1
|
Yang K, Hu B, Zhang W, Yuan T, Xu Y. Recent progress in the understanding of Citrus Huanglongbing: from the perspective of pathogen and citrus host. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:77. [PMID: 39525404 PMCID: PMC11541981 DOI: 10.1007/s11032-024-01517-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
Citrus Huanglongbing (HLB) is a devastating disease spread by citrus psyllid, causing severe losses to the global citrus industry. The transmission of HLB is mainly influenced by both the pathogen and the citrus psyllid. The unculturable nature of the HLB bacteria (Candidatus Liberibacter asiaticus, CLas) and the susceptibility of all commercial citrus varieties made it extremely difficult to study the mechanisms of resistance and susceptibility. In recent years, new progress has been made in understanding the virulence factors of CLas as well as the defense strategies of citrus host against the attack of CLas. This paper reviews the recent advances in the pathogenic mechanisms of CLas, the screening of agents targeting the CLas, including antimicrobial peptides, metabolites and chemicals, the citrus host defense response to CLas, and strategies to enhance citrus defense. Future challenges that need to be addressed are also discussed.
Collapse
Affiliation(s)
- Kun Yang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China
| | - Bin Hu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China
| | - Wang Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China
| | - Tao Yuan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yuantao Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
2
|
Gu M, Su W, Dai J, Wang J, Jia X, Yao J, Zhang G, Zhu Q, Pang Z. Jingfang granule alleviates Pseudomonas aeruginosa-induced acute lung inflammation through suppression of STAT3/IL-17/NF-κB pathway based on network pharmacology analysis and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116899. [PMID: 37454750 DOI: 10.1016/j.jep.2023.116899] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/11/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pseudomonas aeruginosa is an opportunistic bacterial pathogen which is the second leading cause of hospital-acquired pneumonia. Jingfang granule (JFG) is an herbal formula of Traditional Chinese medicine (TCM) widely used in treatment of acute respiratory tract infections in China. However, the molecular mechanisms of JFG in treatment of P. aeruginosa-induced acute pneumonia are not clear. AIM OF STUDY This study aimed to investigate the mechanisms underlying the effects of JFG on P. aeruginosa-induced acute inflammation using a mouse model of bacterial acute pneumonia. MATERIALS AND METHODS The chemical components and targets of JFG were retrieved from Traditional Chinese Medicine Systems Pharmacology (TCMSP) database, and the P. aeruginosa pneumonia-related targets were obtained from the disease databases, including Online Mendelian Inheritance in Man (OMIM), GeneCards and DisGeNet. The protein-protein interaction (PPI) network was constructed using STRING database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID). Molecular docking was performed using AutoDockTools 1.5.6. Further in vivo experiments employed a mouse model of P. aeruginosa acute pneumonia to verify the target proteins and signaling pathways affected by JFG, which were predicted by the network pharmacology analysis. RESULTS A total of 218 active components and 257 targets of JFG were retrieved from TCMSP database. Moreover, 99 intersectant targets were obtained between the 257 JFG targets and 694 disease targets. Among the intersectant targets, STAT3, IL-6, AKT1, TNF, MAPK1, MAPK3 and EGFR were identified to be the key therapeutic targets through PPI network analysis, and STAT3 was in the center of the network, which is a key regulator of IL-17 expression. KEGG pathway enrichment analysis suggested that IL-17 signaling pathway was one of the crucial inflammatory pathways affected by JFG in treatment of P. aeruginosa pneumonia. Furthermore, the in vivo experiments demonstrated that the JFG-treated mice displayed reduced proinflammatory cytokine production (IL-17, IL-1β, IL-6 and TNF), diminished neutrophil infiltration and decreased mortality, compared with the non-drug-treated mice during P. aeruginosa lung infection. Moreover, the expression or phosphorylation levels of the key regulators in STAT3/IL-17/NF-κB axis including STAT3, ERK1/2 (MAPK3/1), AKT, NF-κB p65 and RORγt were significantly reduced in the lung tissues of the JFG-treated mice. CONCLUSION JFG was effective in treatment of P. aeruginosa acute lung infection, which reduced inflammatory responses through suppressing STAT3/IL-17/NF-κB pathway.
