bone marrow-derived hematopoietic stem/progenitor cells has demonstrated successful rescue and/or replacement in preclinical models of human retinal degenerative disease. Additional research is needed to identify the mechanisms that control synapse formation/disjunction (to improve photoreceptor transplant efficacy), to identify factors that limit RPE survival in areas of geographic atrophy (to improve RPE transplant efficacy in eyes with age-related macular degeneration), and to identify factors that regulate immune surveillance of the subretinal space (to improve long-term photoreceptor and RPE transplant survival).
Collapse
Affiliation(s)
- Marco Zarbin
- Institute of Ophthalmology and Visual Science, Rutgers-New Jersey Medical School, Rutgers University, Newark, NJ, USA.
| |
Collapse
|
4
|
Xie R, Wang Z, Yu H, Fan Z, Yuan F, Li Y, Li X, Fan L, Fan H. Highly Water-soluble and Surface Charge-tunable Fluorescent Fullerene Nanoparticles: Facile Fabrication and Cellular Imaging. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.03.198] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
5
|
Human Embryonic Stem Cells: A Model for the Study of Neural Development and Neurological Diseases. Stem Cells Int 2016; 2016:2958210. [PMID: 27239201 PMCID: PMC4864561 DOI: 10.1155/2016/2958210] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/14/2016] [Indexed: 01/05/2023] Open
Abstract
Although the mechanism of neurogenesis has been well documented in other organisms, there might be fundamental differences between human and those species referring to species-specific context. Based on principles learned from other systems, it is found that the signaling pathways required for neural induction and specification of human embryonic stem cells (hESCs) recapitulated those in the early embryo development in vivo at certain degree. This underscores the usefulness of hESCs in understanding early human neural development and reinforces the need to integrate the principles of developmental biology and hESC biology for an efficient neural differentiation.
Collapse
|
6
|
Fairchild PJ, Leishman A, Sachamitr P, Telfer C, Hackett S, Davies TJ. Dendritic cells and pluripotency: unlikely allies in the pursuit of immunotherapy. Regen Med 2016; 10:275-86. [PMID: 25933237 DOI: 10.2217/rme.15.6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
As the fulcrum on which the balance between the opposing forces of tolerance and immunity has been shown to pivot, dendritic cells (DC) hold significant promise for immune intervention in a variety of disease states. Here we discuss how the directed differentiation of human pluripotent stem cells may address many of the current obstacles to the use of monocyte-derived DC in immunotherapy, providing a novel source of previously inaccessible DC subsets and opportunities for their scale-up, quality control and genetic modification. Indeed, given that it is the immunological legacy DC leave behind that is of therapeutic value, rather than their persistence per se, we propose that immunotherapy should serve as an early target for the clinical application of pluripotent stem cells.
Collapse
Affiliation(s)
- Paul J Fairchild
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | | | | | | | | | | |
Collapse
|
7
|
Fan Z, Li S, Yuan F, Fan L. Fluorescent graphene quantum dots for biosensing and bioimaging. RSC Adv 2015. [DOI: 10.1039/c4ra17131d] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Graphene quantum dots with unique properties have great potential applications for biosensing and bioimaging.
