1
|
S SLJ, V R. Scope of adjuvant therapy using roflumilast, a PDE-4 inhibitor against COVID-19. Pulm Pharmacol Ther 2021; 66:101978. [PMID: 33259924 PMCID: PMC7833560 DOI: 10.1016/j.pupt.2020.101978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/18/2020] [Accepted: 11/24/2020] [Indexed: 01/19/2023]
Abstract
The recent pandemic of COVID-19 caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) presents an extraordinary challenge to identify effective drugs for prevention and treatment. The pathogenesis implicate acute respiratory disorder (ARD) which is attributed to significantly triggered "cytokine storm" and compromised immune system. This article summarizes the likely benefits of roflumilast, a Phosphodiesterase-4 (PDE-4) inhibitor as a comprehensive support COVID-19 pathogenesis. Roflumilast, a well-known anti-inflammatory and immunomodulatory drug, is protective against respiratory models of chemical and smoke induced lung damage. There is significant data which demonstrate the protective effect of PDE-4 inhibitor in respiratory viral models and is likely to be beneficial in combating COVID-19 pathogenesis. Roflumilast is effective in patients with severe COPD by reducing the rate of exacerbations with the improvement of the lung function, which might further be beneficial for better clinical outcomes in COVID-19 patients. However, further clinical trials are warranted to examine this conjecture.
Collapse
Affiliation(s)
- Sugin Lal Jabaris S
- Department of Pharmacology, Siddha Central Research Institute, Central Council for Research in Siddha, Ministry of AYUSH, Govt. of India, Anna Hospital Campus, Arumbakkam, Chennai-106, India.
| | - Ranju V
- Department of Genetic Toxicology, Microbiology and In Vitro Toxicology, Eurofins Advinus, Phase 21 & 22, Bangalore-560 058, India
| |
Collapse
|
2
|
Tavares LP, Garcia CC, Vago JP, Queiroz-Junior CM, Galvão I, David BA, Rachid MA, Silva PMR, Russo RC, Teixeira MM, Sousa LP. Inhibition of Phosphodiesterase-4 during Pneumococcal Pneumonia Reduces Inflammation and Lung Injury in Mice. Am J Respir Cell Mol Biol 2017; 55:24-34. [PMID: 26677751 DOI: 10.1165/rcmb.2015-0083oc] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pneumococcal pneumonia is a leading cause of mortality worldwide. The inflammatory response to bacteria is necessary to control infection, but it may also contribute to tissue damage. Phosphodiesterase-4 inhibitors, such as rolipram (ROL), effectively reduce inflammation. Here, we examined the impact of ROL in a pneumococcal pneumonia murine model. Mice were infected intranasally with 10(5)-10(6) CFU of Streptococcus pneumoniae, treated with ROL in a prophylactic or therapeutic schedule in combination, or not, with the antibiotic ceftriaxone. Inflammation and bacteria counts were assessed, and ex vivo phagocytosis assays were performed. ROL treatment during S. pneumoniae infection decreased neutrophil recruitment into lungs and airways and reduced lung injury. Prophylactic ROL treatment also decreased cytokine levels in the airways. Although modulation of inflammation by ROL ameliorated pneumonia, bacteria burden was not reduced. On the other hand, antibiotic therapy reduced bacteria without reducing neutrophil infiltration, cytokine level, or lung injury. Combined ROL and ceftriaxone treatment decreased lethality rates and was more efficient in reducing inflammation, by increasing proresolving protein annexin A1 (AnxA1) expression, and bacterial burden by enhancing phagocytosis. Lack of AnxA1 increased inflammation and lethality induced by pneumococcal infection. These data show that immunomodulatory effects of phosphodiesterase-4 inhibitors are useful during severe pneumococcal pneumonia and suggest their potential benefit as adjunctive therapy during infectious diseases.