Collapse
Affiliation(s)
- Mengdi Gu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Wen Su
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Jiangqin Dai
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Jue Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Xiaolei Jia
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Jingchun Yao
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276005, China.
| | - Guimin Zhang
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276005, China.
| | - Qingjun Zhu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Zheng Pang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
3
|
Turna Demir F. Protective effects of resveratrol against genotoxicity induced by nano and bulk hydroxyapatite in Drosophila melanogaster. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:850-865. [PMID: 35848415 DOI: 10.1080/15287394.2022.2101568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hydroxyapatite (HAp) is a naturally occurring calcium phosphate mineral predominantly used for its biocompatibility in a number of areas such as bone grafting, prosthesis coating in dentistry, and targeted drug delivery. Since the nano form of HAp (nHAp) has gained popularity attributed to a re-mineralizing effect in dental repair procedures, concerns have been raised over safety and biocompatibility of these nanoparticles (NP). This study, therefore, aimed to (1) investigate mechanisms of potential genotoxicity and enhanced generation of reactive oxygen species (ROS) initiated by bulk and nano forms of HAp and (2) test in vivo whether resveratrol, a type of natural phenol, might mitigate the extent of potential DNA damage. The size of nHAp was determined to be 192.13 ± 9.91 nm after dispersion using transmission electron microscopy (TEM). Drosophila melanogaster was employed as a model organism to determine the genotoxic potential and adverse effects of HAp by use of (comet assay), mutagenic and recombinogenic activity (wing spot test), and ROS-mediated damage. Drosophila wing-spot tests demonstrated that exposure to nontoxic bulk and nHAp concentrations (1, 2.5, 5 or 10 mM) produced no significant recombination effects or mutagenicity. However, bulk and nHAp at certain doses (2.5, 5 or 10 mM) induced genotoxicity in hemocytes and enhanced ROS production. Resveratrol was found to ameliorate the genotoxic effects induced by bulk HAp and nHAp in comet assay. Data demonstrate that treatment with nano and bulk Hap-induced DNA damage and increased ROS generation D. melanogaster which was alleviated by treatment with resveratrol.
Collapse
Affiliation(s)
- Fatma Turna Demir
- Vocational School of Health Services, Department of Medical Services and Techniques, Medical Laboratory Techniques Programme, Antalya Bilim University, Antalya, Turkey
| |
Collapse
|
4
|
Prakash V, Krishnan AS, Ramesh R, Bose C, Pillai GG, Nair BG, Pal S. Synergistic Effects of Limosilactobacillus fermentum ASBT-2 with Oxyresveratrol Isolated from Coconut Shell Waste. Foods 2021; 10:foods10112548. [PMID: 34828830 PMCID: PMC8622123 DOI: 10.3390/foods10112548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022] Open
Abstract
Value-added phytochemicals from food by-products and waste materials have gained much interest and among them, dietary polyphenolic compounds with potential biological properties extend a promising sustainable approach. Oxyresveratrol (Oxy), a stilbenoid polyphenol, possesses great therapeutic potential, though its pharmacokinetic issues need attention. A good source of oxyresveratrol was found in underutilized coconut shells and the synbiotic applications of the compound in combination with a potential probiotic isolate Limosilactobacillus fermentum ASBT-2 was investigated. The compound showed lower inhibitory effects on the strain with minimum inhibitory concentration (MIC) of 1000 µg/mL. Oxyresveratrol at sub-MIC concentrations (500 µg/mL and 250 µg/mL) enhanced the probiotic properties without exerting any inhibitory effects on the strain. The combination at sub- MIC concentration of the compound inhibited Salmonella enterica and in silico approaches were employed to elucidate the possible mode of action of oxy on the pathogen. Thus, the combination could target pathogens in the gut without exerting negative impacts on growth of beneficial strains. This approach could be a novel perspective to address the poor pharmacokinetic properties of the compound.