Collapse
Affiliation(s)
- Zetan Fan
- Department of Chemistry
- Beijing Normal University
- Beijing
- China
| | - Shuhua Li
- Department of Chemistry
- Beijing Normal University
- Beijing
- China
| | - Fanglong Yuan
- Department of Chemistry
- Beijing Normal University
- Beijing
- China
| | - Louzhen Fan
- Department of Chemistry
- Beijing Normal University
- Beijing
- China
| |
Collapse
|
8
|
Zhang M, Bai L, Shang W, Xie W, Ma H, Fu Y, Fang D, Sun H, Fan L, Han M, Liu C, Yang S. Facile synthesis of water-soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm16835a] [Citation(s) in RCA: 582] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
9
|
Edris AE. The chemical composition and the content of volatile oil: potential factors that can contribute to the oxidative stability of Nigella sativa L. crude oil. J Diet Suppl 2011; 8:34-42. [PMID: 22432633 DOI: 10.3109/19390211.2010.547242] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The crude oil of Nigella sativa L. (Black cumin) has well-known nutraceutical and pharmaceutical properties. The oil is prone to rapid oxidative deterioration because of its high content of poly-unsaturated fatty acids. In the current investigation, different cold-pressed crude oils of N. sativa were examined for their composition of fatty acids and oxidative stability. The data obtained were correlated with the chemical composition and content of volatile oils, which correspond to each crude oil. Results indicated that different crude oils have the same fatty acid composition, and linoleic acid was the major constituent (60.0-61.7%). Though, the oxidative stability index of the crude oils was different ranging from 2.5 hr to 26.9 hr, as revealed by the Rancimate test at 100°C and airflow rate of 20 ml/min. The results showed that there is a straightforward correlation between the volatile oil content and the oxidative stability of the corresponding parent crude oil. In addition, high γ-terpinene content in the constitution of volatile oil can also be another contributing factor for enhancing the oxidative stability of the crude oil. The data presented here draw attention to some important factors that may guide the nutraceutical and food supplement processors in their screening for the highest quality of Nigella crude oils with maximum health benefits.
Collapse
Affiliation(s)
- Amr E Edris
- Aroma & Flavor Chemistry Department, National Research Center, Cairo, Egypt.
| |
Collapse
|
10
|
Silk KM, Tseng SY, Nishimoto KP, Lebkowski J, Reddy A, Fairchild PJ. Differentiation of dendritic cells from human embryonic stem cells. Methods Mol Biol 2011; 767:449-461. [PMID: 21822895 DOI: 10.1007/978-1-61779-201-4_33] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Improving our understanding of the interactions between human dendritic cells (DCs) and T cells may contribute to the development of therapeutic strategies for a variety of immune-mediated disorders. The possibility of using DCs themselves as tools to manipulate immune responses opens even greater therapeutic avenues. Current methods of generating human DCs are both inadequate and susceptible to high levels of variability between individuals. DCs differentiated from human embryonic stem cells (hESCs) could provide a more reliable, consistent solution. DCs have now successfully been differentiated from hESCs and more recently this has been repeated using protocols that avoid the inclusion of animal products, an important modification for clinical use. We have developed a novel method for the generation of DCs from hESCs in the absence of animal products that does not necessitate a separate embryoid body (EB) generation step. The technique involves the use of four growth factors and their successive removal from culture, resulting in accumulation of DCs with phenotypic, morphological, and immunostimulatory properties comparable to those of classical human monocyte-derived DCs. In addition to the application of hESC-derived DCs in basic research and novel approaches to cancer immunotherapy, they may also play a central role in the field of regenerative medicine. Tolerogenic DCs differentiated from hESCs may be used to persuade the immune system of the recipients of cell replacement therapy to tolerate allogeneic tissues differentiated from the same hESC line. Such an approach may help to address the immunological barriers that threaten to derail the clinical application of hESCs.
Collapse
Affiliation(s)
- Kathryn M Silk
- Stem Cell Sciences Laboratory, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | | | | | | | | |
Collapse
|
11
|
Boyd AS, Fairchild PJ. Approaches for immunological tolerance induction to stem cell-derived cell replacement therapies. Expert Rev Clin Immunol 2010; 6:435-48. [PMID: 20441429 DOI: 10.1586/eci.10.20] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The shortage of donors for organ transplantation and also to treat degenerative diseases has led to the development of the new field of regenerative medicine. One aim of this field, in addition to in vivo induction of endogenous tissue regeneration, is to utilize stem cells as a supplementary source of cells to repair or replace tissues or organs that have ceased to function owing to ageing or autoimmunity. Embryonic stem cells hold promise in this respect because of their developmental capacity to generate all tissues within the body. More recently, the discovery of induced pluripotent stem cells, somatic cells reprogrammed to a primitive embryonic-like state by the introduction of pluripotency factors, may also act as an important cell source for cell replacement therapy. However, before cell replacement therapy can become a reality, one must consider how to overcome the potential transplant rejection of stem cell-derived products. There are several potential ways to circumvent the hurdles presented by the immune system in this setting, not least the induction of immunological tolerance in the host. In this review, we consider this and other approaches for engendering acceptance of stem cell-derived tissues.