Collapse
Affiliation(s)
- Luciana P Tavares
- 1 Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cristiana C Garcia
- 2 Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Juliana P Vago
- 1 Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,3 Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,4 Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Celso M Queiroz-Junior
- 4 Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Izabela Galvão
- 1 Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Bruna A David
- 4 Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Milene A Rachid
- 5 Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Patrícia M R Silva
- 6 Laboratório de Inflamação, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil and
| | - Remo C Russo
- 1 Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,7 Laboratório de Imunologia e Mecânica Pulmonar, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro M Teixeira
- 1 Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lirlândia P Sousa
- 1 Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,3 Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,4 Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
3
|
Human parainfluenza type 3 virus impairs the efficacy of glucocorticoids to limit allergy-induced pulmonary inflammation in guinea-pigs. Clin Sci (Lond) 2013; 125:471-82. [PMID: 23678868 DOI: 10.1042/cs20130130] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Viral exacerbations of allergen-induced pulmonary inflammation in pre-clinical models reportedly reduce the efficacy of glucocorticoids to limit pulmonary inflammation and airways hyper-responsiveness to inhaled spasmogens. However, exacerbations of airway obstruction induced by allergen challenge have not yet been studied. hPIV-3 (human parainfluenza type 3 virus) inoculation of guinea-pigs increased inflammatory cell counts in BAL (bronchoalveolar lavage) fluid and caused hyper-responsiveness to inhaled histamine. Both responses were abolished by treatment with either dexamethasone (20 mg/kg of body weight, subcutaneous, once a day) or fluticasone propionate (a 0.5 mg/ml solution aerosolized and inhaled over 15 min, twice a day). In ovalbumin-sensitized guinea-pigs, allergen (ovalbumin) challenge caused two phases of airway obstruction [measured as changes in sGaw (specific airways conductance) using whole body plethysmography]: an immediate phase lasting between 4 and 6 h and a late phase at about 7 h. The late phase, airway hyper-responsiveness to histamine and inflammatory cell counts in BAL were all significantly reduced by either glucocorticoid. Inoculation of guinea-pigs sensitized to ovalbumin with hPIV-3 transformed the allergen-induced airway obstruction from two transient phases into a single sustained response lasting up to 12 h. This exacerbated airway obstruction and airway hyper-responsiveness to histamine were unaffected by treatment with either glucocorticoid whereas inflammatory cell counts in BAL were only partially inhibited. Virus- or allergen-induced pulmonary inflammation, individually, are glucocorticoid-sensitive, but in combination generate a phenotype where glucocorticoid efficacy is impaired. This suggests that during respiratory virus infection, glucocorticoids might be less effective in limiting pulmonary inflammation associated with asthma.
Collapse
|
4
|
Li L, Bao H, Wu J, Duan X, Liu B, Sun J, Gong W, Lv Y, Zhang H, Luo Q, Wu X, Dong J. Baicalin is anti-inflammatory in cigarette smoke-induced inflammatory models in vivo and in vitro: A possible role for HDAC2 activity. Int Immunopharmacol 2012; 13:15-22. [PMID: 22421405 DOI: 10.1016/j.intimp.2012.03.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 02/27/2012] [Accepted: 03/01/2012] [Indexed: 12/29/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disease characterized by airway obstruction and progressive lung inflammation, which is insensitive to corticosteroids therapies. In this study, we investigated the mechanism underlying the attenuation of cigarette smoke (CS)-induced respiratory inflammation by baicalin, a flavonoid compound isolated from the root of Scutellaria baicalensis Georgi, in vivo and in vitro. In vivo, mice were exposed to smoke of 15 cigarettes for 1 h/day, 6 days/week for 3 months and dosed with baicalin (25, 50 and 100mg/kg) or dexamethasone (1mg/kg). In vitro, A549 cells were incubated with baicalin (10, 50 and 100 μM) or dexamethasone (10(-12), 10(-10), 10(-8) and 10(-6)M) followed by treatments with cigarette smoke extract (CSE, 2.5 and 5%), or TNF-α (10 ng/ml), or trichostatin A (TSA, 100 ng/ml). We found that baicalin significantly protected pulmonary function and attenuated CS-induced inflammatory response by decreasing inflammatory cells and production of TNF-α, IL-8 and MMP-9. This result was not found in the group treated with dexamethasone. Baicalin also showed efficacy in enhancing histone deacetylase (HDAC)2 activity and protein expression, however, it did not affect HDAC2 mRNA. Further studies revealed that baicalin inhibited HDAC2 phosphorylation, suggesting that it may directly affect the protein structure and effect by modification at post-translational level. Together these results suggest that baicalin has anti-inflammatory effects in cigarette smoke induced inflammatory models in mice and A549 cells, possibly achieved by modulating HDAC2.