Collapse
Affiliation(s)
- Vidhya Prakash
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India; (V.P.); (A.S.K.); (R.R.); (C.B.); (B.G.N.)
| | - Akshaya S Krishnan
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India; (V.P.); (A.S.K.); (R.R.); (C.B.); (B.G.N.)
| | - Reshma Ramesh
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India; (V.P.); (A.S.K.); (R.R.); (C.B.); (B.G.N.)
| | - Chinchu Bose
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India; (V.P.); (A.S.K.); (R.R.); (C.B.); (B.G.N.)
| | | | - Bipin G. Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India; (V.P.); (A.S.K.); (R.R.); (C.B.); (B.G.N.)
| | - Sanjay Pal
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India; (V.P.); (A.S.K.); (R.R.); (C.B.); (B.G.N.)
- Correspondence: ; Tel.: +91-4762805315
| |
Collapse
|
5
|
Rochín-Medina JJ, López-Moreno HS, Ramirez K. Effect of Bacillus clausii-fermented spent coffee ground extract on Salmonella-infected macrophages. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Cadena-Velandia ZG, Montenegro-Alarcón JC, Marquínez-Casas X, Mora-Huertas CE. Quercetin-loaded alginate microparticles: A contribution on the particle structure. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Jia E, Yan Y, Zhou M, Li X, Jiang G, Liu W, Zhang D. Combined effects of dietary quercetin and resveratrol on growth performance, antioxidant capability and innate immunity of blunt snout bream (Megalobrama amblycephala). Anim Feed Sci Technol 2019. [DOI: 10.1016/j.anifeedsci.2019.114268] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
8
|
Kunová S, Felsöciová S, Tvrdá E, Ivanišová E, Kántor A, Žiarovská J, Terentjeva M, Kačániová M. Antimicrobial activity of resveratrol and grape pomace extract. POTRAVINARSTVO 2019. [DOI: 10.5219/1054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Resveratrol is commonly found in food and drinks, including red wine and grapes. Grape extracts have a potent antimicrobial activity in vitro. The antimicrobial activity of plant extracts is the base of their potential application in food preservation agents, pharmaceuticals, cosmetics, alternative drugs and natural therapies. The aim of our study was to evaluate the antimicrobial activity of resveratrol and Blue Frankish pomace extract against Grampositive and Gramnegative bacteria as well as yeasts from the genus Candida. Six bacterial strains (three Grampositive bacteria Staphylococcus aureus CCM 2461, Enterococcus faecalis CCM 4224 and Listeria monocytogenes CCM 4699; three Gramnegative bacteria Escherichia coli CCM 3988, Pseudomonas aeruginosa CCM 1959 and Salmonella enteritidis subsp. enteritidis CCM 4420) and three yeast strains (Candida albicans CCM 8186, Candida krusei CCM 8271 and Candida tropicalis CCM 8223) were evaluated using the antimicrobial assay. Pure resveratrol and grape pomace extracts of red variety Blue Frankish were used. Our results show that resveratrol and red grape pomace extract have a very good antimicrobial activity against Grampositive bacteria when compared with Gramnegative bacteria and yeasts.
Collapse
|
9
|
Kores K, Lešnik S, Bren U, Janežič D, Konc J. Discovery of Novel Potential Human Targets of Resveratrol by Inverse Molecular Docking. J Chem Inf Model 2019; 59:2467-2478. [PMID: 30883115 DOI: 10.1021/acs.jcim.8b00981] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Resveratrol is a polyphenol known for its antioxidant and anti-inflammatory properties, which support its use as a treatment for variety of diseases. There are already known connections of resveratrol to chemoprevention of cancer because of its ability to prevent tumor initiation and inhibit tumor promotion and progression. Resveratrol is also believed to be important in cardiovascular diseases and neurological disorders, such as Alzheimer's disease. Using an inverse molecular docking approach, we sought to find new potential targets of resveratrol. Docking of resveratrol into each ProBiS predicted binding site of >38 000 protein structures from the Protein Data Bank was examined, and a number of novel potential targets into which resveratrol was docked successfully were found. These explain known actions or predict new effects of resveratrol. The results included three human proteins that are already known to bind resveratrol. A majority of proteins discovered however have no already described connections with resveratrol. We report new potential target human proteins and proteins connected with different organisms into which resveratrol can dock. Our results reveal previously unknown potential target human proteins, whose connection with cardiovascular and neurological disorders could lead to new potential treatments for variety of diseases. We believe that our research could help in future experimental studies on revestratol bioactivity in humans.