Collapse
Affiliation(s)
- Ashleigh S Boyd
- Stem Cell Sciences Lab, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX13RE, UK.
| | | |
Collapse
|
12
|
Yu J, Rossi R, Hale C, Goulding D, Dougan G. Interaction of enteric bacterial pathogens with murine embryonic stem cells. Infect Immun 2009; 77:585-97. [PMID: 19029302 PMCID: PMC2632033 DOI: 10.1128/iai.01003-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 08/31/2008] [Accepted: 11/13/2008] [Indexed: 11/20/2022] Open
Abstract
Embryonic stem (ES) cells are susceptible to genetic manipulation and retain the potential to differentiate into diverse cell types, which are factors that make them potentially attractive cells for studying host-pathogen interactions. Murine ES cells were found to be susceptible to invasion by Salmonella enterica serovar Typhimurium and Shigella flexneri and to the formation of attaching and effacing lesions by enteropathogenic Escherichia coli. S. enterica serovar Typhimurium and S. flexneri cell entry was dependent on the Salmonella pathogenicity island 1 and Shigella mxi/spa type III secretion systems, respectively. Microscopy studies indicated that both S. enterica serovar Typhimurium and S. flexneri were located in intracellular niches in ES cells that were similar to the niches occupied in differentiated cells. ES cells were eventually killed following bacterial invasion, but no evidence of activation of classical caspase-associated apoptotic or innate immune pathways was found. To demonstrate the potential of mutant ES cells, we employed an ES cell line defective in cholesterol synthesis and found that the mutant cells were less susceptible to infection by Salmonella and Shigella than the parental ES cells. Thus, we highlighted the practical use of genetically modified ES cells for studying microbe-host interactions.
Collapse
Affiliation(s)
- Jun Yu
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom.
| | | | | | | | | |
Collapse
|
13
|
Hu S, Shen X, Zhang R, Zhang Y, Zhang R, Zhang W, Deng Z, Cao Y, Zhou Z, Chen J, Ge G, Xuan K, Zhang X, Jin Y. Development of rat antigen-presenting cells from pluripotent ecto-mesenchymal stem cells in vitro and in vivo. Mol Immunol 2008; 45:3818-26. [DOI: 10.1016/j.molimm.2008.05.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 05/21/2008] [Accepted: 05/25/2008] [Indexed: 12/25/2022]
|
14
|
Shah BS, Clark PA, Moioli EK, Stroscio MA, Mao JJ. Labeling of mesenchymal stem cells by bioconjugated quantum dots. NANO LETTERS 2007; 7:3071-9. [PMID: 17887799 PMCID: PMC4410692 DOI: 10.1021/nl071547f] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Long-term labeling of stem cells during self-replication and differentiation benefits investigations of development and tissue regeneration. We report the labeling of human mesenchymal stem cells (hMSCs) with RGD-conjugated quantum dots (QDs) during self-replication, and multilineage differentiations into osteogenic, chondrogenic, and adipogenic cells. QD-labeled hMSCs remained viable as unlabeled hMSCs from the same subpopulation. These findings suggest the use of bioconjugated QDs as an effective probe for long-term labeling of stem cells.
Collapse
Affiliation(s)
- Bhranti S. Shah
- College of Dental Medicine, Department of Biomedical Engineering, Fu Foundation School of Engineering and Applied Sciences, Columbia University, New York, New York 10032
| | - Paul A. Clark
- Department of Neurological Surgery, University of Wisconsin at Madison, Madison, Wisconsin 53792
| | - Eduardo K. Moioli
- College of Dental Medicine, Department of Biomedical Engineering, Fu Foundation School of Engineering and Applied Sciences, Columbia University, New York, New York 10032
| | - Michael A. Stroscio
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Jeremy J. Mao
- College of Dental Medicine, Department of Biomedical Engineering, Fu Foundation School of Engineering and Applied Sciences, Columbia University, New York, New York 10032
| |
Collapse
|
15
|
Affiliation(s)
- Gesine Fleischmann
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
16
|
Abstract
Herein, we succinctly review mechanisms underlying self-tolerance and the roles of dendritic leukocytes (DCs) in T-cell tolerance to self and foreign antigens. We also consider the properties of naturally arising and other populations of regulatory T cells (Treg), together with growing evidence that interplay between DCs and Treg cells can sustain antigen-specific tolerance. B-cell tolerance and the role of hematopoietic cell chimerism in the induction and maintenance of tolerance are also discussed, as is the impact of cosignaling pathway manipulation on tolerance induction. This overview also surveys prospects for technological advances in the monitoring and prediction of tolerance and the application of genomic and proteomic analysis. In addition, we consider potential novel therapeutic targets for promotion of tolerance induction.