Collapse
Affiliation(s)
- Lulu Li
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Broadley KJ, Blair AE, Kidd EJ, Bugert JJ, Ford WR. Bradykinin-induced lung inflammation and bronchoconstriction: role in parainfluenze-3 virus-induced inflammation and airway hyperreactivity. J Pharmacol Exp Ther 2010; 335:681-92. [PMID: 20847038 DOI: 10.1124/jpet.110.171876] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inhaled bradykinin causes bronchoconstriction in asthmatic subjects but not nonasthmatics. To date, animal studies with inhaled bradykinin have been performed only in anesthetized guinea pigs and rats, where it causes bronchoconstriction through sensory nerve pathways. In the present study, airway function was recorded in conscious guinea pigs by whole-body plethysmography. Inhaled bradykinin (1 mM, 20 s) caused bronchoconstriction and influx of inflammatory cells to the lungs, but only when the enzymatic breakdown of bradykinin by angiotensin-converting enzyme and neutral endopeptidase was inhibited by captopril (1 mg/kg i.p.) and phosphoramidon (10 mM, 20-min inhalation), respectively. The bronchoconstriction and cell influx were antagonized by the B(2) kinin receptor antagonist 4-(S)-amino-5-(4-{4-[2,4-dichloro-3-(2,4-dimethyl-8-quinolyloxymethyl)phenylsulfonamido]-tetrahydro-2H-4-pyranylcarbonyl}piperazino)-5-oxopentyl](trimethyl)ammonium chloride hydrochloride (MEN16132) when given by inhalation (1 and 10 μM, 20 min) and are therefore mediated via B(2) kinin receptors. However, neither intraperitioneal MEN16132 nor the peptide B(2) antagonist icatibant, by inhalation, antagonized these bradykinin responses. Sensitization of guinea pigs with ovalbumin was not sufficient to induce airway hyperreactivity (AHR) to the bronchoconstriction by inhaled bradykinin. However, ovalbumin challenge of sensitized guinea pigs caused AHR to bradykinin and histamine. Infection of guinea pigs by nasal instillation of parainfluenza-3 virus produced AHR to inhaled histamine and lung influx of inflammatory cells. These responses were attenuated by the bradykinin B(2) receptor antagonist MEN16132 and H-(4-chloro)DPhe-2'(1-naphthylalanine)-(3-aminopropyl)guanidine (VA999024), an inhibitor of tissue kallikrein, the enzyme responsible for lung synthesis of bradykinin. These results suggest that bradykinin is involved in virus-induced inflammatory cell influx and AHR.