Collapse
Affiliation(s)
- Katarina Kores
- University of Maribor , Faculty for Chemistry and Chemical Technology Maribor , Smetanova ulica 17 , SI-2000 Maribor , Slovenia
| | - Samo Lešnik
- National Institute of Chemistry , Hajdrihova 19 , SI-1000 Ljubljana , Slovenia
| | - Urban Bren
- University of Maribor , Faculty for Chemistry and Chemical Technology Maribor , Smetanova ulica 17 , SI-2000 Maribor , Slovenia.,National Institute of Chemistry , Hajdrihova 19 , SI-1000 Ljubljana , Slovenia.,University of Primorska , Faculty of Mathematics, Natural Sciences and Information Technology , Glagoljaška 8 , SI-6000 Koper , Slovenia
| | - Dušanka Janežič
- University of Primorska , Faculty of Mathematics, Natural Sciences and Information Technology , Glagoljaška 8 , SI-6000 Koper , Slovenia
| | - Janez Konc
- National Institute of Chemistry , Hajdrihova 19 , SI-1000 Ljubljana , Slovenia.,University of Primorska , Faculty of Mathematics, Natural Sciences and Information Technology , Glagoljaška 8 , SI-6000 Koper , Slovenia
| |
Collapse
|
10
|
Ma DSL, Tan LTH, Chan KG, Yap WH, Pusparajah P, Chuah LH, Ming LC, Khan TM, Lee LH, Goh BH. Resveratrol-Potential Antibacterial Agent against Foodborne Pathogens. Front Pharmacol 2018. [PMID: 29515440 PMCID: PMC5826062 DOI: 10.3389/fphar.2018.00102] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Bacterial foodborne pathogens are a significant health burden and the recent emergence of pathogenic resistant strains due to the excessive use of antibiotics makes it more difficult to effectively treat infections as a result of contaminated food. Awareness of this impending health crisis has spurred the search for alternative antimicrobials with natural plant antimicrobials being among the more promising candidates as these substances have good acceptability and likely low toxicity levels as they have long been used in traditional medicines. Resveratrol (3,5,4′-trihydroxystilbene) is a naturally occurring stilbenoid which has been gaining considerable attention in medical field due to its diverse biological activities - it has been reported to exhibit antioxidant, cardioprotective, anti-diabetic, anticancer, and antiaging properties. Given that resveratrol is phytoalexin, with increased synthesis in response to infection by phytopathogens, there has been interest in exploring its antimicrobial activity. This review aims to provide an overview of the published data on the antibacterial activity of resveratrol against foodborne pathogens, its mechanisms of action as well as its possible applications in food packing and processing; in addition we also summarize the current data on its potential synergism with known antibacterials and future research and applications.