Collapse
Affiliation(s)
- Giorgio Raimondi
- University of Pittsburgh School of Medicine, Thomas E. Starzl Transplantation Institute, Pittsburgh, PA, USA
| | | | | |
Collapse
|
17
|
Abstract
As a novel neurotherapeutic strategy, stem cell transplantation has received considerable attention, yet little of this attention has been devoted to the probabilities of success of stem cell therapies for specific neurological disorders. Given the complexities of the cellular organization of the nervous system and the manner in which it is assembled during development, it is unlikely that a cellular replacement strategy will succeed for any but the simplest of neurological disorders in the near future. A general strategy for stem cell transplantation to prevent or minimize neurological disorders is much more likely to succeed. Two broad categories of neurological disease, inherited metabolic disorders and invasive brain tumors, are among the most likely candidates.
Collapse
Affiliation(s)
- Philip H Schwartz
- Children's Hospital of Orange County Research Institute, National Human Neural Stem Cell Resource PI, Human Embryonic Stem Cell Culture Training Course, Orange, CA 92868-3874, USA.
| |
Collapse
|
18
|
Takamatsu S, Furukawa T, Mori T, Yonekura Y, Fujibayashi Y. Noninvasive imaging of transplanted living functional cells transfected with a reporter estrogen receptor gene. Nucl Med Biol 2006; 32:821-9. [PMID: 16253806 DOI: 10.1016/j.nucmedbio.2005.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 06/18/2005] [Accepted: 06/23/2005] [Indexed: 10/25/2022]
Abstract
The transplantation of functional cells such as dopaminergic cells into damaged tissue is now clinically ongoing, but at present the population of surviving cells at the transplantation site mostly cannot be noninvasively examined. To visualize surviving transplanted functional cells using a noninvasive method, we chose the estrogen receptor ligand binding domain (ERL) as a reporter molecule and 16alpha-[18F]-fluoro-17beta-estradiol (FES) for its ligand. We used a mouse embryonic stem (ES) cell line for recipient cells as a model. To obtain ES cells that constitutively or inducibly express ERL, we transfected two types of expression vectors into EB5 parental ES cell line using the lipofection method and obtained about 30 clones for each of the two types of transfectants. Then, to examine the expression level of ERL, we performed Western blotting analysis. Ligand uptake experiments were carried out using [3H]-estradiol with or without excessive unlabeled estradiol for control cells and ERL transfectants. Each selected clone was also used for in vivo positron emission tomography (PET) imaging studies involving FES in nude mice transplanted with control cells and ERL transfectants. In some of the clones transfected with the inducible-type ERL gene, protein was expressed much higher than in the controls. However, constitutive-type ERL gene-transfected ES cells showed no protein production in spite of their gene expression activity being considerably high. All clones also expressed equal levels of the Oct-3/4 gene, a marker of pluripotency, in comparison with the parental cells. Also, the specific uptake of [3H]-estradiol was over 30 times higher in inducer-treated ERL-expressing ES cells compared to untreated control cells. Finally, by performing dynamic PET imaging, we successfully visualized ERL-expressing teratomas using FES.
Collapse
Affiliation(s)
- Shinji Takamatsu
- Biomedical Imaging Research Center, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Yoshida, Fukui 910-1193, Japan.
| | | | | | | | | |
Collapse
|
19
|
|