Collapse
Affiliation(s)
- Kenneth J Broadley
- Division of Pharmacology, Welsh School of Pharmacy, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, UK.
| | | | | | | | | |
Collapse
|
6
|
Kirschvink N, Leemans J, Delvaux F, Snaps F, Clercx C, Gustin P. Non-invasive assessment of airway responsiveness in healthy and allergen-sensitised cats by use of barometric whole body plethysmography. Vet J 2007; 173:343-52. [PMID: 16359894 DOI: 10.1016/j.tvjl.2005.10.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
This study aimed at determining whether airway responsiveness (AR) tests performed by use of barometric whole body plethysmography (BWBP) were repeatable in cats and to what extent AR was affected by the nebulization protocol used, the age of the animals, the inflammatory status of the airways and prior bronchodilator treatment. Repeatability of AR was tested on two occasions in 30 healthy cats. The concentration of carbachol inducing a 300% increase of the enhanced pause (Penh)--an estimator of airflow limitation--was calculated (C-Penh300) and did not differ significantly between the two tests (0.035+/-0.017% compared to 0.034+/-0.016%) and was significantly and positively correlated. The comparison between rapidly and slowly increasing carbachol concentrations was performed in ten healthy cats and showed a significantly lower C-Penh300 (%) when slowly increasing concentrations were used (0.037+/-0.013% compared to 0.039+/-0.015%, P<0.05). A significant age-related increase of C-Penh300 was evidenced by performing AR tests in 15 healthy cats at 12, 18, 24 and 30 months (12 months: 0.026+/-0.008%, 18 months: 0.031+/-0.009%, 24 months: 0.038+/-0.01%, 30 months: 0.043+/-0.014%, P<0.05). C-Penh300 significantly decreased in 12 Ascaris suum-sensitised cats after allergen exposure (0.026+/-0.016% compared to 0.033+/-0.016%, P<0.05) and was negatively correlated with the granulocyte percentage of bronchoalveolar lavage fluid (r=-0.36, P<0.01). Compared with a placebo inhalation, pre-treatment with inhaled salbutamol significantly increased C-Penh300 in four healthy cats (0.093+/-0.021% compared to 0.036+/-0.004%, P<0.05). This study provides evidence that AR determination by use of BWBP is promising as non-invasive indicator of lower airway inflammation or for monitoring response to bronchodilator treatment.
Collapse
Affiliation(s)
- Nathalie Kirschvink
- Department for Functional Sciences B41, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium.
| | | | | | | | | | | |
Collapse
|
7
|
Lugnier C. Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents. Pharmacol Ther 2005; 109:366-98. [PMID: 16102838 DOI: 10.1016/j.pharmthera.2005.07.003] [Citation(s) in RCA: 665] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Accepted: 07/12/2005] [Indexed: 01/08/2023]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs), which are ubiquitously distributed in mammalian tissues, play a major role in cell signaling by hydrolyzing cAMP and cGMP. Due to their diversity, which allows specific distribution at cellular and subcellular levels, PDEs can selectively regulate various cellular functions. Their critical role in intracellular signaling has recently designated them as new therapeutic targets for inflammation. The PDE superfamily represents 11 gene families (PDE1 to PDE11). Each family encompasses 1 to 4 distinct genes, to give more than 20 genes in mammals encoding the more than 50 different PDE proteins probably produced in mammalian cells. Although PDE1 to PDE6 were the first well-characterized isoforms because of their predominance in various tissues and cells, their specific contribution to tissue function and their regulation in pathophysiology remain open research fields. This concerns particularly the newly discovered families, PDE7 to PDE11, for which roles are not yet established. In many pathologies, such as inflammation, neurodegeneration, and cancer, alterations in intracellular signaling related to PDE deregulation may explain the difficulties observed in the prevention and treatment of these pathologies. By inhibiting specifically the up-regulated PDE isozyme(s) with newly synthesized potent and isozyme-selective PDE inhibitors, it may be potentially possible to restore normal intracellular signaling selectively, providing therapy with reduced adverse effects.
Collapse
Affiliation(s)
- Claire Lugnier
- CNRS UMR, 7034, Pharmacologie et Physicochimie des Interactions Moléculaires et Cellulaires, Faculté de Pharmacie, Université Louis Pasteur de Strasbourg, 74 route du Rhin, BP 60024, 67401 Illkirch, France.
| |
Collapse
|