Collapse
Affiliation(s)
- Dexter S L Ma
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia.,Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Loh Teng-Hern Tan
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia.,Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia.,Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Kok-Gan Chan
- International Genome Centre, Jiangsu University, Zhenjiang, China.,Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Wei Hsum Yap
- School of Biosciences, Taylor's University, Subang Jaya, Malaysia
| | - Priyia Pusparajah
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Lay-Hong Chuah
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia.,Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia.,Advanced Engineering Platform, Monash University Malaysia, Subang Jaya, Malaysia
| | - Long Chiau Ming
- Division of Pharmacy, School of Medicine, University of Tasmania, Hobart, Australia.,School of Pharmacy, KPJ Healthcare University College, Nilai, Malaysia
| | - Tahir Mehmood Khan
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia.,Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia.,Asian Centre for Evidence Synthesis in Population, Implementation and Clinical Outcomes, Health and Well-Being Cluster, Global Asia in the 21st Century Platform, Monash University Malaysia, Subang Jaya, Malaysia.,The Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Learn-Han Lee
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia.,Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia.,Asian Centre for Evidence Synthesis in Population, Implementation and Clinical Outcomes, Health and Well-Being Cluster, Global Asia in the 21st Century Platform, Monash University Malaysia, Subang Jaya, Malaysia.,Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
| | - Bey-Hing Goh
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia.,Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia.,Asian Centre for Evidence Synthesis in Population, Implementation and Clinical Outcomes, Health and Well-Being Cluster, Global Asia in the 21st Century Platform, Monash University Malaysia, Subang Jaya, Malaysia.,Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
| |
Collapse
|
11
|
Ren H, Li Y, Jiang H, Du M. Interferon-Gamma and Fas Are Involved in Porphyromonas gingivalis-Induced Apoptosis of Human Extravillous Trophoblast-Derived HTR8/SVneo Cells via Extracellular Signal-Regulated Kinase 1/2 Pathway. J Periodontol 2016; 87:e192-e199. [PMID: 27353438 DOI: 10.1902/jop.2016.160259] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND A number of studies recently revealed a link between periodontal disease and preterm birth (PTB). PTB can be induced by dental infection with Porphyromonas gingivalis (Pg), a periodontopathic bacterium. This study aims to investigate responses of human extravillous trophoblast-derived HTR8/SVneo cells to Pg infection. METHODS Cell apoptosis, cell viability, protein expression, and cytokine production in HTR8 cells were measured via: 1) flow cytometry, 2) CCK-8 assay, 3) western blot, and 4) enzyme-linked immunosorbent assay methods, respectively. RESULTS Pg decreased cell viability and increased cell apoptosis, active caspase-3 and Fas expression, and interferon-gamma (IFN-γ) secretion in HTR8 cells. Extracellular signal-regulated kinase (ERK) 1/2 inhibitor U0126 and FasL neutralizing antibody NOK1 that blocks FasL/Fas interaction both significantly suppressed Pg-induced apoptosis. U0126 also inhibited IFN-γ secretion and Fas expression close to control levels. Moreover, treatment with recombinant IFN-γ also significantly decreased number of viable HTR8 cells and increased Fas expression, suggesting IFN-γ may play an important role in Pg-induced apoptosis of HTR8 cells, at least partially through regulation of Fas expression. CONCLUSIONS To the best of the authors' knowledge, this is the first study to demonstrate Pg induces IFN-γ secretion, Fas expression, and apoptosis in human extravillous trophoblast-derived HTR8/SVneo cells in an ERK1/2-dependent manner, and IFN-γ (explored by recombinant IFN-γ) and Fas are involved in Pg-induced apoptosis. The finding that Pg infection abnormally regulates inflammation and apoptosis of human trophoblasts may give new insights into the possible link of PTB with maternal periodontal disease and periodontal pathogens.
Collapse
Affiliation(s)
- Hongyu Ren
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Yuhong Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Han Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Minquan Du
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
12
|
Padma VV, Lalitha G, Shirony NP, Baskaran R. Effect of quercetin against lindane induced alterations in the serum and hepatic tissue lipids in wistar rats. Asian Pac J Trop Biomed 2015; 2:910-5. [PMID: 23569870 DOI: 10.1016/s2221-1691(12)60252-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 09/12/2012] [Accepted: 11/28/2012] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE To assess the effect of quercetin (flavonoid) against lindane induced alterations in lipid profile of wistar rats. METHODS Rats were administered orally with lindane (100 mg/kg body weight) and quercetin (10 mg/kg body weight) for 30 days. After the end of treatment period lipid profile was estimated in serum and tissue. RESULTS Elevated levels of serum cholesterol, triglycerides, low density lipoprotein (LDL), very Low Density Lipoprotein (VLDL) and tissue triglycerides, cholesterol with concomitant decrease in serum HDL and tissue phospholipids were decreased in lindane treated rats were found to be significantly decreased in the quercetin and lindane co-treated rats. CONCLUSIONS Our study suggests that quercetin has hypolipidemic effect and offers protection against lindane induced toxicity in liver by restoring the altered levels of lipids. The quercetin cotreatment along with lindane for 30 days reversed these biochemical alterations in lipids induced by lindane.
Collapse
Affiliation(s)
- Viswanadha Vijaya Padma
- Animal tissue culture and Molecular genetics Laboratory, Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore-641 046, Tamilnadu, India
| | | | | | | |
Collapse
|
13
|
Zhang Z, Peng X, Zhang N, Liu L, Wang Y, Ou S. Cytotoxicity comparison of quercetin and its metabolites from in vitro fermentation of several gut bacteria. Food Funct 2014; 5:2152-6. [DOI: 10.1039/c4fo00418c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
14
|
Pangeni R, Sahni JK, Ali J, Sharma S, Baboota S. Resveratrol: review on therapeutic potential and recent advances in drug delivery. Expert Opin Drug Deliv 2014; 11:1285-98. [PMID: 24830814 DOI: 10.1517/17425247.2014.919253] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Natural products have seen a wide range of acceptability for the prevention and treatment of diseases throughout history. Resveratrol, a member of the stilbene family, has been found to potentially exhibit anticancer, antiangiogenic, immunomodulatory and cardioprotective activities as well as being an antioxidant. This is in addition to its usefulness in the treatment of neurodegenerative disease, diabetes and cardiac ailments. Currently, various studies have revealed that resveratrol is a potential drug candidate with multi-spectrum therapeutic application. AREAS COVERED This review aims to describe the various studies supporting the wide range of pharmacological activities of resveratrol. In addition, it includes a section devoted to discussing the challenges associated with the drug and strategies to improve the properties of resveratrol such as solubility, stability and bioavailability. EXPERT OPINION Resveratrol demonstrated its ability to be a potential drug candidate for the treatment of different ailments due to its potent antioxidant properties. To improve the drug stability, increase the bioavailability and minimize side-effects of resveratrol, novel drug delivery systems have been formulated to bring this potential candidate to the first line of disease treatment.
Collapse
Affiliation(s)
- Rudra Pangeni
- Faculty of Pharmacy, Jamia Hamdard University, Department of Pharmaceutics , New Delhi , India
| | | | | | | | | |
Collapse
|
15
|
Vinayachandra, Chandrashekar KR. Phenolic Contents ofKnema attenuataFruits and their Bioactive Potentials. ACTA ACUST UNITED AC 2014. [DOI: 10.1080/10496475.2013.848390] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Chen C, Zuckerman DM, Brantley S, Sharpe M, Childress K, Hoiczyk E, Pendleton AR. Sambucus nigra extracts inhibit infectious bronchitis virus at an early point during replication. BMC Vet Res 2014; 10:24. [PMID: 24433341 PMCID: PMC3899428 DOI: 10.1186/1746-6148-10-24] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 01/10/2014] [Indexed: 11/25/2022] Open
Abstract
Background Infectious bronchitis virus (IBV) is a pathogenic chicken coronavirus. Currently, vaccination against IBV is only partially protective; therefore, better preventions and treatments are needed. Plants produce antimicrobial secondary compounds, which may be a source for novel anti-viral drugs. Non-cytotoxic, crude ethanol extracts of Rhodiola rosea roots, Nigella sativa seeds, and Sambucus nigra fruit were tested for anti-IBV activity, since these safe, widely used plant tissues contain polyphenol derivatives that inhibit other viruses. Results Dose–response cytotoxicity curves on Vero cells using trypan blue staining determined the highest non-cytotoxic concentrations of each plant extract. To screen for IBV inhibition, cells and virus were pretreated with extracts, followed by infection in the presence of extract. Viral cytopathic effect was assessed visually following an additional 24 h incubation with extract. Cells and supernatants were harvested separately and virus titers were quantified by plaque assay. Variations of this screening protocol determined the effects of a number of shortened S. nigra extract treatments. Finally, S. nigra extract-treated virions were visualized by transmission electron microscopy with negative staining. Virus titers from infected cells treated with R. rosea and N. sativa extracts were not substantially different from infected cells treated with solvent alone. However, treatment with S. nigra extracts reduced virus titers by four orders of magnitude at a multiplicity of infection (MOI) of 1 in a dose-responsive manner. Infection at a low MOI reduced viral titers by six orders of magnitude and pretreatment of virus was necessary, but not sufficient, for full virus inhibition. Electron microscopy of virions treated with S. nigra extract showed compromised envelopes and the presence of membrane vesicles, which suggested a mechanism of action. Conclusions These results demonstrate that S. nigra extract can inhibit IBV at an early point in infection, probably by rendering the virus non-infectious. They also suggest that future studies using S. nigra extract to treat or prevent IBV or other coronaviruses are warranted.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Amanda R Pendleton
- Division of Natural Science and Mathematics, Oxford College of Emory University, Oxford, GA 30054, USA.
| |
Collapse
|
17
|
Ferric uptake regulator-dependent antinitrosative defenses in Salmonella enterica serovar Typhimurium pathogenesis. Infect Immun 2013; 82:333-40. [PMID: 24166960 DOI: 10.1128/iai.01201-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Herein we report an important role for the ferric uptake regulator (Fur) in the resistance of Salmonella enterica serovar Typhimurium to the reactive nitrogen species produced by inducible nitric oxide (NO) synthase in an NRAMP1(r) murine model of acute systemic infection. The expression of fur protected Salmonella grown under normoxic and hypoxic conditions against the bacteriostatic activity of NO. The hypersusceptibility of fur-deficient Salmonella to the cytotoxic actions of NO coincides with a marked repression of respiratory activity and the reduced ability of the bacteria to detoxify NO. A fur mutant Salmonella strain contained reduced levels of the terminal quinol oxidases of the electron transport chain. Addition of the heme precursor δ-aminolevulinic acid restored the cytochrome content, respiratory activity, NO consumption, and wild-type growth in bacteria undergoing nitrosative stress. The innate antinitrosative defenses regulated by Fur added to the adaptive response associated with the NO-detoxifying activity of the flavohemoprotein Hmp. Our investigations indicate that, in addition to playing a critical role in iron homeostasis, Fur is an important antinitrosative determinant of Salmonella pathogenesis.
Collapse
|
18
|
Rizzo A, Carratelli CR, Losacco A, Iovene MR. Antimicrobial effect of natural polyphenols with or without antibiotics on Chlamydia pneumoniae infection in vitro. Microb Drug Resist 2013; 20:1-10. [PMID: 23952319 DOI: 10.1089/mdr.2013.0024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Chlamydia pneumoniae is a human pathogen that causes multiple diseases worldwide. Despite appropriate therapy with antichlamydial antibiotics, chronic exacerbated diseases often occur and lead to serious sequelae. The use of the macrolide clarithromycin and the fluoroquinolone ofloxacin has improved the treatment of chlamydial infection, but therapy failure is still a major problem. In this work, we studied the pretreatment with natural polyphenols and subsequent treatment with clarithromycin or ofloxacin. The phenolic compounds resveratrol and quercetin improved the antichlamydial effect of clarithromycin and ofloxacin. In particular, resveratrol at 40 μM and quercetin at 20 μM exhibited significant growth inhibition on C. pneumoniae in presence of clarithromycin or ofloxacin compared to controls. In addition, we demonstrated that both resveratrol and quercetin decreased IL-17 and IL-23 production in a time-dependent manner in C. pneumoniae-infected cells. The results showed a particularly strong inhibition of the IL-23 levels released with combined treatment of resveratrol or quercetin and ofloxacin or clarithromycin, suggesting that the combined treatment may afford a synergistic effect in controlling Chlamydia infections.
Collapse
Affiliation(s)
- Antonietta Rizzo
- Section of Microbiology and Clinical Microbiology, Department of Experimental Medicine, Faculty of Medicine and Surgery, Second University of Naples , Naples, Italy
| | | | | | | |
Collapse
|
19
|
Effect of resveratrol and modulation of cytokine production on human periodontal ligament cells. Cytokine 2012; 60:197-204. [DOI: 10.1016/j.cyto.2012.06.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 04/05/2012] [Accepted: 06/02/2012] [Indexed: 11/21/2022]
|
20
|
Identification of signaling pathways mediating cell cycle arrest and apoptosis induced by Porphyromonas gingivalis in human trophoblasts. Infect Immun 2012; 80:2847-57. [PMID: 22689813 DOI: 10.1128/iai.00258-12] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epidemiological and interventional studies of humans have revealed a close association between periodontal diseases and preterm delivery of low-birth-weight infants. Porphyromonas gingivalis, a periodontal pathogen, can translocate to gestational tissues following oral-hematogenous spread. We previously reported that P. gingivalis invades extravillous trophoblast cells (HTR-8) derived from the human placenta and inhibits proliferation through induction of arrest in the G(1) phase of the cell cycle. The purpose of the present study was to identify signaling pathways mediating cellular impairment caused by P. gingivalis. Following P. gingivalis infection, the expression of Fas was induced and p53 accumulated, responses consistent with response to DNA damage. Ataxia telangiectasia- and Rad3-related kinase (ATR), an essential regulator of DNA damage checkpoints, was shown to be activated together with its downstream signaling molecule Chk2, while the p53 degradation-related protein MDM2 was not induced. The inhibition of ATR prevented both G(1) arrest and apoptosis caused by P. gingivalis in HTR-8 cells. In addition, small interfering RNA (siRNA) knockdown of p53 abrogated both G(1) arrest and apoptosis. The regulation of apoptosis was associated with Ets1 activation. HTR-8 cells infected with P. gingivalis exhibited activation of Ets1, and knockdown of Ets1 with siRNA diminished both G(1) arrest and apoptosis. These results suggest that P. gingivalis activates cellular DNA damage signaling pathways that lead to G(1) arrest and apoptosis in trophoblasts.
Collapse
|
21
|
Liu YT, Sun J, Luo ZY, Rao SQ, Su YJ, Xu RR, Yang YJ. Chemical composition of five wild edible mushrooms collected from Southwest China and their antihyperglycemic and antioxidant activity. Food Chem Toxicol 2012; 50:1238-44. [DOI: 10.1016/j.fct.2012.01.023] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 01/15/2012] [Accepted: 01/17/2012] [Indexed: 11/29/2022]
|
22
|
Chirumbolo S. Plant polyphenolic compounds as potential antimicrobial drugs. J Med Microbiol 2011; 60:1562-1563. [DOI: 10.1099/jmm.0.032201-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Salvatore Chirumbolo
- Department of Pathology and Diagnostics, Section General Pathology, University of Verona, Italy
| |
Collapse
|
23
|
Türkez H, Sisman T. The genoprotective activity of resveratrol on aflatoxin B₁-induced DNA damage in human lymphocytes in vitro. Toxicol Ind Health 2011; 28:474-80. [PMID: 21911429 DOI: 10.1177/0748233711414614] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Aflatoxin B₁ (AFB₁) has been consistently shown to be a potent mutagen and carcinogen in humans and animals. On the other hand, resveratrol (RSV), a polyphenol, has several positive biological actions such as protection of cells against DNA damage. In the present study, the antigenotoxic effect of RSV was studied against a genotoxic dose of AFB₁ using the damage parameters of chromosomal aberrations (CAs) and sister chromatid exchanges (SCEs) in cultured human lymphocytes. Whole blood samples from three healthy male donors were used for this experiment and the effects of various concentrations of RSV (0, 10, 15, 25, 40, 75 and 100 µM) and AFB₁ (10 µM) were tested. The results revealed that the frequencies of SCEs and CAs in lymphocytes were significantly (p < 0.05) increased by AFB₁ as compared to controls. The results also showed that RSV was not genotoxic. Moreover, the number of SCEs and micronuclei induced by AFB₁ could be significantly minimized by the presence of RSV. Our results suggest for the first time that RSV can antagonize the ability of AFB₁ to cause DNA damage that leads to the formation of SCEs and CAs.
Collapse
Affiliation(s)
- Hasan Türkez
- Department of Biology, Atatürk University, Erzurum, Turkey.
| | | |
Collapse
|